mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-27 09:04:53 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56292 Adds hooks for specifying user defined functions to NS weight and unshadowed activation APIs. Adding it to shadowed activation APIs will be a bit more work, upcoming in a separate PR. Test Plan: ``` python test/test_quantization.py TestFXNumericSuiteCoreAPIs.test_user_defined_function ``` Imported from OSS Reviewed By: jerryzh168 Differential Revision: D27830409 fbshipit-source-id: 6bbddc3062c0b3e412a3147244795319c0785a92
374 lines
14 KiB
Python
374 lines
14 KiB
Python
import collections
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.quantization.quantize_fx as quantize_fx
|
|
from torch.fx import GraphModule
|
|
from torch.fx.graph import Node
|
|
from torch.quantization.ns.graph_matcher import (
|
|
get_matching_subgraph_pairs,
|
|
get_base_name_to_sets_of_related_ops,
|
|
get_type_a_related_to_b,
|
|
)
|
|
|
|
from .ns.weight_utils import (
|
|
extract_weight_from_node,
|
|
)
|
|
|
|
from .ns.graph_passes import (
|
|
remove_observers_add_loggers,
|
|
create_a_shadows_b,
|
|
)
|
|
|
|
from .ns.ns_types import (
|
|
NSSingleResultValuesType,
|
|
NSResultsType,
|
|
NSNodeTargetType,
|
|
)
|
|
|
|
from typing import Dict, Tuple, Callable, List, Optional, Set
|
|
|
|
RNNReturnType = Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
|
|
|
|
class OutputLogger(nn.Module):
|
|
stats: List[torch.Tensor]
|
|
stats_rnn: List[RNNReturnType]
|
|
|
|
def __init__(
|
|
self,
|
|
ref_node_name: str,
|
|
prev_node_name: str,
|
|
model_name: str,
|
|
ref_name: str,
|
|
prev_node_target_type: str,
|
|
results_type: str,
|
|
index_within_arg: int,
|
|
):
|
|
super().__init__()
|
|
self.stats: List[torch.Tensor] = []
|
|
self.stats_rnn: List[RNNReturnType] = []
|
|
|
|
# name of the node which was responsible for adding this logger
|
|
# Note:
|
|
# - if we are logging node outputs, this is the same as prev_node_name
|
|
# - if we are logging node inputs, this is the name of the node
|
|
# whose input this logger is logging.
|
|
#
|
|
# example, where logger1 is logging input of op1 and logger2 is logging
|
|
# the output of op1:
|
|
#
|
|
# x1 -> logger1 -> op1 -> logger2 -> x2
|
|
#
|
|
# in this example,
|
|
# - logger1's prev_node_name is x1 and ref_node_name is op1
|
|
# - logger2's prev_node_name is op1 and ref_node_name is op1
|
|
self.ref_node_name = ref_node_name
|
|
# name of the node whose output this Logger is capturing
|
|
self.prev_node_name = prev_node_name
|
|
|
|
# name of the model from which the node originated from
|
|
self.model_name = model_name
|
|
# reference name, used to match loggers from separate models
|
|
# to each other
|
|
self.ref_name = ref_name
|
|
# type of the target of the node whose output this logger is logging
|
|
self.prev_node_target_type = prev_node_target_type
|
|
# what kind of values are inside of stats
|
|
self.results_type = results_type
|
|
# index of this node within the arg of the input/output node
|
|
# for example, in cat([x1, x2, x3], dim=0), x2 would have index_within_arg == 1
|
|
self.index_within_arg = index_within_arg
|
|
|
|
# Note: cannot annotate the type of x because TorchScript does not support
|
|
# the Union type.
|
|
def forward(self, x):
|
|
if isinstance(x, torch.Tensor):
|
|
self.stats.append(x.detach())
|
|
elif isinstance(x, tuple) and len(x) == 2 and len(x[1]) == 2:
|
|
new_res = (x[0].detach(), (x[1][0].detach(), x[1][1].detach()))
|
|
self.stats_rnn.append(new_res)
|
|
return x
|
|
|
|
def __repr__(self):
|
|
return f"""OutputLogger(ref_name={self.ref_name}, model_name={self.model_name},
|
|
prev_node_name={self.prev_node_name}, ref_node_name={self.ref_node_name},
|
|
results_type={self.results_type}, index_within_arg={self.index_within_arg})"""
|
|
|
|
|
|
class NSTracer(quantize_fx.QuantizationTracer):
|
|
"""
|
|
Just like a regular tracer, but treats observers and fake_quantize
|
|
modules as leaf modules.
