mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
* Modified the SymInt schema to also store the hint of the SymInt if it is represented as a symbol so that when we reconstruct the SymInt, the hint will also exist on the node. * GraphModuleDeserializer.deserialize now also optionally map of symbol names to range. ReplaceSymSizeOpPass should not be needed after https://github.com/pytorch/pytorch/pull/103107 lands Pull Request resolved: https://github.com/pytorch/pytorch/pull/103273 Approved by: https://github.com/avikchaudhuri, https://github.com/zhxchen17
335 lines
11 KiB
Python
335 lines
11 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
import unittest
|
|
|
|
import torch
|
|
import torch._dynamo as torchdynamo
|
|
from torch._export import dynamic_dim, export
|
|
from torch._export.db.case import ExportCase, normalize_inputs, SupportLevel
|
|
from torch._export.db.examples import all_examples
|
|
from torch._export.serde.serialize import (
|
|
ExportedProgramSerializer,
|
|
deserialize,
|
|
serialize,
|
|
)
|
|
from torch._subclasses.fake_tensor import FakeTensor
|
|
from torch.fx.experimental.symbolic_shapes import is_concrete_int
|
|
import torch.utils._pytree as pytree
|
|
from torch.testing._internal.common_utils import (
|
|
instantiate_parametrized_tests,
|
|
parametrize,
|
|
run_tests,
|
|
TestCase,
|
|
)
|
|
|
|
|
|
def get_filtered_export_db_tests():
|
|
unsupported_tags = {"torch.cond", "torch.map"}
|
|
unsupported_test_names = {
|
|
"dynamic_shape_constructor", # 'NoneType' object has no attribute 'from_tensor'
|
|
"dictionary", # Graph output must be a tuple()
|
|
"fn_with_kwargs", # export doesn't support kwargs yet
|
|
"scalar_output", # Tracing through 'f' must produce a single graph
|
|
}
|
|
|
|
return [
|
|
(name, case)
|
|
for name, case in all_examples().items()
|
|
if (
|
|
case.support_level == SupportLevel.SUPPORTED and
|
|
not (unsupported_tags & case.tags) and
|
|
name not in unsupported_test_names
|
|
)
|
|
]
|
|
|
|
|
|
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
|
|
class TestSerialize(TestCase):
|
|
def test_serialize_multiple_returns_from_node(self) -> None:
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, w, b):
|
|
return torch.nn.functional.layer_norm(
|
|
x,
|
|
x.size()[1:],
|
|
weight=w,
|
|
bias=b,
|
|
eps=1e-5,
|
|
)
|
|
|
|
exported_module = export(
|
|
MyModule(),
|
|
(
|
|
torch.ones([512, 512], requires_grad=True),
|
|
torch.ones([512]),
|
|
torch.ones([512]),
|
|
),
|
|
)
|
|
|
|
serialized, _ = ExportedProgramSerializer().serialize(exported_module)
|
|
node = serialized.graph_module.graph.nodes[-7]
|
|
self.assertEqual(node.target, "torch._ops.aten.var_mean.correction")
|
|
# aten::native_layer_norm returns 3 tensnors
|
|
self.assertEqual(len(node.outputs), 2)
|
|
|
|
# check the names are unique
|
|
seen = set()
|
|
for output in node.outputs:
|
|
name = output.as_tensor.name
|
|
self.assertNotIn(name, seen)
|
|
seen.add(name)
|
|
|
|
def test_serialize_list_returns(self) -> None:
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return torch.split(x, 2)
|
|
|
|
input = torch.arange(10.0).reshape(5, 2)
|
|
input.requires_grad = True
|
|
exported_module = export(MyModule(), (input,))
|
|
|
|
serialized, _ = ExportedProgramSerializer().serialize(exported_module)
|
|
node = serialized.graph_module.graph.nodes[-1]
|
|
self.assertEqual(node.target, "torch._ops.aten.split.Tensor")
|
|
self.assertEqual(len(node.outputs), 1)
|
|
# Input looks like:
|
|
# tensor([[0, 1],
|
|
# [2, 3],
|
|
# [4, 5],
|
|
# [6, 7],
|
|
# [8, 9]])
|
|
# Output looks like:
|
|
# (tensor([[0, 1],
|
|
# [2, 3]]),
|
|
# tensor([[4, 5],
|
|
# [6, 7]]),
|
|
# tensor([[8, 9]]))
|
|
self.assertEqual(len(node.outputs[0].as_tensors), 3)
|
|
|
|
# check the names are unique
|
|
seen = set()
|
|
for output in node.outputs[0].as_tensors:
|
|
name = output.name
|
|
self.assertNotIn(name, seen)
|
|
seen.add(name)
|
|
|
|
def test_multi_return_some_unused(self) -> None:
|
|
"""
|
|
Make sure the serialized output matches the op schema, even if some of
|
|
the arguments are never used in the graph.
