mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Removing 4 tests: ``` (pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (7539011b)]$ python test/test_optim.py -v -k test_fused_optimizers_with_large_tensors -k test_fused_optimizers_with_varying_tensors -k test_multi_tensor_optimizers_with_large_tensors -k test_multi_tensor_optimizers_with_varying_tensors /home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0 warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}" test_fused_optimizers_with_large_tensors (optim.test_optim.TestOptim) ... ok test_fused_optimizers_with_varying_tensors (optim.test_optim.TestOptim) ... ok test_multi_tensor_optimizers_with_large_tensors (optim.test_optim.TestOptim) ... ok test_multi_tensor_optimizers_with_varying_tensors (optim.test_optim.TestOptim) ... ok ---------------------------------------------------------------------- Ran 4 tests in 22.731s OK ``` For the same 4 but more granular: ``` (pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (7539011b)]$ python test/test_optim.py -v -k test_fused_large_tensor -k test_fused_mixed_device_dtype -k test_foreach_large_tensor -k test_foreach_mixed_device_dtype /home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0 warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}" test_foreach_large_tensor_ASGD_cpu_float16 (__main__.TestOptimRenewedCPU) ... skipped 'Only runs on cuda' .... test_fused_mixed_device_dtype_Adam_cpu_float32 (__main__.TestOptimRenewedCPU) ... skipped 'Only runs on cuda' test_foreach_large_tensor_ASGD_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_Adadelta_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_Adagrad_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_AdamW_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_Adam_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_NAdam_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_RAdam_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_RMSprop_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_Rprop_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_large_tensor_SGD_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_ASGD_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_Adadelta_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_Adagrad_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_AdamW_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_Adam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_Adamax_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_NAdam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_RAdam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_RMSprop_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_Rprop_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_foreach_mixed_device_dtype_SGD_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_fused_large_tensor_AdamW_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_fused_large_tensor_Adam_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok test_fused_mixed_device_dtype_AdamW_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok test_fused_mixed_device_dtype_Adam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok ---------------------------------------------------------------------- Ran 50 tests in 50.785s OK (skipped=25) ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/115025 Approved by: https://github.com/albanD ghstack dependencies: #114802, #115023
317 lines
14 KiB
Python
317 lines
14 KiB
Python
# Owner(s): ["module: optimizer"]
|
|
import unittest
|
|
from copy import deepcopy
|
|
|
|
import torch
|
|
from optim.test_optim import TestOptim, TestDifferentiableOptimizer # noqa: F401
|
|
from optim.test_lrscheduler import TestLRScheduler # noqa: F401
|
|
from optim.test_swa_utils import TestSWAUtils # noqa: F401
|
|
from torch.testing._internal.common_cuda import TEST_MULTIGPU
|
|
from torch.testing._internal.common_optimizers import optim_db, optims, OptimizerErrorEnum
|
|
from torch.testing._internal.common_device_type import (
|
|
instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, skipMPS)
|
|
from torch.testing._internal.common_utils import markDynamoStrictTest, parametrize, run_tests, TestCase
|
|
|
|
|
|
FP16_REDUCED_PRECISION = {'atol': 1e-5, 'rtol': 1e-4}
|
|
|
|
@markDynamoStrictTest
|
|
class TestOptimRenewed(TestCase):
|
|
|
|
@onlyCPU
|
|
@optims(optim_db)
|
|
def test_optim_infos_do_not_specify_global_cliquey_kwargs(self, device, dtype, optim_info):
|
|
global_cliquey_flags = ["foreach", "fused", "differentiable"]
|
|
for optim_input in optim_info.optim_inputs_func():
|
|
self.assertFalse(any(f for f in global_cliquey_flags if f in optim_input.kwargs))
|
|
|
|
|
|
@onlyCPU
|
|
@optims([optim for optim in optim_db if optim.optim_error_inputs_func is not None])
|
|
def test_errors(self, device, dtype, optim_info):
|
|
optim_cls = optim_info.optim_cls
|
|
error_inputs = optim_info.optim_error_inputs_func(device=device, dtype=dtype)
|
|
|
|
for error_input in error_inputs:
|
|
optim_input = error_input.optimizer_error_input
|
|
params, kwargs = optim_input.params, optim_input.kwargs
|
|
if error_input.error_on == OptimizerErrorEnum.CONSTRUCTION_ERROR:
|
|
with self.assertRaisesRegex(error_input.error_type, error_input.error_regex):
|
|
optim_cls(params, **kwargs)
|
|
elif error_input.error_on == OptimizerErrorEnum.STEP_ERROR:
|
|
optim = optim_cls(params, **kwargs)
|
|
with self.assertRaisesRegex(error_input.error_type, error_input.error_regex):
|
|
optim.step()
|
|
else:
|
|
raise NotImplementedError(f"Unknown error type {error_input.error_on}")
|
|
|
|
|
|
def _test_derived_optimizers(self, device, dtype, optim_info, flag, reduced_precision=False):
|
|
"""
|
|
Given a flag 'fused' or 'foreach', test for parity of optimizer state
|
|
and updated parameters between when the flag is set to True and False
|
|
for provided optimizer configurations.
