mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This is a redo of https://github.com/pytorch/pytorch/pull/147408 which added validation at the end of the legacy constructor calls. The reason why I didn't land that was because in `legacy_load`, constructor would be called before storages of indices/values are set. So the tensor would not actually be validated. Technically, torch.sparse.{Foo}Tensor should not even be called by our rebuild process since afaict this was the first PR that added support for sparse tensor serialization https://github.com/pytorch/pytorch/pull/27062 and it already uses `_rebuild_sparse_tensor` (which would add the rebuilt tensor to the list to validate), but torch.sparse.FooTensor is allowlisted This PR adds tensors constructed as such to the list to validate at the end of torch.load. Pull Request resolved: https://github.com/pytorch/pytorch/pull/147759 Approved by: https://github.com/albanD
574 lines
22 KiB
Python
574 lines
22 KiB
Python
# mypy: allow-untyped-defs
|
|
# Unpickler restricted to loading only state dicts
|
|
# Restrict constructing types to a list defined in _get_allowed_globals()
|
|
# Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
|
|
# Restrict APPEND/APPENDS to `list`
|
|
# In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
|
|
# defined by `_get_allowed_globals()` method, that contains:
|
|
# - torch types (Storage, dtypes, Tensor, `torch.Size`),
|
|
# - `torch._utils._rebuild` functions.
|
|
# - `torch.nn.Parameter`
|
|
# - `collections.Counter`
|
|
# - `collections.OrderedDict`
|
|
# Additionally, users can use an allowlist for adding classes they have deemed as safe using
|
|
# `_add_safe_globals()` (`torch.serialization.add_safe_globals`)
|
|
# `_clear_safe_globals()` (`torch.serialization.clear_safe_globals`)
|
|
# `_get_safe_globals()` (`torch.serialization.get_safe_globals`)
|
|
|
|
# Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
|
|
# Expected to be useful for loading PyTorch model weights
|
|
# For example:
|
|
# data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
|
|
# buf = io.BytesIO(data)
|
|
# weights = torch.load(buf, weights_only = True)
|
|
|
|
import functools as _functools
|
|
import warnings
|
|
|
|
from _codecs import encode
|
|
from collections import Counter, OrderedDict
|
|
from pickle import (
|
|
APPEND,
|
|
APPENDS,
|
|
BINFLOAT,
|
|
BINGET,
|
|
BININT,
|
|
BININT1,
|
|
BININT2,
|
|
BINPERSID,
|
|
BINPUT,
|
|
BINUNICODE,
|
|
BUILD,
|
|
bytes_types,
|
|
decode_long,
|
|
EMPTY_DICT,
|
|
EMPTY_LIST,
|
|
EMPTY_SET,
|
|
EMPTY_TUPLE,
|
|
GLOBAL,
|
|
LONG1,
|
|
LONG_BINGET,
|
|
LONG_BINPUT,
|
|
MARK,
|
|
NEWFALSE,
|
|
NEWOBJ,
|
|
NEWTRUE,
|
|
NONE,
|
|
PROTO,
|
|
REDUCE,
|
|
SETITEM,
|
|
SETITEMS,
|
|
SHORT_BINSTRING,
|
|
STOP,
|
|
TUPLE,
|
|
TUPLE1,
|
|
TUPLE2,
|
|
TUPLE3,
|
|
UnpicklingError,
|
|
)
|
|
from struct import unpack
|
|
from sys import maxsize
|
|
from typing import Any, Callable, Union
|
|
|
|
import torch
|
|
from torch._utils import _sparse_tensors_to_validate, IMPORT_MAPPING, NAME_MAPPING
|
|
|
|
|
|
# modules in this list are never allowed, even if the user attempts to allowlist
|
|
# functions/classes from them
|
|
_blocklisted_modules = [
|
|
"sys",
|
|
"os",
|
|
"posix",
|
|
"nt",
|
|
]
|
|
|
|
_marked_safe_globals_set: set[Union[Callable, tuple[Callable, str]]] = set()
|
|
|
|
|
|
def _add_safe_globals(safe_globals: list[Union[Callable, tuple[Callable, str]]]):
|
|
global _marked_safe_globals_set
|
|
_marked_safe_globals_set = _marked_safe_globals_set.union(set(safe_globals))
|
|
|
|
|
|
def _get_safe_globals() -> list[Union[Callable, tuple[Callable, str]]]:
|
|
global _marked_safe_globals_set
|
|
return list(_marked_safe_globals_set)
|
|
|
|
|
|
def _clear_safe_globals():
|
|
global _marked_safe_globals_set
|
|
_marked_safe_globals_set = set()
|
|
|
|
|
|
def _remove_safe_globals(
|
|
globals_to_remove: list[Union[Callable, tuple[Callable, str]]],
|
|
):
|
|
global _marked_safe_globals_set
|
|
_marked_safe_globals_set = _marked_safe_globals_set - set(globals_to_remove)
|
|
|
|
|
|
class _safe_globals:
|
|
def __init__(self, safe_globals: list[Union[Callable, tuple[Callable, str]]]):
|
|
self.safe_globals = safe_globals
|
|
|
|
def __enter__(self):
|
|
_add_safe_globals(self.safe_globals)
|
|
|
|
def __exit__(self, type, value, tb):
|
|
_remove_safe_globals(self.safe_globals)
|
|
|
|
|
|
# Separate from _get_allowed_globals because of the lru_cache on _get_allowed_globals
|
|
# For example if user had a script like
|
|
# torch.load(file_a)
|
|
# torch.serialization._add_safe_globals([torch.foo])
|
|
# torch.load(file_b)
|
|
# the dynamic additions to safe_globals would not be picked up by
|
|
# _get_allowed_globals due to the lru_cache
|
|
def _get_user_allowed_globals():
|
|
rc: dict[str, Any] = {}
|
|
for f in _marked_safe_globals_set:
|
|
if isinstance(f, tuple):
|
|
if len(f) != 2:
|
|
raise ValueError(
|
|
f"Expected tuple of length 2 (global, str of callable full path), but got tuple of length: {len(f)}"
|
|
)
|
|
if type(f[1]) is not str:
|
|
raise TypeError(
|
|
f"Expected second item in tuple to be str of callable full path, but got: {type(f[1])}"
|
|
)
|
|
f, name = f
|
|
rc[name] = f
|
|
else:
|
|
module, name = f.__module__, f.__qualname__
|
|
rc[f"{module}.{name}"] = f
|
|
return rc
|
|
|
|
|
|
def _tensor_rebuild_functions():