|
|
"""
|
|
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool:
|
|
if isinstance(m, torch.quantization.ObserverBase):
|
|
return True
|
|
elif isinstance(m, torch.quantization.FakeQuantizeBase):
|
|
return True
|
|
return super().is_leaf_module(m, module_qualified_name)
|
|
|
|
|
|
def _extract_weights_one_model(
|
|
model_name: str,
|
|
model: GraphModule,
|
|
nodes_and_names_to_instrument: List[Tuple[Node, str]],
|
|
results: NSResultsType,
|
|
) -> None:
|
|
base_name_to_sets_of_related_ops = get_base_name_to_sets_of_related_ops()
|
|
type_a_related_to_b = \
|
|
get_type_a_related_to_b(base_name_to_sets_of_related_ops)
|
|
|
|
for node, ref_name in nodes_and_names_to_instrument:
|
|
res_type = NSSingleResultValuesType.WEIGHT.value
|
|
if ref_name not in results:
|
|
results[ref_name] = {res_type: {}}
|
|
extracted_weight = \
|
|
extract_weight_from_node(node, model, type_a_related_to_b)
|
|
if extracted_weight:
|
|
results[ref_name][res_type][model_name] = [extracted_weight]
|
|
|
|
|
|
def _extract_weights_impl(
|
|
model_name_a: str,
|
|
gm_a: GraphModule,
|
|
model_name_b: str,
|
|
gm_b: GraphModule,
|
|
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
|
|
) -> NSResultsType:
|
|
matched_subgraph_pairs = get_matching_subgraph_pairs(
|
|
gm_a, gm_b, base_name_to_sets_of_related_ops)
|
|
|
|
# split the subgraph pairs into one data structure for each model
|
|
nodes_and_names_to_instrument_a: List[Tuple[Node, str]] = []
|
|
nodes_and_names_to_instrument_b: List[Tuple[Node, str]] = []
|
|
for match_name, match in matched_subgraph_pairs.items():
|
|
subgraph_a, subgraph_b = match
|
|
nodes_and_names_to_instrument_a.append((subgraph_a.base_op_node, match_name))
|
|
nodes_and_names_to_instrument_b.append((subgraph_b.base_op_node, match_name))
|
|
|
|
# populate the results, one model at a time
|
|
results: NSResultsType = {}
|
|
_extract_weights_one_model(
|
|
model_name_a, gm_a, nodes_and_names_to_instrument_a, results)
|
|
_extract_weights_one_model(
|
|
model_name_b, gm_b, nodes_and_names_to_instrument_b, results)
|
|
|
|
return results
|
|
|
|
|
|
def extract_weights(
|
|
model_name_a: str,
|
|
model_a: nn.Module,
|
|
model_name_b: str,
|
|
model_b: nn.Module,
|
|
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
|
|
) -> NSResultsType:
|
|
base_name_to_sets_of_related_ops = get_base_name_to_sets_of_related_ops()
|
|
type_a_related_to_b = \
|
|
get_type_a_related_to_b(base_name_to_sets_of_related_ops)
|
|
|
|
# TODO(future PR): expose these
|
|
skipped_module_names: List[str] = []
|
|
skipped_module_classes: List[Callable] = []
|
|
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
|
|
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
|
|
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
|
|
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
|
|
return _extract_weights_impl(
|
|
model_name_a, gm_a, model_name_b, gm_b, base_name_to_sets_of_related_ops)
|
|
|
|
|
|
def _add_loggers_one_model(
|
|
model_name: str,
|
|
model: GraphModule,
|
|
nodes_and_names_to_instrument_inputs: List[Tuple[Node, str]],
|
|
nodes_and_names_to_instrument_outputs: List[Tuple[Node, str]],
|
|
logger_cls: Callable,
|
|
) -> nn.Module:
|
|
|
|
# TODO(future PR): do not observe nodes we do not care
|
|
# about (both fp32, denylist, etc)
|
