mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This reverts commit 4146be192ead477360a2763c5005e46a9485c3bf. Reverted https://github.com/pytorch/pytorch/pull/108480 on behalf of https://github.com/huydhn due to Sorry for reverting this, but this is needed to keep trunk green after https://github.com/pytorch/pytorch/pull/108479 was reverted. Both will need to be relanded ([comment](https://github.com/pytorch/pytorch/pull/108480#issuecomment-1707067595))
738 lines
26 KiB
C++
738 lines
26 KiB
C++
#include <torch/csrc/jit/mobile/import.h>
|
|
#include <torch/csrc/jit/mobile/parse_bytecode.h>
|
|
#include <torch/csrc/jit/mobile/parse_operators.h>
|
|
|
|
#include <ATen/core/ivalue.h>
|
|
#include <ATen/core/qualified_name.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/Optional.h>
|
|
#include <c10/util/ScopeExit.h>
|
|
#include <c10/util/irange.h>
|
|
#include <caffe2/serialize/in_memory_adapter.h>
|
|
#include <caffe2/serialize/inline_container.h>
|
|
#include <caffe2/serialize/read_adapter_interface.h>
|
|
#include <caffe2/serialize/versions.h>
|
|
#include <torch/csrc/jit/api/compilation_unit.h>
|
|
#include <torch/csrc/jit/mobile/file_format.h>
|
|
#include <torch/csrc/jit/mobile/flatbuffer_loader.h>
|
|
#include <torch/csrc/jit/mobile/interpreter.h>
|
|
#include <torch/csrc/jit/mobile/observer.h>
|
|
#include <torch/csrc/jit/mobile/type_parser.h>
|
|
#include <torch/csrc/jit/mobile/upgrader_mobile.h>
|
|
#include <torch/csrc/jit/runtime/instruction.h>
|
|
#include <torch/csrc/jit/serialization/import_export_constants.h>
|
|
#include <torch/csrc/jit/serialization/import_export_functions.h>
|
|
#include <torch/csrc/jit/serialization/import_read.h>
|
|
#include <torch/custom_class.h>
|
|
#include <exception>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
// The import process to serialize the bytecode package.
|
|
// An example for bytecode.pkl of a small mobile_module looks like:
|
|
// (4, # model version number (caffe2::serialize::kProducedBytecodeVersion)
|
|
// # first method
|
|
// (
|
|
// # function name
|
|
// '__torch__.m.forward',
|
|
// # code
|
|
// (('instructions',
|
|
// (('STOREN', 1, 2),
|
|
// ('DROPR', 1, 0),
|
|
// ('MOVE', 2, 0),
|
|
// ('OP', 0, 0),
|
|
// ('RET', 0, 0))),
|
|
// ('operators', (('aten::Int', 'Tensor'),)),
|
|
// ('constants', ()),
|
|
// ('types', ()),
|
|
// ('register_size', 2)),
|
|
// # schema -- optional (forward-compatible addition to version 4)
|
|
// (('arguments',
|
|
// ((('name', 'x'), ('type', 'Tensor'), ('default_value', 13)),
|
|
// ...)), # more args follow here
|
|
// ('returns',
|
|
// ((('name', ''), ('type', 'Tensor'), ('default_value', None)),
|
|
// ...)), # more return values follow here
|
|
// )),
|
|
// # more methods follow here
|
|
// ...)
|
|
|
|
// In addition, the module debugging information can be saved
|
|
// in mobile_debug_handles.pkl. An example for it looks like:
|
|
// (4,
|
|
// ('__torch__.m.forward',
|
|
// (('module_debug_handles', 10))))
|
|
// Here 10 is the debug handle.
|
|
// We also store separately and optionally callstack_debug_map.
|
|
// This serializes inlined callstack (InlinedCallStack data structure)
|
|
// corresponding to the debug handles.
|
|
// Callstack_debug_map serializes tuples of
|
|
// (int64_t(debug_handle), int64_t(source_range_tag), InlinedCallStack)
|
|
// source_range_tag maps to .debug_pkl files where this tag maps it to
|
|
// source range.