|
|
"""
|
|
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return torch.ops.aten.var_mean.correction(x, [1])[0]
|
|
|
|
exported_module = export(
|
|
MyModule(),
|
|
(torch.ones([512, 512], requires_grad=True),),
|
|
)
|
|
|
|
serialized, _ = ExportedProgramSerializer().serialize(exported_module)
|
|
node = serialized.graph_module.graph.nodes[-1]
|
|
self.assertEqual(node.target, "torch._ops.aten.var_mean.correction")
|
|
self.assertEqual(len(node.outputs), 2)
|
|
|
|
# check the names are unique
|
|
seen = set()
|
|
for output in node.outputs:
|
|
name = output.as_tensor.name
|
|
self.assertNotIn(name, seen)
|
|
seen.add(name)
|
|
|
|
def test_kwargs_default(self) -> None:
|
|
"""
|
|
Tests that the kwargs default values are serialized even if they are not
|
|
specified
|
|
"""
|
|
|
|
def f(x: torch.Tensor) -> torch.Tensor:
|
|
values = torch.randn(3, 2)
|
|
return torch.searchsorted(x, values, side="right", right=True)
|
|
|
|
x, _ = torch.sort(torch.randn(3, 4))
|
|
exported_module = export(f, (x,))
|
|
serialized, _ = ExportedProgramSerializer().serialize(exported_module)
|
|
|
|
node = serialized.graph_module.graph.nodes[-1]
|
|
self.assertEqual(node.target, "torch._ops.aten.searchsorted.Tensor")
|
|
self.assertEqual(len(node.inputs), 6)
|
|
self.assertEqual(node.inputs[2].arg.as_bool, False)
|
|
self.assertEqual(node.inputs[3].arg.as_bool, True)
|
|
self.assertEqual(node.inputs[4].arg.as_string, "right")
|
|
self.assertEqual(node.inputs[5].arg.as_none, ())
|
|
|
|
|
|
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
|
|
class TestDeserialize(TestCase):
|
|
def check_graph(self, fn, inputs, constraints=None) -> None:
|
|
"""Export a graph, serialize it, deserialize it, and compare the results."""
|
|
# TODO(angelayi): test better with some sort of wrapper
|
|
constraints = [] if constraints is None else constraints
|
|
ep = export(fn, inputs, constraints)
|
|
serialized_struct, state_dict = serialize(ep)
|
|
deserialized_ep = deserialize(serialized_struct, state_dict)
|
|
|
|
orig_outputs = ep(*inputs)
|
|
loaded_outputs = deserialized_ep(*inputs)
|
|
|
|
flat_orig_outputs, _ = pytree.tree_flatten(orig_outputs)
|
|
flat_loaded_outputs, _ = pytree.tree_flatten(loaded_outputs)
|
|
|
|
for orig, loaded in zip(flat_orig_outputs, flat_loaded_outputs):
|
|
self.assertEqual(type(orig), type(loaded))
|
|
if isinstance(orig, torch.Tensor):
|
|
self.assertTrue(torch.allclose(orig, loaded))
|
|
else:
|
|
self.assertEqual(orig, loaded)
|
|
|
|
for node1, node2 in zip(ep.graph.nodes, deserialized_ep.graph.nodes):
|
|
# Check "val" metadata
|
|
val1 = node1.meta.get("val", None)
|
|
val2 = node2.meta.get("val", None)
|
|
|
|
if val1 is None or val2 is None:
|
|
# Either both are None
|
|
self.assertEqual(val1, val2)
|
|
elif isinstance(val1, FakeTensor) and isinstance(val2, FakeTensor):
|
|
# Or both are fake tensors with the same shape/dtype
|
|
self.assertEqual(len(val1.shape), len(val2.shape))
|
|
for s1, s2 in zip(val1.shape, val2.shape):
|
|
if is_concrete_int(s1) and is_concrete_int(s2):
|
|
self.assertEqual(s1, s2)
|
|