|
node_to_instrument_inputs_to_ref_name: Dict[Node, str] = {}
|
|
node_to_instrument_outputs_to_ref_name: Dict[Node, str] = {}
|
|
for node, ref_name in nodes_and_names_to_instrument_inputs:
|
|
node_to_instrument_inputs_to_ref_name[node] = ref_name
|
|
for node, ref_name in nodes_and_names_to_instrument_outputs:
|
|
node_to_instrument_outputs_to_ref_name[node] = ref_name
|
|
|
|
model = remove_observers_add_loggers(
|
|
model, node_to_instrument_inputs_to_ref_name,
|
|
node_to_instrument_outputs_to_ref_name, logger_cls, model_name)
|
|
return model
|
|
|
|
|
|
def _add_loggers_impl(
|
|
name_a: str,
|
|
gm_a: GraphModule,
|
|
name_b: str,
|
|
gm_b: GraphModule,
|
|
logger_cls: Callable,
|
|
should_log_inputs: bool,
|
|
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
|
|
) -> Tuple[nn.Module, nn.Module]:
|
|
matched_subgraph_pairs = get_matching_subgraph_pairs(
|
|
gm_a, gm_b,
|
|
base_name_to_sets_of_related_ops)
|
|
nodes_and_names_to_instrument_inputs_a = []
|
|
nodes_and_names_to_instrument_inputs_b = []
|
|
nodes_and_names_to_instrument_outputs_a = []
|
|
nodes_and_names_to_instrument_outputs_b = []
|
|
for match_name, (subgraph_a, subgraph_b) in matched_subgraph_pairs.items():
|
|
# Note: for matching inputs we use start_node, such as observing
|
|
# the input of linear in linear-relu
|
|
if should_log_inputs:
|
|
nodes_and_names_to_instrument_inputs_a.append((subgraph_a.start_node, match_name))
|
|
nodes_and_names_to_instrument_inputs_b.append((subgraph_b.start_node, match_name))
|
|
# Note: for matching activations we always use end_node,
|
|
# such as observing the output of relu in linear-relu
|
|
nodes_and_names_to_instrument_outputs_a.append((subgraph_a.end_node, match_name))
|
|
nodes_and_names_to_instrument_outputs_b.append((subgraph_b.end_node, match_name))
|
|
|
|
new_model_a = _add_loggers_one_model(
|
|
name_a, gm_a, nodes_and_names_to_instrument_inputs_a,
|
|
nodes_and_names_to_instrument_outputs_a, logger_cls)
|
|
new_model_b = _add_loggers_one_model(
|
|
name_b, gm_b, nodes_and_names_to_instrument_inputs_b,
|
|
nodes_and_names_to_instrument_outputs_b, logger_cls)
|
|
return (new_model_a, new_model_b)
|
|
|
|
|
|
def add_loggers(
|
|
name_a: str,
|
|
model_a: nn.Module,
|
|
name_b: str,
|
|
model_b: nn.Module,
|
|
logger_cls: Callable,
|
|
should_log_inputs : bool = False,
|
|
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
|
|
) -> Tuple[nn.Module, nn.Module]:
|
|
# TODO(future PR): expose these
|
|
skipped_module_names: List[str] = []
|
|
skipped_module_classes: List[Callable] = []
|
|
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
|
|
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
|
|
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
|
|
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
|
|
return _add_loggers_impl(
|
|
name_a, gm_a, name_b, gm_b, logger_cls,
|
|
should_log_inputs=should_log_inputs,
|
|
base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops)
|
|
|
|
|
|
def _extract_logger_info_one_model(
|
|
model: nn.Module,
|
|
results: NSResultsType,
|
|
logger_cls: Callable,
|
|
) -> None:
|
|
for gm_name, mod in model.named_modules():
|
|
# TODO(future PR): better check when scripted
|
|
is_logger = (
|
|
isinstance(mod, logger_cls) # type: ignore[arg-type]
|
|