|
|
// InlinedCallStack is serialized as:
|
|
// IValue(InlinedCallStack) = {IValue(ModuleInstanceInfo),
|
|
// int64_t(source_range_tag), IValue(InlinedCallStack)} ModuleInstanceInfo is
|
|
// serialized as a tuple of (class_type_name, instance_name)
|
|
|
|
// Note that currently the backward compatibility is not supported by bytecode.
|
|
// This format and process need to be revisited and redesigned if we want to
|
|
// support backward compatibility in future.
|
|
|
|
// Note that the following function-schema fields are not supported:
|
|
// - Argument::{known_length_,kwarg_only_}
|
|
// - FunctionSchema::{overload_name_, is_vararg_, is_varret_}
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
using caffe2::serialize::MemoryReadAdapter;
|
|
using caffe2::serialize::PyTorchStreamReader;
|
|
using caffe2::serialize::ReadAdapterInterface;
|
|
|
|
OpCode parseOpCode(const char* str);
|
|
|
|
TypePtr resolveTypeNameMobile(
|
|
const c10::QualifiedName& qn,
|
|
std::shared_ptr<CompilationUnit> compilation_unit) {
|
|
// HACK: first we check whether the name starts with special prefix to
|
|
// tell if it's a supported pytorch class type. There are two special
|
|
// prefixes. "__torch__" for nn module, and "torch.jit" from to_backend.
|
|
// This is a reliable
|
|
// check today, but there is no guarantee that this is the case. The
|
|
// real solution is to merge type parsers so we can share class
|
|
// resolution logic.
|
|
static const c10::QualifiedName torchPrefix = "__torch__";
|
|
static const c10::QualifiedName jitPrefix = "torch.jit";
|
|
if (torchPrefix.isPrefixOf(qn) || jitPrefix.isPrefixOf(qn)) {
|
|
if (compilation_unit->get_class(qn) == nullptr) {
|
|
auto typeptr = ClassType::create(qn, compilation_unit, true);
|
|
compilation_unit->register_type(typeptr);
|
|
}
|
|
return compilation_unit->get_class(qn);
|
|
} else {
|
|
return c10::parseType(qn.qualifiedName());
|
|
}
|
|
}
|
|
|
|
c10::StrongTypePtr typeResolverMobile(
|
|
const c10::QualifiedName& qn,
|
|
const std::shared_ptr<CompilationUnit>& compilation_unit) {
|
|
return c10::StrongTypePtr(
|
|
compilation_unit, resolveTypeNameMobile(qn, compilation_unit));
|
|
}
|
|
|
|
c10::intrusive_ptr<c10::ivalue::Object> objLoaderMobile(
|
|
const at::StrongTypePtr& type,
|
|
const IValue& input,
|
|
mobile::CompilationUnit& mobile_compilation_unit) {
|
|
auto cls = type.type_->expect<at::ClassType>();
|
|
auto qn = cls->name();
|
|
c10::QualifiedName method_name(qn.value(), "__setstate__");
|
|
auto setstate = mobile_compilation_unit.find_function(method_name);
|
|
auto find_custom_class_with_setstate = [&qn]() -> c10::ClassTypePtr {
|
|
auto custom_class_type = torch::jit::getCustomClass(qn->qualifiedName());
|
|
if (custom_class_type && custom_class_type->findMethod("__setstate__")) {
|
|
return custom_class_type;
|
|
}
|
|
return nullptr;
|
|
};
|
|
if (setstate) {
|
|
auto obj = c10::ivalue::Object::create(type, 0);
|
|
Stack stack({obj, input});
|
|
setstate->run(stack);
|
|
return obj;
|
|
} else if (auto custom_class_type = find_custom_class_with_setstate()) {
|
|
auto obj = c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(nullptr, custom_class_type), 1);
|
|
Stack stack({obj, input});
|
|
custom_class_type->getMethod("__setstate__").run(stack);
|
|
return obj;
|
|
} else {
|
|
auto dict = std::move(input).toGenericDict();
|
|
size_t ndict = dict.size();
|
|
auto obj = c10::ivalue::Object::create(type, ndict);
|
|
auto it = dict.begin();
|
|
for (const auto i : c10::irange(ndict)) {
|
|
cls->addOrCheckAttribute(it->key().toStringRef(), it->key().type());
|
|
obj->setSlot(i, it->value());
|
|
++it;
|
|
}
|
|
return obj;
|
|
}
|
|
}
|
|
|
|
bool isTensorInBytecodeArchive(
|
|
caffe2::serialize::PyTorchStreamReader& stream_reader) {
|
|
auto records = stream_reader.getAllRecords();
|
|
for (const auto& record : records) {
|
|
if (record.find("bytecode/") != std::string::npos) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
void tryRegisterMethod(const std::vector<c10::Argument>& args, Function& func) {
|
|
if (args.empty() || args[0].name() != "self") {
|
|
return;
|
|
}
|
|
|
|
if (auto cls = args[0].type()->castRaw<ClassType>()) {
|
|
if (C10_UNLIKELY(cls->findMethod(func.name()))) {
|
|
return;
|
|
}
|
|
cls->addMethod(&func);
|
|
}
|
|
}
|
|
|
|
// The deserializer class which loads the bytecode package from bc files.