|
|
return {
|
|
torch._utils._rebuild_parameter,
|
|
torch._utils._rebuild_parameter_with_state,
|
|
torch._utils._rebuild_qtensor,
|
|
torch._utils._rebuild_tensor,
|
|
torch._utils._rebuild_tensor_v2,
|
|
torch._utils._rebuild_tensor_v3,
|
|
torch._utils._rebuild_sparse_tensor,
|
|
torch._utils._rebuild_meta_tensor_no_storage,
|
|
torch._utils._rebuild_nested_tensor,
|
|
torch._utils._rebuild_wrapper_subclass,
|
|
# Allowlisting this, but not allowlisting the numpy functions by default
|
|
# Reasoning is that we don't have control over the numpy functions, but
|
|
# this utility is provided by pytorch
|
|
torch._utils._rebuild_device_tensor_from_numpy,
|
|
# In 2.6, we should no longer have a dependency on numpy and the above
|
|
# _rebuild_device_tensor_from_numpy function.
|
|
torch._utils._rebuild_device_tensor_from_cpu_tensor,
|
|
}
|
|
|
|
|
|
# Unpickling machinery
|
|
@_functools.lru_cache(maxsize=1)
|
|
def _get_allowed_globals():
|
|
rc: dict[str, Any] = {
|
|
"collections.OrderedDict": OrderedDict,
|
|
"collections.Counter": Counter,
|
|
"torch.nn.parameter.Parameter": torch.nn.Parameter,
|
|
"torch.serialization._get_layout": torch.serialization._get_layout,
|
|
"torch.Size": torch.Size,
|
|
"torch.Tensor": torch.Tensor,
|
|
"torch.device": torch.device,
|
|
"_codecs.encode": encode, # for bytes
|
|
"builtins.bytearray": bytearray, # for bytearray
|
|
"builtins.set": set, # for set
|
|
"builtins.complex": complex, # for complex
|
|
}
|
|
|
|
# dtype
|
|
for t in torch.storage._dtype_to_storage_type_map().keys():
|
|
rc[str(t)] = t
|
|
for t in torch.storage._new_dtypes():
|
|
rc[str(t)] = t
|
|
for t in [getattr(torch, f"uint{x}") for x in range(1, 8)]:
|
|
rc[str(t)] = t
|
|
for t in [getattr(torch, f"int{x}") for x in range(1, 8)]:
|
|
rc[str(t)] = t
|
|
|
|
# Tensor classes
|
|
for tt in torch._tensor_classes:
|
|
rc[f"{tt.__module__}.{tt.__name__}"] = tt
|
|
# Storage classes
|
|
for ts in torch._storage_classes:
|
|
if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
|
|
# Wrap legacy storage types in a dummy class
|
|
rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
|
|
ts.__name__
|
|
)
|
|
else:
|
|
rc[f"{ts.__module__}.{ts.__name__}"] = ts
|
|
# Quantization specific
|
|
for qt in [
|
|
torch.per_tensor_affine,
|
|
torch.per_tensor_symmetric,
|
|
torch.per_channel_affine,
|
|
torch.per_channel_symmetric,
|
|
torch.per_channel_affine_float_qparams,
|
|
]:
|
|
rc[str(qt)] = qt
|
|
# Rebuild functions
|
|
for f in _tensor_rebuild_functions():
|
|
rc[f"torch._utils.{f.__name__}"] = f
|
|
|
|
