Files
pytorch/caffe2/opt/backend_cutting.cc
ArutyunovG 8e91da4cb3 Windows shared build (#13550)
Summary:
Hi guys,

I'd like to build Caffe2 with more supported options in Windows with Microsoft Visual Studios.
This is the first pull request.
Running scripts/build_windows_shared.bat is able to build Caffe2 with both CMAKE_BUILD_TYPE=Debug and CMAKE_BUILD_TYPE=Release with Visual Studio 14 2015.
CUDA is 9.0, cudnn is 7.0.5, glog, gflags and lmdb are supported on my system.
Python is 3.5, Detectron works from python interface as well.
It was even possible to debug detectron code and step into caffe2_gpu.dll with pdbs built.

What is disappointing, that c10/experimental ops don't build with this Visual Studio generator, I added special option INCLUDE_EXPERIMENTAL_C10_OPS (default ON) to deal with it in build_windows_shared.bat.

After this pull request the next step is to add Visual Studio 2017 support in the script.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13550

Reviewed By: ezyang

Differential Revision: D13042597

Pulled By: orionr

fbshipit-source-id: f313f909f599cd582a1d000eff766eef3a9fc4fc
2018-11-16 12:16:28 -08:00

423 lines
13 KiB
C++

#include "caffe2/opt/backend_cutting.h"
#include "caffe2/core/logging.h"
#include "caffe2/opt/converter.h"
#include "nomnigraph/Converters/Dot.h"
#include "nomnigraph/Representations/NeuralNet.h"
#include <algorithm>
#include <fstream>
#include <queue>
namespace caffe2 {
namespace opt {
namespace {
using namespace nom::repr;
using NodeRef = NNGraph::NodeRef;
using EdgeRef = NNGraph::EdgeRef;
struct GroupAnnotation {
GroupAnnotation(int i, int g = -1) : group(g), in_degree(i) {}
int group;
int in_degree;
bool needs_transform{true};
};
std::string ShowNode(NodeRef node) {
if (nn::is<NeuralNetData>(node)) {
const auto* nn_tensor = nn::get<NeuralNetData>(node);
return c10::str("Tensor: ", nn_tensor->getName());
} else if (nn::is<NeuralNetOperator>(node)) {
const auto* nn_op = nn::get<NeuralNetOperator>(node);
const auto& op_def =
dyn_cast<Caffe2Annotation>(nn_op->getAnnotation())->getOperatorDef();
return c10::str("Op: ", op_def.type());
} else {
CAFFE_THROW("Known node");
}
}
void DumpGraph(NNGraph* g) {
auto nnprinter = [](typename NNGraph::NodeRef node) {
std::map<std::string, std::string> labelMap;
assert(node->data() && "Node doesn't have data, can't render it");
if (isa<NeuralNetOperator>(node->data())) {
auto* op = dyn_cast<NeuralNetOperator>(node->data().get());
labelMap["label"] =
op->getName() + " (" + c10::to_string((unsigned long long)node) + ")";
auto* annotation = op->getAnnotation();
if (annotation && isa<Caffe2Annotation>(annotation)) {
auto device_annotation = dyn_cast<Caffe2Annotation>(annotation);
labelMap["label"] += "\\n[" + device_annotation->getDevice() + "]";
auto hash = std::hash<std::string>{}(device_annotation->getDevice());
std::stringstream hex_stream;
hex_stream << std::hex << hash;
labelMap["color"] = "#" + hex_stream.str().substr(0, 6);
labelMap["fontcolor"] = labelMap["color"];
}
labelMap["shape"] = "box";
} else if (isa<Data>(node->data())) {
auto tensor = dyn_cast<NeuralNetData>(node->data().get());
labelMap["label"] = tensor->getName();
labelMap["label"] += "_" + c10::to_string(tensor->getVersion()) + " " +
c10::to_string((unsigned long long)node);
}
return labelMap;
};
std::ofstream out("dump.dot");
out << nom::converters::convertToDotString(g, nnprinter);
out.close();
}
struct VisitorContext {
VisitorContext(std::function<bool(const caffe2::OperatorDef&)> func)
: predicate(func) {}
std::unordered_map<NodeRef, GroupAnnotation> infos;
std::unordered_set<NodeRef> frontier;
std::vector<NodeRef> current_group;
std::function<bool(const caffe2::OperatorDef&)> predicate;
int group{0};
bool find_supported{true};
};
GroupAnnotation& GetInfo(
std::unordered_map<NodeRef, GroupAnnotation>& infos,
NodeRef node) {
auto it = infos.find(node);
CAFFE_ENFORCE(it != infos.end(), "Node info not found for ", ShowNode(node));
return it->second;
}
const GroupAnnotation& GetInfo(
const std::unordered_map<NodeRef, GroupAnnotation>& infos,
NodeRef node) {
auto it = infos.find(node);
CAFFE_ENFORCE(
it != infos.end(), "Const node info not found for ", ShowNode(node));
return it->second;
}
// Explore the graph in topological order until we hit stopping nodes. This is
// based on Khan's algorithm:
// https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm
// Precondition: nodes in `current_frontier` must have satisfy `in_degree == 0`
void Explore(
const std::vector<NodeRef>& current_frontier,
VisitorContext* context) {
std::queue<NodeRef> q;
for (const auto n : current_frontier) {
q.push(n);
}
while (!q.empty()) {
auto node = q.front();
q.pop();
auto& info = GetInfo(context->infos, node);
// Check if the node is supported, stop exploring further if not supported
if (nn::is<NeuralNetOperator>(node)) {
const auto* nn_op = nn::get<NeuralNetOperator>(node);
const auto& op_def =
dyn_cast<Caffe2Annotation>(nn_op->getAnnotation())->getOperatorDef();
bool wanted = context->predicate(op_def);
wanted = context->find_supported ? wanted : (!wanted);
if (!wanted) {
context->frontier.emplace(node);
continue;
}
}
// Adding to current group
info.group = context->group;
info.needs_transform = context->find_supported;
context->current_group.push_back(node);
// Continue exploring its fanouts
for (const auto& out_edge : node->getOutEdges()) {
auto child_node = out_edge->head();
auto& child_info = GetInfo(context->infos, child_node);
if (--child_info.in_degree == 0) {
q.push(child_node);
}
}
}
}
// Note: subgraph always starts with ops and ends with tensors, except for the
// very first group, which can be all tensors
struct TransformSubgraph {
explicit TransformSubgraph(
std::vector<NodeRef>&& f,
std::vector<NodeRef>&& n,
int id,
bool need)
: input_nodes(std::move(f)),
nodes(std::move(n)),
group_id(id),
needed(need) {}
TransformSubgraph(TransformSubgraph&& rhs) noexcept
: input_nodes(std::move(rhs.input_nodes)),
nodes(std::move(rhs.nodes)),
external_input_refs(std::move(rhs.external_input_refs)),
external_output_refs(std::move(rhs.external_output_refs)),
group_id(rhs.group_id),
needed(rhs.needed) {}
TransformSubgraph& operator=(TransformSubgraph&& rhs) noexcept {
input_nodes = std::move(rhs.input_nodes);
nodes = std::move(rhs.nodes);
external_input_refs = std::move(rhs.external_input_refs);
external_output_refs = std::move(rhs.external_output_refs);
group_id = rhs.group_id;
needed = rhs.needed;
return *this;
}
void Print() const {
LOG(INFO) << "Group :" << group_id;
LOG(INFO) << " Input Nodes: ";
for (const auto i : input_nodes) {
LOG(INFO) << " " << ShowNode(i);
}
LOG(INFO) << " Nodes: ";
for (const auto i : nodes) {
LOG(INFO) << " " << ShowNode(i);
}
}
std::vector<NodeRef> input_nodes;
std::vector<NodeRef> nodes;
std::unordered_map<std::string, NodeRef> external_input_refs;
std::unordered_map<std::string, NodeRef> external_output_refs;
int group_id{-1};
bool needed{true};
};
caffe2::NetDef ConvertToC2Net(
const TransformSubgraph& sub,
const std::unordered_map<NodeRef, GroupAnnotation>& infos) {
caffe2::NetDef net;
for (auto node : sub.nodes) {
if (nn::is<NeuralNetOperator>(node)) {
const auto* nn_op = nn::get<NeuralNetOperator>(node);
assert(
isa<Caffe2Annotation>(nn_op->getAnnotation()) &&
"Cannot get caffe2 op from NNOp");
const auto& op_def =
dyn_cast<Caffe2Annotation>(nn_op->getAnnotation())->getOperatorDef();
net.add_op()->CopyFrom(op_def);
}
}
for (const auto kv : sub.external_input_refs) {
net.add_external_input(kv.first);
VLOG(2) << "Adding external input: " << kv.first;
}
for (const auto& kv : sub.external_output_refs) {
net.add_external_output(kv.first);
VLOG(2) << "Adding external output: " << kv.first;
}
return net;
}
void DetectBoundaryReferences(
TransformSubgraph* subgraph,
const std::unordered_map<NodeRef, GroupAnnotation>& infos,
const std::unordered_set<std::string>& original_external_output) {
for (auto node : subgraph->nodes) {
// inputs
for (auto in_edge : node->getInEdges()) {
auto parent_node = in_edge->tail();
const auto& info = GetInfo(infos, parent_node);
if (info.group != subgraph->group_id &&
nn::is<NeuralNetData>(parent_node)) {
const auto* nn_tensor = nn::get<const NeuralNetData>(parent_node);
subgraph->external_input_refs.emplace(
nn_tensor->getName(), parent_node);
}
}
// outputs
if (!nn::is<NeuralNetData>(node)) {
continue;
}
// Note that although matched subgraph won't contain external inputs as we
// skip the initial input tensor of matching, it is possible to contain
// external outputs. We will mark these external outputs as boundary outputs
// too.
auto name = nn::get<const NeuralNetData>(node)->getName();
if (original_external_output.count(name)) {
subgraph->external_output_refs.emplace(name, node);
} else {
for (auto child_node : nn::getConsumers(node)) {