|
|
"""
|
|
assert flag in ("foreach", "fused")
|
|
|
|
# why 7? iteration 7 is where we start to see differences for RAdam
|
|
# params interacting with the small eps value, because that's right
|
|
# after rho_t becomes greater than 5 in step 6.
|
|
kIterations = 7
|
|
|
|
optim_inputs = optim_info.optim_inputs_func()
|
|
optim_cls = optim_info.optim_cls
|
|
for optim_input in optim_inputs:
|
|
updated_params, state = [], []
|
|
kwargs = deepcopy(optim_input.kwargs)
|
|
if (kwargs.get("capturable", False) and str(device) == "cpu"):
|
|
# capturable is not supported on CPU
|
|
continue
|
|
for flag_value in (False, True):
|
|
kwargs[flag] = flag_value
|
|
input = torch.tensor(
|
|
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=dtype, device=device
|
|
).reshape(3, 2)
|
|
|
|
torch.manual_seed(1)
|
|
model = torch.nn.Sequential(
|
|
torch.nn.Linear(2, 3),
|
|
torch.nn.Sigmoid(),
|
|
torch.nn.Linear(3, 1),
|
|
torch.nn.Sigmoid(),
|
|
)
|
|
model.to(dtype=dtype, device=device)
|
|
|
|
# foreach/fused optimizers should be tested with a
|
|
# zero_size tensor as its last param.
|
|
# ref: https://github.com/pytorch/pytorch/issues/100701
|
|
empty_param = torch.empty((), device=device, dtype=dtype, requires_grad=True)
|
|
empty_param.grad = torch.rand_like(empty_param)
|
|
params = list(model.parameters()) + [empty_param]
|
|
|
|
optimizer = optim_cls(params, **kwargs)
|
|
|
|
for i in range(kIterations):
|
|
optimizer.zero_grad()
|
|
|
|
# Test that step behaves as expected (a no-op) when grads are set to None
|
|
if i != 3:
|
|
output = model(input)
|
|
loss = output.sum()
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
state.append(optimizer.state)
|
|
updated_params.append(model.parameters())
|
|
|
|
assert_eq_kwargs = {} if not reduced_precision else FP16_REDUCED_PRECISION
|
|
|
|
og_state, new_state = state
|
|
for og_p, new_p in zip(updated_params[0], updated_params[1]):
|
|
self.assertEqual(og_p, new_p, **assert_eq_kwargs)
|
|
|
|
# check that optimizer states are the same
|
|
og_p_state = og_state[og_p]
|
|
new_p_state = new_state[new_p]
|
|
|
|
for k in og_p_state:
|
|
self.assertEqual(og_p_state[k], new_p_state[k], **assert_eq_kwargs)
|
|
|
|
|
|
@skipMPS # MPS doesn't support torch.float64, see https://github.com/pytorch/pytorch/issues/115350
|
|
@optims([optim for optim in optim_db if "foreach" in optim.supported_impls], dtypes=[torch.float64])
|
|
def test_foreach_matches_forloop(self, device, dtype, optim_info):
|
|
self._test_derived_optimizers(device, dtype, optim_info, "foreach")
|
|
|
|
|
|
@onlyCUDA
|
|
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
|
|
@parametrize("impl", ["foreach", "fused"])
|
|
@optims([optim for optim in optim_db if "foreach" in optim.supported_impls or "fused" in optim.supported_impls])
|
|
def test_mixed_device_dtype(self, device, dtype, optim_info, impl):
|
|
"""
|
|
Similar in essence to _test_derived_optimizers above. The main difference is that
|
|
_test_derived_optimizers uses model parameters whereas we randomly pass in
|
|
parameters of different dtypes and devices here. We need multiple GPUs (vs just a
|
|
CPU and GPU) because fused adam only works on GPUs. (Thus we only run the tests
|
|
that call into this helper when TEST_MULTIGPU.)