|
|
class BytecodeDeserializer final {
|
|
public:
|
|
explicit BytecodeDeserializer(
|
|
std::unique_ptr<PyTorchStreamReader> reader,
|
|
uint64_t module_load_options = 0);
|
|
mobile::Module deserialize(c10::optional<at::Device> device);
|
|
mobile::Module deserialize(
|
|
c10::optional<at::Device> device,
|
|
ExtraFilesMap& extra_files);
|
|
void deserialize_only_extra(
|
|
c10::optional<at::Device> device,
|
|
ExtraFilesMap& extra_files);
|
|
|
|
private:
|
|
TypePtr resolveTypeName(const c10::QualifiedName& qn);
|
|
void init_upgrader(mobile::Function* function);
|
|
void parseMethods(
|
|
c10::ivalue::TupleElements&& vals,
|
|
c10::optional<c10::ivalue::TupleElements>&& debug_handles,
|
|
mobile::CompilationUnit& mcu);
|
|
c10::IValue readArchive(
|
|
const std::string& archive_name,
|
|
std::shared_ptr<mobile::CompilationUnit> mcu);
|
|
void parseFunctionSchema(
|
|
const std::string& function_name,
|
|
IValue* schemaTable,
|
|
const int64_t& model_version,
|
|
mobile::Function* function);
|
|
std::shared_ptr<CompilationUnit> compilation_unit_;
|
|
std::unordered_set<std::string> imported_libs_;
|
|
std::unique_ptr<PyTorchStreamReader> reader_{};
|
|
c10::optional<at::Device> device_;
|
|
uint64_t module_load_options_;
|
|
// From `version` or `.data/version` in model.ptl and it's compute
|
|
// dynamically. It's used for finding the minimum required runtime to run all
|
|
// operators from the given model. If it's less than the current runtime,
|
|
// upgrader will be applied at loading stage.
