Files
pytorch/caffe2/operators/onnx_while_op.h
ArutyunovG 8e91da4cb3 Windows shared build (#13550)
Summary:
Hi guys,

I'd like to build Caffe2 with more supported options in Windows with Microsoft Visual Studios.
This is the first pull request.
Running scripts/build_windows_shared.bat is able to build Caffe2 with both CMAKE_BUILD_TYPE=Debug and CMAKE_BUILD_TYPE=Release with Visual Studio 14 2015.
CUDA is 9.0, cudnn is 7.0.5, glog, gflags and lmdb are supported on my system.
Python is 3.5, Detectron works from python interface as well.
It was even possible to debug detectron code and step into caffe2_gpu.dll with pdbs built.

What is disappointing, that c10/experimental ops don't build with this Visual Studio generator, I added special option INCLUDE_EXPERIMENTAL_C10_OPS (default ON) to deal with it in build_windows_shared.bat.

After this pull request the next step is to add Visual Studio 2017 support in the script.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13550

Reviewed By: ezyang

Differential Revision: D13042597

Pulled By: orionr

fbshipit-source-id: f313f909f599cd582a1d000eff766eef3a9fc4fc
2018-11-16 12:16:28 -08:00

311 lines
10 KiB
C++

#ifndef CAFFE2_OPERATORS_ONNX_WHILE_OP_H_
#define CAFFE2_OPERATORS_ONNX_WHILE_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/create_scope_op.h"
namespace caffe2 {
template <class Context>
class ONNXWhileOp final : public Operator<Context> {
public:
ONNXWhileOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
parent_ws_(ws),
has_trip_count_(
this->template GetSingleArgument<int64_t>("has_trip_count", 0)),
has_cond_(this->template GetSingleArgument<int64_t>("has_cond", 0)),
save_scopes_(this->template GetSingleArgument<int64_t>("save_scopes", 0)),
disable_scopes_(this->template GetSingleArgument<int64_t>("disable_scopes", 0)),
num_loop_carried_deps_(this->template GetSingleArgument<int64_t>("num_loop_carried_deps", -1)) {
CAFFE_ENFORCE(
this->template HasSingleArgumentOfType<NetDef>("body"),
"body net must be specified in ONNXWhile operator");
if (disable_scopes_) {
CAFFE_ENFORCE(!save_scopes_, "Cannot save scopes when disable_scopes=True");
}
body_net_def_ = this->template GetSingleArgument<NetDef>("body", NetDef());
static int64_t counter = -1;
if (!body_net_def_.has_name()) {
if (counter == -1) {
++counter;
body_net_def_.set_name("loop_net");
} else {
++counter;
body_net_def_.set_name("loop_net." + c10::to_string(counter));
}
}
}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() {
return DispatchHelper<TensorTypes<int, bool, long>>::call(this, Input(1));
}
// Operator
// Inputs: max trip count, condition, initial loop-carried dependencies
// Outputs: Final loop-carried dependencies, scan_outputs
// Body
// Inputs: iteration number, condition, loop-carried dependencies
// Outputs: condition, loop-carried dependencies, scan_outputs
template <typename CondVarType>
bool DoRunWithType() {
// Clear workspaces from the previous invocations of the loop
// and setup a local scope for the first iteration
ws_stack_.clear();
auto loop_ws = !disable_scopes_ ? ws_stack_.pushForwardWorkspace(parent_ws_).get() : parent_ws_;
constexpr int64_t num_inputs_before_lcds = 2;
// First input is the maximumt trip count. Second input is the condition
// variable (for the first iteration). The rest of the inputs are
// loop-carried dependencies.
int64_t num_loop_carried_deps;
if (num_loop_carried_deps_ != -1) {
num_loop_carried_deps = num_loop_carried_deps_;
} else {
num_loop_carried_deps = InputSize() - num_inputs_before_lcds;
}
int64_t max_trip_count = *Input(0).template data<int64_t>();
const bool first_iter_condition = *Input(1).template data<CondVarType>();
scope_ = std::make_shared<LocalScope>(loop_ws, body_net_def_, num_loop_carried_deps);
// Body graph has 1+N+K outputs: recalculated condition variable, N
// loop-carried dependencies, and K scan_outputs
int num_scan_outputs =
scope_->net()->external_output().size() - num_loop_carried_deps - 1;
CAFFE_ENFORCE_GE(
num_scan_outputs,
0,
"Body graph must have N+K outputs, where N is the number "
"of loop-carried dependencies and K is the number of scan "
"outputs");
// Copy initial loop-carried dependencies
for (int i = 0; i < num_loop_carried_deps; ++i) {
scope_->lcd_tensor(i)->CopyFrom(Input(i + num_inputs_before_lcds));
}
// Initialize iteration variable
scope_->set_iteration(0ll);
// Initialize input condition variable
scope_->template set_input_condition<CondVarType>(first_iter_condition);
auto valid_iter_num = [this, max_trip_count](int64_t i) {
if (has_trip_count_) {
return i < max_trip_count;
} else {
return true;
}
};
auto condition_true =
[this, first_iter_condition](int64_t i, bool cond_value) {
if (has_cond_) {
if (i == 0) {
return (bool)first_iter_condition;
} else {
return cond_value;
}
} else {
return true;
}
};
// Allocate scan_outputs for zero-iteration case
for (int i = 0; i < num_scan_outputs; ++i) {
Output(i + num_loop_carried_deps)->Resize(0);