# Handles Tensor Subclasses, Tensor's with attributes.
|
|
# NOTE: It calls into above rebuild functions for regular Tensor types.
|
|
rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
|
|
return rc
|
|
|
|
|
|
def _read_global_instruction(readline: Callable) -> tuple[str, str]:
|
|
module = readline()[:-1].decode("utf-8")
|
|
name = readline()[:-1].decode("utf-8")
|
|
# Patch since torch.save default protocol is 2
|
|
# users will be running this code in python > 3
|
|
if (module, name) in NAME_MAPPING:
|
|
module, name = NAME_MAPPING[(module, name)]
|
|
elif module in IMPORT_MAPPING:
|
|
module = IMPORT_MAPPING[module]
|
|
return module, name
|
|
|
|
|
|
def get_globals_in_pkl(file) -> set[str]:
|
|
globals_in_checkpoint = set()
|
|
read = file.read
|
|
readline = file.readline
|
|
op_to_bytes_to_read = {
|
|
NEWOBJ[0]: 0,
|
|
REDUCE[0]: 0,
|
|
BUILD[0]: 0,
|
|
APPEND[0]: 0,
|
|
APPENDS[0]: 0,
|
|
SETITEM[0]: 0,
|
|
SETITEMS[0]: 0,
|
|
MARK[0]: 0,
|
|
TUPLE[0]: 0,
|
|
TUPLE1[0]: 0,
|
|
TUPLE2[0]: 0,
|
|
TUPLE3[0]: 0,
|
|
NONE[0]: 0,
|
|
NEWFALSE[0]: 0,
|
|
NEWTRUE[0]: 0,
|
|
EMPTY_TUPLE[0]: 0,
|
|
EMPTY_LIST[0]: 0,
|
|
EMPTY_DICT[0]: 0,
|
|
EMPTY_SET[0]: 0,
|
|
BINPERSID[0]: 0,
|
|
BININT[0]: 4,
|
|
BININT1[0]: 1,
|
|
BININT2[0]: 2,
|
|
BINFLOAT[0]: 8,
|
|
BINGET[0]: 1,
|
|
LONG_BINGET[0]: 4,
|
|
BINPUT[0]: 1,
|
|
LONG_BINPUT[0]: 4,
|
|
}
|
|
while True:
|
|
key = read(1)
|
|
if not key:
|
|
raise EOFError
|
|
assert isinstance(key, bytes_types)
|
|
if key[0] == GLOBAL[0]:
|
|
module, name = _read_global_instruction(readline)
|
|
globals_in_checkpoint.add(f"{module}.{name}")
|
|
elif key[0] in op_to_bytes_to_read:
|
|
bytes_to_read = op_to_bytes_to_read[key[0]]
|
|
if bytes_to_read:
|
|
read(bytes_to_read)
|
|
# ops where bytes to read depends on the data
|
|
elif key[0] == BINUNICODE[0]:
|
|
strlen = unpack("<I", read(4))[0]
|
|
if strlen > maxsize:
|
|
raise UnpicklingError("String is too long")
|
|
read(strlen)
|
|
elif key[0] in {SHORT_BINSTRING[0], LONG1[0]}:
|
|
strlen = read(1)[0]
|
|
read(strlen)
|
|
# first and last op
|
|
elif key[0] == PROTO[0]:
|
|
read(1)[0]
|
|
elif key[0] == STOP[0]:
|
|
return globals_in_checkpoint
|
|
else:
|
|
raise UnpicklingError(f"Unsupported operand {key[0]}")
|
|
|
|
|
|
class Unpickler:
|
|
def __init__(self, file, *, encoding: str = "bytes"):
|
|
self.encoding = encoding
|
|
self.readline = file.readline
|
|
self.read = file.read
|
|
self.memo: dict[int, Any] = {}
|
|
self.proto: int = -1
|
|
|
|
def load(self):
|
|
"""Read a pickled object representation from the open file.