|
|
uint64_t operator_version_;
|
|
uint64_t bytecode_version_;
|
|
};
|
|
|
|
BytecodeDeserializer::BytecodeDeserializer(
|
|
std::unique_ptr<PyTorchStreamReader> reader,
|
|
uint64_t module_load_options)
|
|
: compilation_unit_(std::make_shared<CompilationUnit>()),
|
|
reader_(std::move(reader)),
|
|
module_load_options_(module_load_options) {}
|
|
|
|
TypePtr BytecodeDeserializer::resolveTypeName(const c10::QualifiedName& qn) {
|
|
return resolveTypeNameMobile(qn, compilation_unit_);
|
|
}
|
|
|
|
// It requires compilation_unit_ when parsing function schema. Keep it in
|
|
// BytecodeDeserializer. It may be refacotred later to make it independent
|
|
// of the specific BytecodeDeserializer, like parsing other tables
|
|
void BytecodeDeserializer::parseFunctionSchema(
|
|
const std::string& function_name,
|
|
IValue* schemaTable,
|
|
const int64_t& model_version,
|
|
mobile::Function* function) {
|
|
// function schema
|
|
if (schemaTable) { // (schema is optional for back compat)
|
|
auto parseArgList = [this,
|
|
function](c10::ivalue::TupleElements&& argTables) {
|
|
std::vector<c10::Argument> args;
|
|
for (auto& argTable : argTables) {
|
|
auto argTableElements = std::move(argTable.toTupleRef()).elements();
|
|
auto name =
|
|
expect_field(argTableElements, "name", BYTECODE_INDEX_ARGUMENT_NAME)
|
|
.toStringRef();
|
|
c10::TypePtr type = resolveTypeName(
|
|
(expect_field(
|
|
argTableElements, "type", BYTECODE_INDEX_ARGUMENT_TYPE))
|
|
.toStringRef());
|
|
IValue default_value = expect_field(
|
|
argTableElements,
|
|
"default_value",
|
|
BYTECODE_INDEX_ARGUMENT_DEFAULT_VALUE);
|
|
args.emplace_back(
|
|
name,
|
|
std::move(type),
|
|
c10::nullopt /*N*/,
|
|
std::move(default_value));
|
|
}
|
|
tryRegisterMethod(args, *function);
|
|
return args;
|
|
};
|
|
auto schemaTableElements = std::move(schemaTable->toTupleRef()).elements();
|
|
auto arg_list = std::move(expect_field(
|
|
schemaTableElements,
|
|
"arguments",
|
|
BYTECODE_INDEX_SCHEMA_ARGUMENTS)
|
|
.toTupleRef())
|
|
.elements();
|
|
auto ret_list =
|
|
std::move(
|
|
expect_field(
|
|
schemaTableElements, "returns", BYTECODE_INDEX_SCHEMA_RETURNS)
|
|
.toTupleRef())
|
|
.elements();
|
|
c10::FunctionSchema schema(
|
|
function_name,
|
|
"" /*overload_name*/,
|
|
parseArgList(std::move(arg_list)),
|
|
parseArgList(std::move(ret_list)),
|
|
false /*is_varargs*/,
|
|
false /*is_varret*/);
|
|
function->setSchema(std::move(schema));
|
|
}
|
|
}
|
|
|
|
void BytecodeDeserializer::init_upgrader(mobile::Function* function) {
|
|
for (auto& byteCodeFunctionWithOperator : getUpgraderBytecodeList()) {
|
|
function->append_function(byteCodeFunctionWithOperator.function);
|
|
}
|
|
}
|
|
|
|
void BytecodeDeserializer::parseMethods(
|
|
c10::ivalue::TupleElements&& vals,
|
|
c10::optional<c10::ivalue::TupleElements>&& debug_handles,
|
|
mobile::CompilationUnit& mcu) {
|
|
TORCH_CHECK(!vals.empty(), "Bytecode has no elements. ");
|
|
// Initialized with the version number when kProducedBytecodeVersion was
|
|
// introduced. The old models (some of them already in production) without
|
|
// version number are seen as version 3 (deprecated).
|
|
constexpr uint64_t default_version = 0x3L;
|
|
bytecode_version_ = default_version;
|
|
size_t method_i_start = 0;
|
|
if (vals[0].isInt()) {
|
|
bytecode_version_ = vals[0].toInt();
|
|
method_i_start = 1;
|
|
}
|
|
TORCH_CHECK(
|
|
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
|
|
caffe2::serialize::kMinSupportedBytecodeVersion <= bytecode_version_ &&
|
|
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
|
|
bytecode_version_ <= caffe2::serialize::kMaxSupportedBytecodeVersion,
|
|
"Lite Interpreter version number does not match. ",
|
|
"The model version must be between ",
|
|
caffe2::serialize::kMinSupportedBytecodeVersion,
|
|
" and ",
|
|
caffe2::serialize::kMaxSupportedBytecodeVersion,
|
|
" but the model version is ",
|
|
bytecode_version_);
|
|
|
|
if (debug_handles) {
|
|
TORCH_CHECK(
|
|
debug_handles->size() == vals.size(),
|
|
"The numbers of bytecode values and debug info values do not match.");
|
|
}
|
|
|
|
// Process all methods in this mobile module.
