Files
pytorch/torch/quantization/_numeric_suite_fx.py
Vasiliy Kuznetsov 8dbf6ae8fa ns for fx: handling for user functions in weight and unshadowed act APIs (#56292)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56292

Adds hooks for specifying user defined functions to NS weight and
unshadowed activation APIs.

Adding it to shadowed activation APIs will be a bit more work, upcoming
in a separate PR.

Test Plan:
```
python test/test_quantization.py TestFXNumericSuiteCoreAPIs.test_user_defined_function
```

Imported from OSS

Reviewed By: jerryzh168

Differential Revision: D27830409

fbshipit-source-id: 6bbddc3062c0b3e412a3147244795319c0785a92
2021-04-26 17:03:18 -07:00

374 lines
14 KiB
Python

import collections
import torch
import torch.nn as nn
import torch.quantization.quantize_fx as quantize_fx
from torch.fx import GraphModule
from torch.fx.graph import Node
from torch.quantization.ns.graph_matcher import (
get_matching_subgraph_pairs,
get_base_name_to_sets_of_related_ops,
get_type_a_related_to_b,
)
from .ns.weight_utils import (
extract_weight_from_node,
)
from .ns.graph_passes import (
remove_observers_add_loggers,
create_a_shadows_b,
)
from .ns.ns_types import (
NSSingleResultValuesType,
NSResultsType,
NSNodeTargetType,
)
from typing import Dict, Tuple, Callable, List, Optional, Set
RNNReturnType = Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
class OutputLogger(nn.Module):
stats: List[torch.Tensor]
stats_rnn: List[RNNReturnType]
def __init__(
self,
ref_node_name: str,
prev_node_name: str,
model_name: str,
ref_name: str,
prev_node_target_type: str,
results_type: str,
index_within_arg: int,
):
super().__init__()
self.stats: List[torch.Tensor] = []
self.stats_rnn: List[RNNReturnType] = []
# name of the node which was responsible for adding this logger
# Note:
# - if we are logging node outputs, this is the same as prev_node_name
# - if we are logging node inputs, this is the name of the node
# whose input this logger is logging.
#
# example, where logger1 is logging input of op1 and logger2 is logging
# the output of op1:
#
# x1 -> logger1 -> op1 -> logger2 -> x2
#
# in this example,
# - logger1's prev_node_name is x1 and ref_node_name is op1
# - logger2's prev_node_name is op1 and ref_node_name is op1
self.ref_node_name = ref_node_name
# name of the node whose output this Logger is capturing
self.prev_node_name = prev_node_name
# name of the model from which the node originated from
self.model_name = model_name
# reference name, used to match loggers from separate models
# to each other
self.ref_name = ref_name
# type of the target of the node whose output this logger is logging
self.prev_node_target_type = prev_node_target_type
# what kind of values are inside of stats
self.results_type = results_type
# index of this node within the arg of the input/output node
# for example, in cat([x1, x2, x3], dim=0), x2 would have index_within_arg == 1
self.index_within_arg = index_within_arg
# Note: cannot annotate the type of x because TorchScript does not support
# the Union type.
def forward(self, x):
if isinstance(x, torch.Tensor):
self.stats.append(x.detach())
elif isinstance(x, tuple) and len(x) == 2 and len(x[1]) == 2:
new_res = (x[0].detach(), (x[1][0].detach(), x[1][1].detach()))
self.stats_rnn.append(new_res)
return x
def __repr__(self):
return f"""OutputLogger(ref_name={self.ref_name}, model_name={self.model_name},
prev_node_name={self.prev_node_name}, ref_node_name={self.ref_node_name},
results_type={self.results_type}, index_within_arg={self.index_within_arg})"""
class NSTracer(quantize_fx.QuantizationTracer):
"""
Just like a regular tracer, but treats observers and fake_quantize
modules as leaf modules.
"""
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool:
if isinstance(m, torch.quantization.ObserverBase):
return True
elif isinstance(m, torch.quantization.FakeQuantizeBase):
return True
return super().is_leaf_module(m, module_qualified_name)
def _extract_weights_one_model(
model_name: str,