|
|
|
|
Return the reconstituted object hierarchy specified in the file.
|
|
"""
|
|
self.metastack = []
|
|
self.stack: list[Any] = []
|
|
self.append = self.stack.append
|
|
read = self.read
|
|
while True:
|
|
key = read(1)
|
|
if not key:
|
|
raise EOFError
|
|
assert isinstance(key, bytes_types)
|
|
# Risky operators
|
|
if key[0] == GLOBAL[0]:
|
|
module, name = _read_global_instruction(self.readline)
|
|
full_path = f"{module}.{name}"
|
|
if module in _blocklisted_modules:
|
|
raise UnpicklingError(
|
|
f"Trying to load unsupported GLOBAL {full_path} whose module {module} is blocked."
|
|
)
|
|
if full_path in _get_allowed_globals():
|
|
self.append(_get_allowed_globals()[full_path])
|
|
elif full_path in _get_user_allowed_globals():
|
|
self.append(_get_user_allowed_globals()[full_path])
|
|
elif full_path in (
|
|
[
|
|
"torch.nested._internal.nested_tensor.NestedTensor",
|
|
"torch.nested._internal.nested_tensor._rebuild_njt",
|
|
"torch._dynamo.decorators._DimRange",
|
|
]
|
|
):
|
|
raise UnpicklingError(
|
|
"``torch.nested`` and ``torch._dynamo`` must be imported to load nested jagged tensors (NJTs)"
|
|
)
|
|
elif full_path in (
|
|
[
|
|
"torch.distributed.device_mesh.DeviceMesh",
|
|
"torch.distributed.tensor._dtensor_spec.DTensorSpec",
|
|
"torch.distributed.tensor._dtensor_spec.TensorMeta",
|
|
"torch.distributed.tensor.DTensor",
|
|
"torch.distributed.tensor.placement_types.Partial",
|
|
"torch.distributed.tensor.placement_types.Replicate",
|
|
"torch.distributed.tensor.placement_types.Shard",
|
|
]
|
|
):
|
|
raise UnpicklingError(
|
|
"``torch.distributed.tensor`` must be imported to load DTensors"
|
|
)
|
|
else:
|
|
builtins_name = "builtins"
|
|
if (
|
|
builtins_name in full_path
|
|
and builtins_name == full_path[: len(builtins_name)]
|
|
):
|
|
full_path = full_path[len(builtins_name) :]
|
|
full_path = (
|
|
full_path[1:]
|
|
if len(full_path) > 0 and full_path[0] == "."
|
|
else builtins_name + full_path
|
|
)
|
|
raise UnpicklingError(
|
|
f"Unsupported global: GLOBAL {full_path} was not an allowed global by default. "
|
|
f"Please use `torch.serialization.add_safe_globals([{full_path}])` or the "
|
|
f"`torch.serialization.safe_globals([{full_path}])` context manager to allowlist this global "
|
|
"if you trust this class/function."