|
|
for (const auto i : c10::irange(method_i_start, vals.size())) {
|
|
auto element = std::move(vals[i]);
|
|
auto m_tuple = std::move(element.toTupleRef()).elements();
|
|
const std::string& function_name = m_tuple[0].toStringRef();
|
|
auto codeTableElements =
|
|
std::move(std::move(m_tuple[1]).toTupleRef()).elements();
|
|
IValue* schemaTable = // older files do not store function schema
|
|
(bytecode_version_ > 0x4L ||
|
|
(bytecode_version_ == 0x4L && m_tuple.size() >= 3))
|
|
? &m_tuple[2]
|
|
: nullptr;
|
|
auto function =
|
|
std::make_unique<mobile::Function>(c10::QualifiedName(function_name));
|
|
|
|
auto ins_list =
|
|
std::move(
|
|
expect_field(
|
|
codeTableElements, "instructions", BYTECODE_INDEX_INSTRUCTION)
|
|
.toTupleRef())
|
|
.elements();
|
|
auto ops_list =
|
|
std::move(expect_field(
|
|
codeTableElements, "operators", BYTECODE_INDEX_OPERATOR)
|
|
.toTupleRef())
|
|
.elements();
|
|
auto consts_list =
|
|
std::move(expect_field(
|
|
codeTableElements, "constants", BYTECODE_INDEX_CONSTANT)
|
|
.toTupleRef())
|
|
.elements();
|
|
auto types_list =
|
|
std::move(expect_field(codeTableElements, "types", BYTECODE_INDEX_TYPE)
|
|
.toTupleRef())
|
|
.elements();
|
|
int64_t register_size =
|
|
expect_field(
|
|
codeTableElements, "register_size", BYTECODE_INDEX_REGISTER_SIZE)
|
|
.toInt();
|
|
|
|
c10::ivalue::TupleElements debug_handles_m_tuple;
|
|
if (debug_handles) {
|
|
debug_handles_m_tuple =
|
|
std::move(std::move((*debug_handles)[i]).toTupleRef()).elements();
|
|
}
|
|
init_upgrader(function.get());
|
|
// 1. First pass all operators from models
|
|
parseOperators(std::move(ops_list), module_load_options_, function.get());
|
|
|
|
// 2. Decides if upgrader is needed
|
|
bool use_upgrader =
|
|
(operator_version_ < caffe2::serialize::kProducedFileFormatVersion);
|
|
|
|
parseInstructions(
|
|
function_name,
|
|
std::move(ins_list),
|
|
debug_handles_m_tuple,
|
|
function.get());
|
|
|
|
// 3. If upgrader is needed, change change the OP instrunction to CALL
|
|
// instruction (In next PR, use_upgrader will be parsed to parseInstruction
|
|
// function and do the actual change)
|
|
if (use_upgrader) {
|
|
applyUpgrader(function.get(), operator_version_);
|
|
}
|
|
|
|
parseConstants(consts_list, function.get());
|
|
|
|
parseTypes(types_list, function.get());
|
|
|
|
function->set_register_size(register_size);
|
|
|
|
parseFunctionSchema(
|
|
function_name, schemaTable, bytecode_version_, function.get());
|
|
|
|
mcu.register_function(std::move(function));
|
|
}
|
|
}
|
|
|
|
void BytecodeDeserializer::deserialize_only_extra(
|
|
c10::optional<at::Device> device,
|
|
ExtraFilesMap& extra_files) {
|
|
device_ = device;
|
|
for (const auto& kv : extra_files) {
|
|
const std::string& key = "extra/" + kv.first;
|
|
if (reader_->hasRecord(key)) {
|
|
auto [meta_ptr, meta_size] = reader_->getRecord(key);
|
|
extra_files[kv.first] =
|
|
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
mobile::Module BytecodeDeserializer::deserialize(
|
|
c10::optional<at::Device> device,
|
|
ExtraFilesMap& extra_files) {
|
|
deserialize_only_extra(device, extra_files);
|
|
return deserialize(device);
|
|
}
|
|
|
|
mobile::Module BytecodeDeserializer::deserialize(
|
|
c10::optional<at::Device> device) {
|
|
device_ = device;
|
|
auto mcu = std::make_shared<mobile::CompilationUnit>();
|
|
|
|
// bvals can have 2 possible formats:
|
|
//
|
|
// 1. Old format: bvals is an array (Tuple) of N elements, each element being
|
|
// itself a Tuple(method_name, method_table).