model: GraphModule,
nodes_and_names_to_instrument: List[Tuple[Node, str]],
results: NSResultsType,
) -> None:
base_name_to_sets_of_related_ops = get_base_name_to_sets_of_related_ops()
type_a_related_to_b = \
get_type_a_related_to_b(base_name_to_sets_of_related_ops)
for node, ref_name in nodes_and_names_to_instrument:
res_type = NSSingleResultValuesType.WEIGHT.value
if ref_name not in results:
results[ref_name] = {res_type: {}}
extracted_weight = \
extract_weight_from_node(node, model, type_a_related_to_b)
if extracted_weight:
results[ref_name][res_type][model_name] = [extracted_weight]
def _extract_weights_impl(
model_name_a: str,
gm_a: GraphModule,
model_name_b: str,
gm_b: GraphModule,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> NSResultsType:
matched_subgraph_pairs = get_matching_subgraph_pairs(
gm_a, gm_b, base_name_to_sets_of_related_ops)
# split the subgraph pairs into one data structure for each model
nodes_and_names_to_instrument_a: List[Tuple[Node, str]] = []
nodes_and_names_to_instrument_b: List[Tuple[Node, str]] = []
for match_name, match in matched_subgraph_pairs.items():
subgraph_a, subgraph_b = match
nodes_and_names_to_instrument_a.append((subgraph_a.base_op_node, match_name))
nodes_and_names_to_instrument_b.append((subgraph_b.base_op_node, match_name))
# populate the results, one model at a time
results: NSResultsType = {}
_extract_weights_one_model(
model_name_a, gm_a, nodes_and_names_to_instrument_a, results)
_extract_weights_one_model(
model_name_b, gm_b, nodes_and_names_to_instrument_b, results)
return results
def extract_weights(
model_name_a: str,
model_a: nn.Module,
model_name_b: str,
model_b: nn.Module,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> NSResultsType:
base_name_to_sets_of_related_ops = get_base_name_to_sets_of_related_ops()
type_a_related_to_b = \
get_type_a_related_to_b(base_name_to_sets_of_related_ops)
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
return _extract_weights_impl(
model_name_a, gm_a, model_name_b, gm_b, base_name_to_sets_of_related_ops)
def _add_loggers_one_model(
model_name: str,
model: GraphModule,
nodes_and_names_to_instrument_inputs: List[Tuple[Node, str]],
nodes_and_names_to_instrument_outputs: List[Tuple[Node, str]],
logger_cls: Callable,
) -> nn.Module:
# TODO(future PR): do not observe nodes we do not care
# about (both fp32, denylist, etc)
node_to_instrument_inputs_to_ref_name: Dict[Node, str] = {}
node_to_instrument_outputs_to_ref_name: Dict[Node, str] = {}
for node, ref_name in nodes_and_names_to_instrument_inputs:
node_to_instrument_inputs_to_ref_name[node] = ref_name
for node, ref_name in nodes_and_names_to_instrument_outputs:
node_to_instrument_outputs_to_ref_name[node] = ref_name
model = remove_observers_add_loggers(
model, node_to_instrument_inputs_to_ref_name,
node_to_instrument_outputs_to_ref_name, logger_cls, model_name)
return model
def _add_loggers_impl(
name_a: str,
gm_a: GraphModule,
name_b: str,
gm_b: GraphModule,
logger_cls: Callable,
should_log_inputs: bool,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> Tuple[nn.Module, nn.Module]:
matched_subgraph_pairs = get_matching_subgraph_pairs(
gm_a, gm_b,
base_name_to_sets_of_related_ops)
nodes_and_names_to_instrument_inputs_a = []
nodes_and_names_to_instrument_inputs_b = []
nodes_and_names_to_instrument_outputs_a = []
nodes_and_names_to_instrument_outputs_b = []
for match_name, (subgraph_a, subgraph_b) in matched_subgraph_pairs.items():
# Note: for matching inputs we use start_node, such as observing
# the input of linear in linear-relu
if should_log_inputs:
nodes_and_names_to_instrument_inputs_a.append((subgraph_a.start_node, match_name))
nodes_and_names_to_instrument_inputs_b.append((subgraph_b.start_node, match_name))
# Note: for matching activations we always use end_node,
# such as observing the output of relu in linear-relu
nodes_and_names_to_instrument_outputs_a.append((subgraph_a.end_node, match_name))
nodes_and_names_to_instrument_outputs_b.append((subgraph_b.end_node, match_name))
