Files
pytorch/torch/_inductor/kernel_inputs.py
Ruben Rodriguez Buchillon 6cb13dd3cc [inductor] move scaled_mm template args into heuristics (#161126)
# why

- another step towards get_mm_configs providing
  all the kwargs needed to add a choice from
  a template. This in turn will allow us to send
  all templates through one single call, and handle modifications

# what

- use the infrastructure for template heuristics to provide extra kwargs
  that are fixed for a template/op pair to provide the suffix args
  and epilogue function/fn for scaled_mm

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D80670914](https://our.internmc.facebook.com/intern/diff/D80670914)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161126
Approved by: https://github.com/jansel
ghstack dependencies: #161123, #161124, #161125
2025-09-03 01:03:57 +00:00

282 lines
8.7 KiB
Python

from __future__ import annotations
from typing import Any, Optional, TYPE_CHECKING, Union
import torch
import torch._inductor.config
from torch._inductor import ir
from torch._inductor.virtualized import V
if TYPE_CHECKING:
from collections.abc import Sequence
import sympy
class KernelInputs:
"""
Class to store and provide access to input nodes for kernels.
This class takes in a tuple of input nodes and provides methods to access
information about these nodes, such as their device type and device.
"""
def __init__(
self,
input_nodes: list[Any],
scalars: Optional[dict[str, Union[float, int]]] = None,
):
"""
Initialize with a tuple of input nodes.
Args:
input_nodes: A tuple of input nodes to store
"""
self._input_nodes = input_nodes
self._device_name: Optional[str] = None
self._scalars = scalars if scalars is not None else {}
assert len(input_nodes) > 0, "Expected at least one input node"
def nodes(self, reorder: Optional[Sequence[int]] = None) -> list[Any]:
"""
Return the stored input nodes, optionally reordered.
Args:
reorder: Optional sequence of indices to reorder the nodes.
For example, (2, 0, 1) would return nodes in that order.
Returns:
The tuple of input nodes, optionally reordered
"""
if reorder is None:
return self._input_nodes
assert len(self._input_nodes) == len(reorder), (
f"Reorder length mismatch: {len(self._input_nodes)} vs {len(reorder)}"
)
return [self._input_nodes[i] for i in reorder]
@property
def count(self) -> int:
"""
Get the number of input nodes.
Returns:
The number of input nodes
"""
return len(self._input_nodes)
@property
def device_type(self) -> Optional[str]:
"""
Get the device type of the first node.
Returns:
The device type (e.g., 'cuda', 'cpu')
"""
return ir.get_device_type(self._input_nodes[0])
def device(self) -> torch.device:
"""
Get the device of the first node.
Returns:
The device of the first node
"""
return self._input_nodes[0].get_device()
def device_name(self) -> Optional[str]:
"""
Get the device name information.
Returns:
A tuple of (gpu_name, vendor, model)
"""
if self._device_name is None:
device = self.device()
if self.device_type == "cuda":
device_properties = torch.cuda.get_device_properties(device)
self._device_name = device_properties.gcnArchName
return self._device_name
def shapes_symbolic(self) -> tuple[tuple[Any, ...], ...]:
"""
Get the symbolic shapes of all input nodes.
Returns:
A tuple of shape tuples for each input node
"""
return tuple(node.get_size() for node in self._input_nodes)
def shapes_hinted(self) -> tuple[tuple[int, ...], ...]:
"""
Get the size hints for shapes of all input nodes.
Returns:
A tuple of shape tuples with integer hints for each input node
"""
return tuple(
V.graph.sizevars.size_hints(
node.get_size(),
fallback=torch._inductor.config.unbacked_symint_fallback,
)
for node in self._input_nodes
)
def strides_symbolic(self) -> tuple[tuple[sympy.Integer, ...], ...]:
"""
Get the symbolic strides of all input nodes.
Returns:
A tuple of stride tuples for each input node
"""
return tuple(node.get_stride() for node in self._input_nodes)