const auto& info = GetInfo(infos, child_node);
if (info.group != subgraph->group_id) {
subgraph->external_output_refs.emplace(name, node);
break;
}
}
}
}
}
void ReplaceSubgraph(
const TransformSubgraph& subgraph,
caffe2::NetDef& net_opt,
NNGraph* g) {
// Delete the old subgraph starting from the input nodes until we hit boundary
// tensors
for (auto node : subgraph.nodes) {
if (nn::is<NeuralNetData>(node) &&
subgraph.external_output_refs.count(
nn::get<const NeuralNetData>(node)->getName())) {
VLOG(2) << "Keeping " << ShowNode(node);
continue;
}
VLOG(2) << "Deleting " << ShowNode(node);
g->deleteNode(node);
}
// Convert new NetDef back to NNGraph
std::unordered_map<std::string, NodeRef> tensor_map;
for (const auto kv : subgraph.external_input_refs) {
tensor_map.emplace(kv.first, kv.second);
}
for (const auto kv : subgraph.external_output_refs) {
tensor_map.emplace(kv.first, kv.second);
}
for (auto& op : *net_opt.mutable_op()) {
auto op_node = g->createNode();
for (const auto& input : op.input()) {
if (!tensor_map.count(input)) {
tensor_map[input] =
g->createNode(caffe2::make_unique<nom::repr::Tensor>(input));
}
auto tensor_node = tensor_map[input];
g->createEdge(tensor_node, op_node);
}
for (const auto& output : op.output()) {
if (!tensor_map.count(output)) {
tensor_map[output] =
g->createNode(caffe2::make_unique<nom::repr::Tensor>(output));
}
auto tensor_node = tensor_map[output];
g->createEdge(op_node, tensor_node);
}
op_node->resetData(convertToNeuralNetOperator(op));
}
}
void PruneUnrefereredNodes(NNModule* nn) {
auto& g = nn->dataFlow;
std::vector<NodeRef> to_delete;
for (auto node : g.getMutableNodes()) {
if (!nn::hasProducer(node) && !nn::hasConsumer(node)) {
to_delete.push_back(node);
}
}
for (auto i : to_delete) {
if (nn::is<NeuralNetData>(i)) {
auto name = nn::get<NeuralNetData>(i)->getName();
auto it = nn->inputs.find(i);
if (it != nn->inputs.end()) {
VLOG(2) << "Removing external input " << name;
nn->inputs.erase(it);
}
it = nn->outputs.find(i);
if (it != nn->outputs.end()) {
VLOG(2) << "Removing external output " << name;
nn->outputs.erase(it);
}
}
g.deleteNode(i);
}
}
} // namespace
caffe2::NetDef OptimizeForBackend(
caffe2::NetDef& net,
std::function<bool(const caffe2::OperatorDef&)> supports,
std::function<caffe2::NetDef(const caffe2::NetDef&)> transform_func) {
auto nn = convertToNNModule(net);
auto& dfg = nn.dataFlow;
// Initialize the group info and figure out the external/input output
VisitorContext context(supports);
std::vector<NodeRef> external_inputs;
std::unordered_set<std::string> external_outputs;
for (auto node : dfg.getMutableNodes()) {
context.infos.emplace(
std::piecewise_construct,
std::forward_as_tuple(node),
std::forward_as_tuple(node->getInEdges().size(), -1));
if (!nn::is<NeuralNetOperator>(node)) {
if (!nn::hasProducer(node)) {
external_inputs.push_back(node);
}
if (!nn::hasConsumer(node)) {
external_outputs.emplace(nn::get<const NeuralNetData>(node)->getName());
}
}
}
// Find unsupported and supported groups of nodes alernatively
context.frontier.clear();
context.current_group.clear();
context.find_supported = false;
std::vector<TransformSubgraph> subs;
for (std::vector<NodeRef> frontier(
external_inputs.begin(), external_inputs.end());
!frontier.empty();
context.find_supported = !context.find_supported) {
Explore(frontier, &context);
if (context.find_supported) {
subs.emplace_back(
std::move(frontier),
std::move(context.current_group),
context.group,
context.find_supported);
}
frontier.assign(context.frontier.begin(), context.frontier.end());
context.frontier.clear();
context.current_group.clear();
context.group++;
}
// Transform needed subgraphs one by one
std::vector<caffe2::NetDef> opt_subnets;
opt_subnets.reserve(subs.size());
for (auto& g : subs) {
// Generate boundary input/output edges
DetectBoundaryReferences(&g, context.infos, external_outputs);
caffe2::NetDef subnet = ConvertToC2Net(g, context.infos);
// Transform the subgraph protobuf def, note that we can have less external
// inputs/outputs but not more
opt_subnets.emplace_back(transform_func(subnet));
ReplaceSubgraph(g, opt_subnets.back(), &dfg);
}
// Prune dangling nodes, because after transformation, some weights might be
// absorbed
PruneUnrefereredNodes(&nn);
auto new_net = convertToCaffe2Proto(nn);
new_net.set_name(net.name() + "_opt");
return new_net;
}
} // namespace opt
} // namespace caffe2