|
|
//
|
|
// 2. New format: bvals is an array (Tuple) of 1+N elements. The first element
|
|
// being a Tuple (int, table), and the integer stands for the bytecode version
|
|
// number. The rest of the elements are the same as before.
|
|
//
|
|
auto bvals = std::move(readArchive("bytecode", mcu).toTupleRef()).elements();
|
|
|
|
c10::optional<c10::ivalue::TupleElements> debug_handles;
|
|
bool has_debug_handles{false};
|
|
if (reader_->hasRecord("mobile_debug_handles.pkl")) {
|
|
debug_handles =
|
|
std::move(readArchive("mobile_debug_handles", mcu).toTupleRef())
|
|
.elements();
|
|
has_debug_handles = true;
|
|
}
|
|
operator_version_ = reader_->version();
|
|
parseMethods(std::move(bvals), std::move(debug_handles), *mcu);
|
|
auto m = mobile::Module(readArchive("data", mcu).toObject(), mcu);
|
|
m.set_min_operator_version(operator_version_);
|
|
m.set_bytecode_version(bytecode_version_);
|
|
m.setHasDebugHandles(has_debug_handles);
|
|
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
|
|
MobileDebugTable debug_table = MobileDebugTable(reader_, compilation_unit_);
|
|
m.setDebugTable(std::move(debug_table));
|
|
#endif
|
|
return m;
|
|
}
|
|
|
|
c10::IValue BytecodeDeserializer::readArchive(
|
|
const std::string& archive_name,
|
|
std::shared_ptr<mobile::CompilationUnit> mcu) {
|
|
auto type_resolver = [this](const c10::QualifiedName& qn) {
|
|
return typeResolverMobile(qn, compilation_unit_);
|
|
};
|
|
|
|
auto obj_loader = [&](const at::StrongTypePtr& type, const IValue& input) {
|
|
return objLoaderMobile(type, input, *mcu);
|
|
};
|
|
|
|
bool bytecode_tensor_in_constants_archive =
|
|
(archive_name == "bytecode" &&
|
|
!isTensorInBytecodeArchive(*reader_.get()));
|
|
|
|
auto ivalues = torch::jit::readArchiveAndTensors(
|
|
archive_name,
|
|
/*pickle_prefix=*/"",
|
|
/*tensor_prefix=*/
|
|
bytecode_tensor_in_constants_archive ? "constants/" : "",
|
|
type_resolver,
|
|
obj_loader,
|
|
device_,
|
|
*reader_.get(),
|
|
nullptr);
|
|
return ivalues;
|
|
}
|
|
|
|
mobile::Module _load_for_mobile_impl(
|
|
std::unique_ptr<ReadAdapterInterface> rai,
|
|
c10::optional<c10::Device> device,
|
|
ExtraFilesMap& extra_files,
|
|
uint64_t module_load_options) {
|
|
auto observer = torch::observerConfig().getModuleObserver();
|
|
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
|
|
auto instance_key = std::rand();
|
|
|
|
std::unordered_map<std::string, std::string> metadata_map;
|
|
if (observer) {
|
|
observer->onEnterLoadModel(instance_key);
|
|
auto defaultExtraFileList = observer->getDefaultExtraFiles();
|
|
// Add files in defaultExtraFileList to fail_extra_files and extra_files
|
|
for (const auto& fileName : defaultExtraFileList) {
|
|
extra_files.insert(std::make_pair(fileName, ""));
|
|
}
|
|
}
|
|
|
|
const size_t model_size = rai != nullptr ? rai->size() : 0;
|
|
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
|
|
if (module_load_options &
|
|
MobileModuleLoadOptions::PARSE_ALL_EXTRA_FILE_MAPS) {
|
|
// ExtraFilesMap is serialized with a "extra/", hence it is necessary to
|
|
// account for when we de-serialize de-serialized filemap key values contain
|
|
// prefix and we need to remove prior to construct the map. "extra/" string
|
|
// has a length of 6 characters, hence we need only sub-string 6th position
|
|
// of a string. Please refer to following link for a detail:
|
|