|
|
"""
|
|
assert impl in ("foreach", "fused")
|
|
if impl == "foreach" and "foreach" not in optim_info.supported_impls:
|
|
return unittest.skip(f"foreach not supported for {optim_info.optim_cls.__name__}")
|
|
elif impl == "fused" and "fused" not in optim_info.supported_impls:
|
|
return unittest.skip(f"fused not supported for {optim_info.optim_cls.__name__}")
|
|
|
|
params = [
|
|
torch.rand(2, 3, dtype=torch.float64, device='cuda:0', requires_grad=True),
|
|
torch.rand(2, 3, dtype=torch.float32, device='cuda:0', requires_grad=True),
|
|
torch.rand(2, 3, dtype=torch.float16, device='cuda:0', requires_grad=True),
|
|
torch.rand(2, 3, dtype=torch.bfloat16, device='cuda:0', requires_grad=True),
|
|
torch.rand(2, 3, dtype=torch.float64, device='cuda:1', requires_grad=True),
|
|
torch.rand(2, 3, dtype=torch.float32, device='cuda:1', requires_grad=True),
|
|
torch.rand(2, 3, dtype=torch.float16, device='cuda:1', requires_grad=True),
|
|
torch.rand(2, 3, dtype=torch.bfloat16, device='cuda:1', requires_grad=True),
|
|
torch.randint(1024, (2, 3), dtype=torch.int64, device='cuda:1', requires_grad=False),
|
|
]
|
|
|
|
for p in params:
|
|
if p.requires_grad:
|
|
p.grad = torch.rand_like(p, device=p.device, dtype=p.dtype)
|
|
|
|
kIterations = 7 if impl == "foreach" else 1
|
|
optim_inputs = optim_info.optim_inputs_func()
|
|
optim_cls = optim_info.optim_cls
|
|
for optim_input in optim_inputs:
|
|
updated_params, state = [], []
|
|
kwargs = deepcopy(optim_input.kwargs)
|
|
if kwargs.get("capturable", False) and str(device) == "cpu":
|
|
# capturable is not supported on CPU
|
|
continue
|
|
for use_impl in (False, True):
|
|
kwargs[impl] = use_impl
|
|
params_clone = []
|
|
for p in params:
|
|
p_clone = p.clone().detach()
|
|
if p.requires_grad:
|
|
p_clone.requires_grad = True
|
|
p_clone.grad = p.grad.clone().detach()
|
|
params_clone.append(p_clone)
|
|
|
|
optimizer = optim_cls(params_clone, **kwargs)
|
|
for _ in range(kIterations):
|
|
optimizer.step()
|
|
|
|
state.append(optimizer.state)
|
|
updated_params.append(params_clone)
|
|
|
|
og_state, new_state = state
|
|
for og_p, new_p in zip(updated_params[0], updated_params[1]):
|
|
# Increasing the tolerance as we are collating lots of ops together for optimizers and
|
|
# the designated tolerances are for single op only.
|
|
single_rtol, single_atol = torch.testing._comparison.get_tolerances(new_p.dtype, rtol=None, atol=None)
|
|
rtol = 5 * single_rtol
|
|
atol = 5 * single_atol
|
|
|
|
self.assertEqual(og_p, new_p, rtol=rtol, atol=atol)
|
|
|
|
# check that optimizer states are the same
|
|
og_p_state = og_state[og_p]
|
|
new_p_state = new_state[new_p]
|
|
|
|
for k in og_p_state:
|
|
actual = new_p_state[k]
|
|
self.assertEqual(og_p_state[k], actual, rtol=rtol, atol=atol)
|
|
|
|
|
|
@onlyCUDA
|
|
@optims([optim for optim in optim_db if "foreach" in optim.supported_impls], dtypes=[torch.float64])
|
|
def test_set_default_dtype_works_with_foreach(self, device, dtype, optim_info):
|
|
# https://github.com/pytorch/pytorch/issues/110940
|
|
# We coerce step to always be float32 regardless of the default dtype
|
|
old_default_dtype = torch.get_default_dtype()
|
|
for default_dtype in [torch.float64, torch.float16]:
|
|
torch.set_default_dtype(default_dtype)
|
|
self._test_derived_optimizers(
|
|
device,
|
|
dtype,
|
|
optim_info,
|
|
"foreach",
|
|
reduced_precision=default_dtype == torch.float16
|
|
)
|
|
torch.set_default_dtype(old_default_dtype)
|
|
|
|
|
|
|
|
@onlyCUDA
|
|
@largeTensorTest("72GB", "cuda")
|
|
@optims([optim for optim in optim_db if "foreach" in optim.supported_impls], dtypes=[torch.float16])