|
|
)
|
|
elif key[0] == NEWOBJ[0]:
|
|
args = self.stack.pop()
|
|
cls = self.stack.pop()
|
|
if cls is torch.nn.Parameter:
|
|
self.append(torch.nn.Parameter(*args))
|
|
elif (
|
|
cls in _get_user_allowed_globals().values()
|
|
or cls in _get_allowed_globals().values()
|
|
):
|
|
result = cls.__new__(cls, *args)
|
|
if cls in torch._tensor_classes and "sparse" in cls.__module__:
|
|
_sparse_tensors_to_validate.append(result)
|
|
self.append(result)
|
|
else:
|
|
raise UnpicklingError(
|
|
"Can only create new object for nn.Parameter or classes allowlisted "
|
|
f"via `add_safe_globals` but got {cls}"
|
|
)
|
|
elif key[0] == REDUCE[0]:
|
|
args = self.stack.pop()
|
|
func = self.stack[-1]
|
|
if (
|
|
func not in _get_allowed_globals().values()
|
|
and func not in _get_user_allowed_globals().values()
|
|
):
|
|
raise UnpicklingError(
|
|
f"Trying to call reduce for unrecognized function {func}"
|
|
)
|
|
result = func(*args)
|
|
if func in torch._tensor_classes and "sparse" in func.__module__:
|
|
_sparse_tensors_to_validate.append(result)
|
|
self.stack[-1] = result
|
|
elif key[0] == BUILD[0]:
|
|
state = self.stack.pop()
|
|
inst = self.stack[-1]
|
|
if type(inst) is torch.Tensor:
|
|
# Legacy unpickling
|
|
inst.set_(*state)
|
|
elif type(inst) is torch.nn.Parameter:
|
|
inst.__setstate__(state)
|
|
elif type(inst) is OrderedDict:
|
|
inst.__dict__.update(state)
|
|
elif (
|
|
type(inst) in _get_user_allowed_globals().values()
|
|
or type(inst) in _get_allowed_globals().values()
|
|
):
|
|
if hasattr(inst, "__setstate__"):
|
|
inst.__setstate__(state)
|
|
else:
|
|
# mimics load_build in pickle
|
|
# https://github.com/python/cpython/blob/f0c6fccd08904787a39269367f09f263d496114c/Lib/pickle.py#L1854-L1867
|
|
slotstate = None
|
|
if isinstance(state, tuple) and len(state) == 2:
|
|
state, slotstate = state
|
|
if state:
|
|
inst.__dict__.update(state)
|
|
if slotstate:
|
|
for k, v in slotstate.items():
|
|
setattr(inst, k, v)
|
|
else:
|
|
raise UnpicklingError(
|
|
"Can only build Tensor, Parameter, OrderedDict or types allowlisted "
|
|
f"via `add_safe_globals`, but got {type(inst)}"
|
|
)
|
|
# Stack manipulation
|
|
elif key[0] == APPEND[0]:
|
|
item = self.stack.pop()
|
|
list_obj = self.stack[-1]
|
|
if type(list_obj) is not list:
|
|
raise UnpicklingError(
|
|
f"Can only append to lists, but got {type(list_obj)}"
|
|
)
|
|
list_obj.append(item)
|
|
elif key[0] == APPENDS[0]:
|
|
items = self.pop_mark()
|
|
list_obj = self.stack[-1]
|
|
if type(list_obj) is not list:
|
|
raise UnpicklingError(
|
|
f"Can only extend lists, but got {type(list_obj)}"
|
|
)
|
|
list_obj.extend(items)
|
|
elif key[0] == SETITEM[0]:
|
|
(v, k) = (self.stack.pop(), self.stack.pop())
|
|
self.stack[-1][k] = v
|
|
elif key[0] == SETITEMS[0]:
|
|
items = self.pop_mark()
|
|
for i in range(0, len(items), 2):
|
|
self.stack[-1][items[i]] = items[i + 1]
|
|
elif key[0] == MARK[0]:
|
|
self.metastack.append(self.stack)
|
|
self.stack = []
|
|
self.append = self.stack.append
|
|
elif key[0] == TUPLE[0]:
|
|
items = self.pop_mark()
|
|
self.append(tuple(items))
|
|
elif key[0] == TUPLE1[0]:
|
|
self.stack[-1] = (self.stack[-1],)
|
|
elif key[0] == TUPLE2[0]:
|
|
self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