new_model_a = _add_loggers_one_model(
name_a, gm_a, nodes_and_names_to_instrument_inputs_a,
nodes_and_names_to_instrument_outputs_a, logger_cls)
new_model_b = _add_loggers_one_model(
name_b, gm_b, nodes_and_names_to_instrument_inputs_b,
nodes_and_names_to_instrument_outputs_b, logger_cls)
return (new_model_a, new_model_b)
def add_loggers(
name_a: str,
model_a: nn.Module,
name_b: str,
model_b: nn.Module,
logger_cls: Callable,
should_log_inputs : bool = False,
base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None,
) -> Tuple[nn.Module, nn.Module]:
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
return _add_loggers_impl(
name_a, gm_a, name_b, gm_b, logger_cls,
should_log_inputs=should_log_inputs,
base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops)
def _extract_logger_info_one_model(
model: nn.Module,
results: NSResultsType,
logger_cls: Callable,
) -> None:
for gm_name, mod in model.named_modules():
# TODO(future PR): better check when scripted
is_logger = (
isinstance(mod, logger_cls) # type: ignore[arg-type]
or (
isinstance(mod, torch.jit.RecursiveScriptModule)
and mod.original_name == 'OutputLogger'
)
)
if is_logger:
key = mod.ref_name
if key not in results:
results[key] = {}
assert mod.model_name not in results[key], \
f"{mod.model_name} is already present in results"
if mod.results_type not in results[key]:
results[key][mod.results_type] = {}
if mod.model_name not in results[key][mod.results_type]:
results[key][mod.results_type][mod.model_name] = []
stats_to_use = mod.stats
if len(mod.stats_rnn) > 0:
stats_to_use = mod.stats_rnn
results[key][mod.results_type][mod.model_name].append({
'type': mod.results_type,
'values': stats_to_use,
'ref_node_name': mod.ref_node_name,
'prev_node_name': mod.prev_node_name,
'prev_node_target_type': mod.prev_node_target_type,
'index_within_arg': mod.index_within_arg,
})
# ensure the list stays sorted
results[key][mod.results_type][mod.model_name].sort(
key=lambda res: res['index_within_arg']
)
# TODO(future PR): align on naming
# this is equivalent of just the comparison extraction part of `ns.compare_model_outputs`
def extract_logger_info(
model_a: nn.Module,
model_b: nn.Module,
logger_cls: Callable,
) -> NSResultsType:
"""
Same thing as ns.extract_logger_info, but for models prepared with
this module.
TODO(future PR): real docblock
Output format: NSResultsType
"""
results: NSResultsType = {}
for model in (model_a, model_b):
_extract_logger_info_one_model(model, results, logger_cls)
return results
def _add_shadow_loggers_impl(
name_a: str,
gm_a: GraphModule,
name_b: str,
gm_b: GraphModule,
logger_cls: Callable,
should_log_inputs: bool,
) -> nn.Module:
matched_subgraph_pairs = get_matching_subgraph_pairs(gm_a, gm_b)
gm_a_shadows_b = create_a_shadows_b(
name_a, gm_a, name_b, gm_b, matched_subgraph_pairs, logger_cls,
should_log_inputs=should_log_inputs)
return gm_a_shadows_b
def add_shadow_loggers(
name_a: str,
model_a: nn.Module,
name_b: str,
model_b: nn.Module,
logger_cls: Callable,
should_log_inputs: bool = False,
) -> nn.Module:
"""
Same thing as add_loggers, but for an `a_shadows_b` model.
TODO(future PR): real docblock
"""
# TODO(future PR): expose these
skipped_module_names: List[str] = []
skipped_module_classes: List[Callable] = []
tracer_a = NSTracer(skipped_module_names, skipped_module_classes)
tracer_b = NSTracer(skipped_module_names, skipped_module_classes)
gm_a = GraphModule(model_a, tracer_a.trace(model_a))
gm_b = GraphModule(model_b, tracer_b.trace(model_b))
return _add_shadow_loggers_impl(
name_a, gm_a, name_b, gm_b, logger_cls,
should_log_inputs=should_log_inputs)
def extract_shadow_logger_info(
model_a_shadows_b: nn.Module,
logger_cls: Callable,
) -> NSResultsType:
"""
Same thing as extract_logger_info, but for an `a_shadows_b` model.
TODO(future PR): real docblock
"""
results: NSResultsType = collections.defaultdict(dict)
_extract_logger_info_one_model(model_a_shadows_b, results, logger_cls)
return dict(results)