def strides_hinted(self) -> tuple[tuple[int, ...], ...]:
"""
Get the size hints for strides of all input nodes.
Returns:
A tuple of stride tuples with integer hints for each input node
"""
return tuple(
V.graph.sizevars.size_hints(
node.get_stride(),
fallback=torch._inductor.config.unbacked_symint_fallback,
)
for node in self._input_nodes
)
def dtypes(self) -> tuple[torch.dtype, ...]:
"""
Get the dtypes of all input nodes.
Returns:
A tuple of dtypes for each input node
"""
return tuple(node.get_dtype() for node in self._input_nodes)
def dtype(self, idx: int = 0) -> torch.dtype:
"""
Get the dtype of a specific input node.
Args:
idx: Index of the node to get the dtype from (default: 0)
Returns:
The dtype of the specified input node
"""
return self._input_nodes[idx].get_dtype()
def get_scalar(self, name: str) -> Union[float, int]:
"""
Get the scalar value for a given name.
Args:
name: Name of the scalar to get
Returns:
The scalar value
"""
assert name in self._scalars, f"Scalar {name} not found, but required"
return self._scalars[name]
class MMKernelInputs(KernelInputs):
"""
Specialized KernelInputs for matrix multiplication operations.
Provides additional methods to access M, N, K dimensions.
"""
def __init__(
self,
input_nodes: list[Any],
scalars: Optional[dict[str, Union[float, int]]] = None,
mat1_idx: int = -2,
mat2_idx: int = -1,
):
"""
Initialize with a tuple of input nodes.
By default, we assume the last 2 input nodes are mat1 and mat2, but
the caller can adjust when necessary
"""
super().__init__(input_nodes, scalars)
# for mm, we need at least 2 nodes, and we need to know which nodes
# are the main matrixes e.g. addmm is (bias, mat1, mat2) whereas others
# might be (mat1, mat2, scale), etc.
assert len(self._input_nodes) >= 2, "Expected at least 2 input nodes"
# Adjust assertions to handle negative indices
m1_idx, m2_idx = mat1_idx, mat2_idx
if mat1_idx < 0:
m1_idx += len(input_nodes)
if mat2_idx < 0:
m2_idx += len(input_nodes)
assert 0 <= m1_idx < len(input_nodes), f"Invalid mat1_idx: {mat1_idx}"
assert 0 <= m1_idx < len(input_nodes), f"Invalid mat2_idx: {mat2_idx}"
self._mat1_idx = mat1_idx
self._mat2_idx = mat2_idx
def mnk_symbolic(
self,
) -> tuple[sympy.Integer, sympy.Integer, sympy.Integer]:
"""
Get the symbolic M, N, K dimensions for matrix multiplication.
Handles both 2D (MM) and 3D (BMM) tensors.
M is extracted from the second-to-last dimension of the first operand (mat1).
N is extracted from the last dimension of the second operand (mat2).
K is extracted from the last dimension of the first operand (mat1).
Returns:
A tuple of (M, N, K) dimensions
"""
mat1 = self.nodes()[self._mat1_idx]
mat2 = self.nodes()[self._mat2_idx]
m = mat1.get_size()[-2] # M from second-to-last dimension of mat1
k = mat1.get_size()[-1] # K from last dimension of mat1
n = mat2.get_size()[-1] # N from last dimension of mat2
# Ensure K dimensions match between operands
k0 = mat2.get_size()[-2] # K from second-to-last dimension of mat2
V.graph.sizevars.check_equals(k, k0)
return (m, n, k)
def mat1mat2(self) -> tuple[Any, Any]:
"""
Get the mat1 and mat2 nodes.
Returns:
A tuple of (mat1, mat2) nodes
"""
nodes = self.nodes()
return nodes[self._mat1_idx], nodes[self._mat2_idx]
def mnk_hinted(self) -> tuple[int, int, int]:
"""
Get the hinted M, N, K dimensions for matrix multiplication.
Handles both 2D (MM) and 3D (BMM) tensors.
Uses shapes_hinted from the base class to get integer hints for dimensions.
Returns:
A tuple of (M, N, K) dimensions as integers
"""
hinted_shapes = self.shapes_hinted()
mat1_shape = hinted_shapes[self._mat1_idx]
mat2_shape = hinted_shapes[self._mat2_idx]
m = mat1_shape[-2] # M from second-to-last dimension of mat1
k = mat1_shape[-1] # K from last dimension of mat1
n = mat2_shape[-1] # N from last dimension of mat2
# Ensure K dimensions match between operands
k_check = mat2_shape[-2] # K from second-to-last dimension of mat2
assert k == k_check, f"K dimensions don't match: {k} vs {k_check}"
return (m, n, k)