|
|
elif key[0] == TUPLE3[0]:
|
|
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
|
|
# Basic types construction
|
|
elif key[0] == NONE[0]:
|
|
self.append(None)
|
|
elif key[0] == NEWFALSE[0]:
|
|
self.append(False)
|
|
elif key[0] == NEWTRUE[0]:
|
|
self.append(True)
|
|
elif key[0] == EMPTY_TUPLE[0]:
|
|
self.append(())
|
|
elif key[0] == EMPTY_LIST[0]:
|
|
self.append([])
|
|
elif key[0] == EMPTY_DICT[0]:
|
|
self.append({})
|
|
elif key[0] == EMPTY_SET[0]:
|
|
self.append(set())
|
|
elif key[0] == BININT[0]:
|
|
self.append(unpack("<i", read(4))[0])
|
|
elif key[0] == BININT1[0]:
|
|
self.append(self.read(1)[0])
|
|
elif key[0] == BININT2[0]:
|
|
self.append(unpack("<H", read(2))[0])
|
|
elif key[0] == BINFLOAT[0]:
|
|
self.append(unpack(">d", self.read(8))[0])
|
|
elif key[0] == BINUNICODE[0]:
|
|
strlen = unpack("<I", read(4))[0]
|
|
if strlen > maxsize:
|
|
raise UnpicklingError("String is too long")
|
|
strval = str(read(strlen), "utf-8", "surrogatepass")
|
|
self.append(strval)
|
|
elif key[0] == SHORT_BINSTRING[0]:
|
|
strlen = read(1)[0]
|
|
strdata = read(strlen)
|
|
if self.encoding != "bytes":
|
|
strdata = strdata.decode(self.encoding, "strict")
|
|
self.append(strdata)
|
|
elif key[0] == BINPERSID[0]:
|
|
pid = self.stack.pop()
|
|
# Only allow persistent load of storage
|
|
if type(pid) is not tuple and not type(pid) is not int:
|
|
raise UnpicklingError(
|
|
f"persistent_load id must be tuple or int, but got {type(pid)}"
|
|
)
|
|
if (
|
|
type(pid) is tuple
|
|
and len(pid) > 0
|
|
and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
|
|
):
|
|
raise UnpicklingError(
|
|
f"Only persistent_load of storage is allowed, but got {pid[0]}"
|
|
)
|
|
self.append(self.persistent_load(pid))
|
|
elif key[0] in [BINGET[0], LONG_BINGET[0]]:
|
|
idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
|
|
self.append(self.memo[idx])
|
|
elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
|
|
i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
|
|
if i < 0:
|
|
raise ValueError("negative argument")
|
|
self.memo[i] = self.stack[-1]
|
|
elif key[0] == LONG1[0]:
|
|
n = read(1)[0]
|
|
data = read(n)
|
|
self.append(decode_long(data))
|
|
# First and last deserializer ops
|
|
elif key[0] == PROTO[0]:
|
|
self.proto = read(1)[0]
|
|
if self.proto != 2:
|
|
warnings.warn(
|
|
f"Detected pickle protocol {self.proto} in the checkpoint, which was "
|
|
"not the default pickle protocol used by `torch.load` (2). The weights_only "
|
|
"Unpickler might not support all instructions implemented by this protocol, "
|
|
"please file an issue for adding support if you encounter this."
|
|
)
|
|
elif key[0] == STOP[0]:
|
|
rc = self.stack.pop()
|
|
return rc
|
|
else:
|
|
raise UnpicklingError(f"Unsupported operand {key[0]}")
|
|
|
|
# Return a list of items pushed in the stack after last MARK instruction.
|
|
def pop_mark(self):
|
|
items = self.stack
|
|
self.stack = self.metastack.pop()
|
|
self.append = self.stack.append
|
|
return items
|
|
|
|
def persistent_load(self, pid):
|
|
raise UnpicklingError("unsupported persistent id encountered")
|
|
|
|
|
|
def load(file, *, encoding: str = "ASCII"):
|
|
return Unpickler(file, encoding=encoding).load()
|