Output(i + num_loop_carried_deps)->template mutable_data<int32_t>();
}
// Use this to keep track of the sizes of the scan outputs and validate
// they're the same across iterations.
std::vector<std::vector<int64_t>> scan_outputs_sizes;
Workspace *cur_ws = nullptr;
bool cur_output_condition = false;
while (true) {
int64_t itr = scope_->iteration();
if (valid_iter_num(itr) && condition_true(itr, cur_output_condition)) {
if (!scope_->net()->Run()) {
return false;
}
cur_ws = scope_->workspace();
cur_output_condition = scope_->template output_condition<CondVarType>();
if (save_scopes_) {
loop_ws = ws_stack_.pushForwardWorkspace(parent_ws_).get();
scope_ = std::make_shared<LocalScope>(loop_ws, body_net_def_, num_loop_carried_deps);
}
// Copy forward loop-carried dependencies
for (int i = 0; i < num_loop_carried_deps; ++i) {
Blob* b = cur_ws->GetBlob(
scope_->net()->external_output()[i + 1]);
const Tensor& t = b->template Get<Tensor>();
scope_->lcd_tensor(i)->CopyFrom(t);
}
// Copy out scan_outputs
for (int i = 0; i < num_scan_outputs; ++i) {
int net_output_idx = i + 1 + num_loop_carried_deps;
const Tensor& scan_output =
cur_ws->GetBlob(scope_->net()->external_output()[net_output_idx])
->template Get<Tensor>();
auto* scan_output_target = Output(i + num_loop_carried_deps);
if (itr == 0) {
auto dims = scan_output.sizes().vec();
scan_outputs_sizes.push_back(dims);
dims.insert(dims.begin(), 1);
scan_output_target->Resize(dims);
scan_output_target->CopyFrom(scan_output);
} else {
auto dims = scan_output.sizes().vec();
CAFFE_ENFORCE_EQ(
dims,
scan_outputs_sizes[i],
"Size of scan output changed across iterations");
dims.insert(dims.begin(), itr);
scan_output_target->Extend(1, 100, &context_);
int64_t timestep_size = 1;
for (const int64_t t : scan_outputs_sizes[i]) {
timestep_size *= t;
}
const void* src_data = scan_output.raw_data();
auto& sot_meta = scan_output_target->dtype();
void* dst_data =
(char*)scan_output_target->raw_mutable_data(sot_meta) +
timestep_size * scan_output.itemsize() * itr;
memcpy(dst_data, src_data, timestep_size * scan_output.itemsize());
}
}
scope_->set_iteration(itr + 1ll);
scope_->template set_input_condition<CondVarType>(cur_output_condition);
} else {
break;
}
}
// Copy out final loop-carried dependencies
for (int i = 0; i < num_loop_carried_deps; ++i) {
Output(i)->CopyFrom(*scope_->lcd_tensor(i));
}
return true;
}
private:
class LocalScope {
public:
LocalScope(
Workspace *loop_ws,
const NetDef& body_net_def, size_t num_lcds) : loop_ws_(loop_ws){
CAFFE_ENFORCE(loop_ws_,
"Failed to initialize local loop workspace");
// Create loop-carried deps in Workspace
lcd_tensors_.clear();
for (int i = 2; i < num_lcds + 2; ++i) {
Blob* b = loop_ws_->CreateBlob(body_net_def.external_input(i));
Tensor* t = BlobGetMutableTensor(b, Context::GetDeviceType());
lcd_tensors_.push_back(t);
}
// First output is the iteration variable
auto* iteration_var_blob = loop_ws_->CreateBlob(
body_net_def.external_input(0));
iteration_var_ =
BlobGetMutableTensor(iteration_var_blob, Context::GetDeviceType());
input_condition_var_ = BlobGetMutableTensor(
loop_ws_->CreateBlob(body_net_def.external_input(1)),
Context::GetDeviceType());
auto* condition_var_blob =
loop_ws_->CreateBlob(body_net_def.external_output(0));
condition_var_ =
BlobGetMutableTensor(condition_var_blob, Context::GetDeviceType());
condition_var_->Resize(1);
condition_var_->template mutable_data<bool>();
body_net_ = loop_ws_->GetNet(body_net_def.name());
if (!body_net_) {
body_net_ = loop_ws_->CreateNet(body_net_def, true);
}
CAFFE_ENFORCE(body_net_, "Failed to initialize loop subnet");
}
NetBase* net() const {
return body_net_;
}
Workspace* workspace() const {
return loop_ws_;
}
int64_t iteration() const {
auto* iteration_var_ptr =
iteration_var_->template mutable_data<int64_t>();
return *iteration_var_ptr;
}
Tensor* lcd_tensor(int idx) {
return lcd_tensors_[idx];
}
void set_iteration(int64_t itr) {
iteration_var_->Resize();
auto* iteration_var_ptr =
iteration_var_->template mutable_data<int64_t>();
*iteration_var_ptr = itr;
}
template <typename CondVarType>
void set_input_condition(bool cond_value) {
input_condition_var_->Resize(1);
auto* input_condition_var_ptr =
input_condition_var_->template mutable_data<CondVarType>();
*input_condition_var_ptr = cond_value;
}
template <typename CondVarType>
bool output_condition() const {
auto* condition_var_ptr =
condition_var_->template mutable_data<CondVarType>();
return *condition_var_ptr;
}
private:
Workspace *loop_ws_;
NetBase* body_net_; // owned by a workspace
Tensor* iteration_var_;
Tensor* input_condition_var_;
Tensor* condition_var_;
std::vector<Tensor*> lcd_tensors_;
};
NetDef body_net_def_;
Workspace* parent_ws_;
detail::WorkspaceStack ws_stack_;
bool has_trip_count_;
bool has_cond_;
bool save_scopes_;
bool disable_scopes_;
int64_t num_loop_carried_deps_;
std::shared_ptr<LocalScope> scope_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_ONNX_WHILE_OP_H