or (
|
|
isinstance(mod, torch.jit.RecursiveScriptModule)
|
|
and mod.original_name == 'OutputLogger'
|
|
)
|
|
)
|
|
if is_logger:
|
|
key = mod.ref_name
|
|
if key not in results:
|
|
results[key] = {}
|
|
assert mod.model_name not in results[key], \
|
|
f"{mod.model_name} is already present in results"
|
|
if mod.results_type not in results[key]:
|
|
results[key][mod.results_type] = {}
|
|
if mod.model_name not in results[key][mod.results_type]:
|
|
results[key][mod.results_type][mod.model_name] = []
|
|
stats_to_use = mod.stats
|
|
if len(mod.stats_rnn) > 0:
|
|
stats_to_use = mod.stats_rnn
|
|
results[key][mod.results_type][mod.model_name].append({
|
|
'type': mod.results_type,
|
|
'values': stats_to_use,
|
|
'ref_node_name': mod.ref_node_name,
|
|
'prev_node_name': mod.prev_node_name,
|
|
'prev_node_target_type': mod.prev_node_target_type,
|
|
'index_within_arg': mod.index_within_arg,
|
|
})
|
|
# ensure the list stays sorted
|
|
results[key][mod.results_type][mod.model_name].sort(
|
|
key=lambda res: res['index_within_arg']
|
|
)
|
|
|
|
|
|
# TODO(future PR): align on naming
|
|
# this is equivalent of just the comparison extraction part of `ns.compare_model_outputs`
|
|
def extract_logger_info(
|
|
model_a: nn.Module,
|
|
model_b: nn.Module,
|
|
logger_cls: Callable,
|
|
) -> NSResultsType:
|
|
"""
|
|
Same thing as ns.extract_logger_info, but for models prepared with
|
|
this module.
|
|
|
|
TODO(future PR): real docblock
|
|
|
|
Output format: NSResultsType
|
|
"""
|
|
results: NSResultsType = {}
|
|
for model in (model_a, model_b):
|
|
_extract_logger_info_one_model(model, results, logger_cls)
|
|
return results
|
|
|
|
|
|
def _add_shadow_loggers_impl(
|
|
name_a: str,
|
|
gm_a: GraphModule,
|
|
name_b: str,
|
|
gm_b: GraphModule,
|
|
logger_cls: Callable,
|
|
should_log_inputs: bool,
|
|
) -> nn.Module:
|
|
matched_subgraph_pairs = get_matching_subgraph_pairs(gm_a, gm_b)
|
|
gm_a_shadows_b = create_a_shadows_b(
|
|
name_a, gm_a, name_b, gm_b, matched_subgraph_pairs, logger_cls,
|
|
should_log_inputs=should_log_inputs)
|
|
return gm_a_shadows_b
|
|
|
|
|
|
def add_shadow_loggers(
|
|
name_a: str,
|
|
model_a: nn.Module,
|
|
name_b: str,
|
|
model_b: nn.Module,
|
|
logger_cls: Callable,
|
|
should_log_inputs: bool = False,
|
|
) -> nn.Module:
|
|
"""
|
|
Same thing as add_loggers, but for an `a_shadows_b` model.
|
|
TODO(future PR): real docblock
|
|
"""
|
|
# TODO(future PR): expose these
|
|
skipped_module_names: List[str] = []
|
|
skipped_module_classes: List[Callable] = []
|
|
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
|
|
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
|
|
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
|
|
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
|
|
return _add_shadow_loggers_impl(
|
|
name_a, gm_a, name_b, gm_b, logger_cls,
|
|
should_log_inputs=should_log_inputs)
|
|
|
|
|
|
def extract_shadow_logger_info(
|
|
model_a_shadows_b: nn.Module,
|
|
logger_cls: Callable,
|
|
) -> NSResultsType:
|
|
"""
|
|
Same thing as extract_logger_info, but for an `a_shadows_b` model.
|
|
TODO(future PR): real docblock
|
|
"""
|
|
results: NSResultsType = collections.defaultdict(dict)
|
|
_extract_logger_info_one_model(model_a_shadows_b, results, logger_cls)
|
|
return dict(results)
|