// https://www.internalfb.com/code/fbsource/[9996fcb7a6fb]/fbcode/caffe2/torch/csrc/jit/mobile/import.cpp?lines=427-434
|
|
std::vector<std::string> all_files = reader->getAllRecords();
|
|
for (auto& file_name : all_files) {
|
|
if (file_name.find("extra/") == 0) {
|
|
extra_files[file_name.substr(6)] = "";
|
|
}
|
|
}
|
|
}
|
|
BytecodeDeserializer deserializer(std::move(reader), module_load_options);
|
|
|
|
std::string error_message;
|
|
auto guard = c10::make_scope_exit([&]() {
|
|
if (!observer) {
|
|
return;
|
|
}
|
|
deserializer.deserialize_only_extra(device, extra_files);
|
|
|
|
metadata_map = observer->processMetadataFromExtra(extra_files);
|
|
|
|
observer->onFailLoadModel(
|
|
instance_key,
|
|
error_message.empty() ? "Unknown exception" : error_message.c_str(),
|
|
metadata_map);
|
|
});
|
|
|
|
try {
|
|
mobile::Module result = deserializer.deserialize(device, extra_files);
|
|
if (observer) {
|
|
// Add model_name and model_size to metadata_map
|
|
extra_files.insert(std::make_pair("model_name", result.name()));
|
|
extra_files.insert(
|
|
std::make_pair("model_size", c10::guts::to_string(model_size)));
|
|
metadata_map = observer->processMetadataFromExtra(extra_files);
|
|
observer->onExitLoadModel(instance_key, metadata_map);
|
|
}
|
|
result.setMetadata(metadata_map);
|
|
guard.release();
|
|
return result;
|
|
} catch (c10::Error& error) {
|
|
error_message = error.what();
|
|
TORCH_RETHROW(error);
|
|
}
|
|
}
|
|
|
|
mobile::Module _load_mobile_from_bytes(
|
|
const std::shared_ptr<char>& data,
|
|
size_t size,
|
|
c10::optional<c10::Device> device,
|
|
ExtraFilesMap& extra_files,
|
|
uint64_t module_load_options) {
|
|
TORCH_CHECK(size >= kFileFormatHeaderSize, "Format error");
|
|
auto format = getFileFormat(data.get());
|
|
switch (format) {
|
|
case FileFormat::ZipFileFormat: {
|
|
std::unique_ptr<ReadAdapterInterface> rai =
|
|
std::make_unique<MemoryReadAdapter>(data.get(), size);
|
|
return _load_for_mobile_impl(
|
|
std::move(rai), device, extra_files, module_load_options);
|
|
}
|
|
case FileFormat::FlatbufferFileFormat: {
|
|
return parse_and_initialize_mobile_module(
|
|
data, size, device, &extra_files);
|
|
}
|
|
default: {
|
|
TORCH_CHECK(false, "Format error");
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
mobile::Module _load_for_mobile(
|
|
std::istream& in,
|
|
c10::optional<at::Device> device) {
|
|
ExtraFilesMap extra_files;
|
|
return _load_for_mobile(in, device, extra_files);
|
|
}
|
|
|
|
mobile::Module _load_for_mobile(
|
|
const std::string& filename,
|
|
c10::optional<at::Device> device) {
|
|
ExtraFilesMap extra_files;
|
|
return _load_for_mobile(filename, device, extra_files);
|
|
}
|
|
|
|
mobile::Module _load_for_mobile(
|
|
std::unique_ptr<ReadAdapterInterface> rai,
|
|
c10::optional<c10::Device> device) {
|
|
ExtraFilesMap extra_files;
|
|
return _load_for_mobile(std::move(rai), device, extra_files);
|
|
}
|
|
|
|
mobile::Module _load_for_mobile(
|
|
std::istream& in,
|
|
c10::optional<at::Device> device,
|
|
ExtraFilesMap& extra_files,
|
|
uint64_t module_load_options) {
|
|
if (getFileFormat(in) == FileFormat::FlatbufferFileFormat) {
|
|
auto [data, size] = get_stream_content(in);
|
|
return _load_mobile_from_bytes(
|
|
data, size, device, extra_files, module_load_options);
|
|
}
|
|
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
|
|
auto module = _load_for_mobile_impl(