else:
|
|
self.assertEqual(str(s1), str(s2))
|
|
self.assertEqual(val1.dtype, val2.dtype)
|
|
elif isinstance(val1, list) and isinstance(val2, list):
|
|
# Or both are fake tensors lists with one element and with the
|
|
# same shape/dtype
|
|
self.assertTrue(len(val1) == 1 and len(val2) == 1)
|
|
self.assertEqual(val1[0].shape, val2[0].shape)
|
|
self.assertEqual(val1[0].dtype, val2[0].dtype)
|
|
else:
|
|
# For expressions like 's0 < 10' can only compare through string
|
|
self.assertEqual(str(val1), str(val2))
|
|
|
|
def test_multi_return(self) -> None:
|
|
"""
|
|
Test multiple return from a single node (ex. layer_norm has 2 outputs)
|
|
"""
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, w, b):
|
|
return torch.nn.functional.layer_norm(
|
|
x,
|
|
x.size()[1:],
|
|
weight=w,
|
|
bias=b,
|
|
eps=1e-5,
|
|
)
|
|
|
|
inputs = (
|
|
torch.ones([512, 512], requires_grad=True),
|
|
torch.ones([512]),
|
|
torch.ones([512]),
|
|
)
|
|
self.check_graph(MyModule(), inputs)
|
|
|
|
def test_basic(self) -> None:
|
|
class MyModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
x = x + x
|
|
x = x * x
|
|
x = x / x
|
|
return x, x.clone()
|
|
|
|
inputs = (torch.ones([512], requires_grad=True),)
|
|
self.check_graph(MyModule(), inputs)
|
|
|
|
def test_dynamic(self) -> None:
|
|
class DynamicShapeSimpleModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, a, b, c) -> torch.Tensor:
|
|
d = (torch.matmul(a, b) + c) / 2
|
|
d_s0 = d.shape[0]
|
|
d_s1 = d.shape[1]
|
|
d_s3 = d_s0 * d_s1
|
|
e = d.view(d_s3)
|
|
return torch.cat([e, e])
|
|
|
|
|
|
inputs = (torch.randn(2, 4), torch.randn(4, 7), torch.randn(2, 7))
|
|
constraints = [
|
|
dynamic_dim(inputs[0], 0),
|
|
dynamic_dim(inputs[2], 0),
|
|
dynamic_dim(inputs[2], 0) == dynamic_dim(inputs[0], 0),
|
|
]
|
|
self.check_graph(DynamicShapeSimpleModel(), inputs, constraints)
|
|
|
|
def test_sym_bool(self):
|
|
def f(x, y):
|
|
return x.size(0) in y
|
|
|
|
self.check_graph(f, (torch.ones(2), torch.ones(3)))
|
|
|
|
def test_shape(self):
|
|
def f(x):
|
|
z, y = x.size()
|
|
return z + y + x[0], z
|
|
|
|
inputs = (torch.ones(2, 3),)
|
|
constraints = [
|
|
dynamic_dim(inputs[0], 0),
|
|
dynamic_dim(inputs[0], 1),
|
|
]
|
|
self.check_graph(f, inputs, constraints)
|
|
|
|
def test_module(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear1 = torch.nn.Linear(3, 3)
|
|
self.relu = torch.nn.ReLU()
|
|
self.linear2 = torch.nn.Linear(3, 5)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear1(x)
|
|
x = torch.nn.functional.relu(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
inputs = (torch.randn(3, 3),)
|
|
self.check_graph(M(), inputs)
|
|
|
|
@parametrize(
|
|
"name,case",
|
|
get_filtered_export_db_tests(),
|
|
name_fn=lambda name, case: "case_{}".format(name),
|
|
)
|
|
def test_exportdb_supported(self, name: str, case: ExportCase) -> None:
|
|
model = case.model
|
|
inputs = normalize_inputs(case.example_inputs)
|
|
self.check_graph(model, inputs.args)
|
|
|
|
|
|
instantiate_parametrized_tests(TestDeserialize)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|