|
|
def test_foreach_large_tensor(self, device, dtype, optim_info):
|
|
optim_cls = optim_info.optim_cls
|
|
optim_inputs = optim_info.optim_inputs_func()
|
|
for optim_input in optim_inputs:
|
|
params = [torch.ones(2 ** 32, device=device, dtype=dtype)]
|
|
params[0].grad = torch.zeros_like(params[0])
|
|
optimizer = optim_cls(params, foreach=True, **optim_input.kwargs)
|
|
optimizer.step()
|
|
|
|
|
|
@onlyCUDA
|
|
@optims([optim for optim in optim_db if "foreach" in optim.supported_impls], dtypes=[torch.float32])
|
|
def test_peak_memory_foreach(self, device, dtype, optim_info):
|
|
nparams = 10
|
|
optim_inputs = optim_info.optim_inputs_func()
|
|
optim_cls = optim_info.optim_cls
|
|
for optim_input in optim_inputs:
|
|
kwargs = deepcopy(optim_input.kwargs)
|
|
max_mems = []
|
|
for flag_value in (False, True):
|
|
kwargs["foreach"] = flag_value
|
|
|
|
# The 128 is critical here! Our CUDACachingAllocator allocates in blocks of 512,
|
|
# meaning any tensor that occupies <512 bytes of memory will allocate a whole
|
|
# 512 bytes anyway. We use 128 (since datasize would be 4 bytes) so that param
|
|
# is size 512 exactly, making our later calculations for intermediate_size easy.
|
|
param = torch.rand(128, device=device, dtype=dtype)
|
|
params = [torch.rand_like(param) for _ in range(nparams)]
|
|
|
|
optimizer = optim_cls(params, **kwargs)
|
|
|
|
for p in params:
|
|
p.grad = torch.rand_like(p)
|
|
|
|
optimizer.step()
|
|
import gc
|
|
gc.collect()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
optimizer.step()
|
|
gc.collect()
|
|
max_mems.append(torch.cuda.max_memory_allocated())
|
|
|
|
st_max_mem, mt_max_mem = max_mems
|
|
intermediate_size = nparams * param.nelement() * param.element_size()
|
|
nintermediates = 1 # we expect a budget of 1 intermediate most of the time
|
|
if kwargs.get('capturable') or optim_cls.__name__ in ["Adadelta", "ASGD"]:
|
|
# with capturable in Adam(W), we have 2 extra intermediates for the bias_corrections
|
|
# with Adadelta, we have 2 extra for (acc_delta + eps) and (square_avg + eps)
|
|
# ASGD allocates axs, 2x mus, 2x etas, and grads at the same time
|
|
nintermediates = 3
|
|
if optim_cls.__name__ == "NAdam":
|
|
# with capturable in NAdam, we have 3 extra intermediates for the
|
|
# bias_correction, mus, and mu_nexts
|
|
nintermediates = 5
|
|
|
|
elif optim_cls.__name__ in ["NAdam", "Adagrad", "RMSprop"]:
|
|
# NAdam uses two intermediates at the same time (grads & exp_avg_sq_sqrt)
|
|
# Adagrad uses std and grads at the same time
|
|
# RMSprop uses avg and grads
|
|
nintermediates = 2
|
|
|
|
self.assertLessEqual(mt_max_mem, st_max_mem + intermediate_size * nintermediates)
|
|
|
|
|
|
@onlyCUDA
|
|
@optims([optim for optim in optim_db if "fused" in optim.supported_impls], dtypes=[torch.float64])
|
|
def test_fused_matches_forloop(self, device, dtype, optim_info):
|
|
self._test_derived_optimizers(device, dtype, optim_info, "fused")
|
|
|
|
|
|
@onlyCUDA
|
|
@largeTensorTest("64GB", "cuda")
|
|
@optims([optim for optim in optim_db if "fused" in optim.supported_impls], dtypes=[torch.float16])
|
|
def test_fused_large_tensor(self, device, dtype, optim_info):
|
|
optim_cls = optim_info.optim_cls
|
|
optim_inputs = optim_info.optim_inputs_func()
|
|
for optim_input in optim_inputs:
|
|
params = [torch.ones(2 ** 32, device=device, dtype=dtype)]
|
|
params[0].grad = torch.zeros_like(params[0])
|
|
optimizer = optim_cls(params, fused=True, **optim_input.kwargs)
|
|
optimizer.step()
|
|
|
|
|
|
instantiate_device_type_tests(TestOptimRenewed, globals(), allow_mps=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|