|
|
std::move(rai), device, extra_files, module_load_options);
|
|
return module;
|
|
}
|
|
|
|
mobile::Module _load_for_mobile(
|
|
const std::string& filename,
|
|
c10::optional<at::Device> device,
|
|
ExtraFilesMap& extra_files) {
|
|
return _load_for_mobile(
|
|
filename, device, extra_files, kDefaultMobileLoadOptions);
|
|
}
|
|
|
|
mobile::Module _load_for_mobile(
|
|
const std::string& filename,
|
|
c10::optional<at::Device> device,
|
|
ExtraFilesMap& extra_files,
|
|
uint64_t module_load_options) {
|
|
auto format = getFileFormat(filename);
|
|
|
|
if (format == FileFormat::FlatbufferFileFormat) {
|
|
auto [data, size] = get_file_content(filename.c_str());
|
|
return _load_mobile_from_bytes(
|
|
data, size, device, extra_files, module_load_options);
|
|
}
|
|
|
|
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
|
|
return _load_for_mobile_impl(
|
|
std::move(rai), device, extra_files, module_load_options);
|
|
}
|
|
|
|
TORCH_API mobile::Module _load_for_mobile(
|
|
std::unique_ptr<ReadAdapterInterface> rai,
|
|
c10::optional<c10::Device> device,
|
|
ExtraFilesMap& extra_files,
|
|
uint64_t module_load_options) {
|
|
// TODO optimize file read for non-flatbuffer models
|
|
auto [data, size] = get_rai_content(rai.get());
|
|
return _load_mobile_from_bytes(
|
|
data, size, device, extra_files, module_load_options);
|
|
}
|
|
|
|
void _load_extra_only_for_mobile(
|
|
const std::string& filename,
|
|
c10::optional<at::Device> device,
|
|
ExtraFilesMap& extra_files) {
|
|
auto observer = torch::observerConfig().getModuleObserver();
|
|
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
|
|
auto instance_key = std::rand();
|
|
if (observer) {
|
|
observer->onEnterLoadModel(instance_key);
|
|
}
|
|
|
|
auto format = getFileFormat(filename);
|
|
switch (format) {
|
|
case FileFormat::ZipFileFormat: {
|
|
std::unique_ptr<FileAdapter> rai =
|
|
std::make_unique<FileAdapter>(filename);
|
|
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
|
|
BytecodeDeserializer deserializer(std::move(reader));
|
|
deserializer.deserialize_only_extra(device, extra_files);
|
|
break;
|
|
}
|
|
case FileFormat::FlatbufferFileFormat: {
|
|
// TODO: the current flatbuffers implementation will always load the
|
|
// whole module including the extra files. Ideally it should be
|
|
// possible to just get the extra files given data
|
|
load_mobile_module_from_file(filename, c10::nullopt, &extra_files);
|
|
break;
|
|
}
|
|
default: {
|
|
TORCH_CHECK(false, "Format error");
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace mobile {
|
|
|
|
std::set<std::string> _export_operator_list(
|
|
torch::jit::mobile::Module& module) {
|
|
std::set<std::string> operator_list;
|
|
for (Method func : module.get_methods()) {
|
|
const Function& function = func.function();
|
|
const auto& code = function.get_code();
|
|
// op_names below isn't a list of unique operator names. In fact
|
|
// it can contain the same operator name many many times, so we need
|
|
// to de-dup the list by adding all the operator names into
|
|
// an std::set<std::string>.
|
|
std::vector<c10::OperatorName> const& op_names = code.op_names_;
|
|
for (auto& op_name : op_names) {
|
|
operator_list.insert(toString(op_name));
|
|
}
|
|
}
|
|
return operator_list;
|
|
}
|
|
|
|
} // namespace mobile
|
|
} // namespace jit
|
|
} // namespace torch
|