mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied. - #94587 - #94588 - #94592 Also, methods with only a `super()` call are removed: ```diff class MyModule(nn.Module): - def __init__(self): - super().__init__() - def forward(self, ...): ... ``` Some cases that change the semantics should be kept unchanged. E.g.:f152a79be9/caffe2/python/net_printer.py (L184-L190)f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)Pull Request resolved: https://github.com/pytorch/pytorch/pull/94587 Approved by: https://github.com/ezyang
104 lines
3.8 KiB
Python
104 lines
3.8 KiB
Python
|
|
|
|
|
|
|
|
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import (
|
|
IdList,
|
|
ModelLayer,
|
|
)
|
|
|
|
# Model layer for implementing probabilistic replacement of individual elements in
|
|
# IdLists. Takes probabilities for train, eval and predict nets as input, as
|
|
# well as the replacement value when dropout happens. For features we may have
|
|
# available to us in train net but not in predict net, we'd set dropout
|
|
# probability for predict net to be 1.0 and set the feature to the replacement
|
|
# value given here. This way, the value is tied to the particular model and not
|
|
# to any specific logic in feature processing in serving.
|
|
|
|
# Consider the following example where X is the values in the IdList and Lengths
|
|
# is the number of values corresponding to each example.
|
|
# X: [1, 2, 3, 4, 5]
|
|
# Lengths: [2, 3]
|
|
# This IdList contains 2 IdList features of lengths 2, 3. Let's assume we used a
|
|
# ratio of 0.5 and ended up dropping out 2nd item in 2nd IdList feature, and used a
|
|
# replacement value of -1. We will end up with the following IdList.
|
|
|
|
# Y: [1, 2, 3, -1, 5]
|
|
# OutputLengths: [2, 3]
|
|
# where the 2nd item in 2nd IdList feature [4] was replaced with [-1].
|
|
|
|
class SparseItemwiseDropoutWithReplacement(ModelLayer):
|
|
def __init__(
|
|
self,
|
|
model,
|
|
input_record,
|
|
dropout_prob_train,
|
|
dropout_prob_eval,
|
|
dropout_prob_predict,
|
|
replacement_value,
|
|
name='sparse_itemwise_dropout',
|
|
**kwargs):
|
|
|
|
super().__init__(model, name, input_record, **kwargs)
|
|
assert schema.equal_schemas(input_record, IdList), "Incorrect input type"
|
|
|
|
self.dropout_prob_train = float(dropout_prob_train)
|
|
self.dropout_prob_eval = float(dropout_prob_eval)
|
|
self.dropout_prob_predict = float(dropout_prob_predict)
|
|
self.replacement_value = int(replacement_value)
|
|
assert (self.dropout_prob_train >= 0 and
|
|
self.dropout_prob_train <= 1.0), \
|
|
"Expected 0 <= dropout_prob_train <= 1, but got %s" \
|
|
% self.dropout_prob_train
|
|
assert (self.dropout_prob_eval >= 0 and
|
|
self.dropout_prob_eval <= 1.0), \
|
|
"Expected 0 <= dropout_prob_eval <= 1, but got %s" \
|
|
% dropout_prob_eval
|
|
assert (self.dropout_prob_predict >= 0 and
|
|
self.dropout_prob_predict <= 1.0), \
|
|
"Expected 0 <= dropout_prob_predict <= 1, but got %s" \
|
|
% dropout_prob_predict
|
|
assert(self.dropout_prob_train > 0 or
|
|
self.dropout_prob_eval > 0 or
|
|
self.dropout_prob_predict > 0), \
|
|
"Ratios all set to 0.0 for train, eval and predict"
|
|
|
|
self.output_schema = schema.NewRecord(model.net, IdList)
|
|
if input_record.lengths.metadata:
|
|
self.output_schema.lengths.set_metadata(
|
|
input_record.lengths.metadata)
|
|
if input_record.items.metadata:
|
|
self.output_schema.items.set_metadata(
|
|
input_record.items.metadata)
|
|
|
|
def _add_ops(self, net, ratio):
|
|
input_values_blob = self.input_record.items()
|
|
input_lengths_blob = self.input_record.lengths()
|
|
|
|
output_lengths_blob = self.output_schema.lengths()
|
|
output_values_blob = self.output_schema.items()
|
|
|
|
net.SparseItemwiseDropoutWithReplacement(
|
|
[
|
|
input_values_blob,
|
|
input_lengths_blob
|
|
],
|
|
[
|
|
output_values_blob,
|
|
output_lengths_blob
|
|
],
|
|
ratio=ratio,
|
|
replacement_value=self.replacement_value
|
|
)
|
|
|
|
def add_train_ops(self, net):
|
|
self._add_ops(net, self.dropout_prob_train)
|
|
|
|
def add_eval_ops(self, net):
|
|
self._add_ops(net, self.dropout_prob_eval)
|
|
|
|
def add_ops(self, net):
|
|
self._add_ops(net, self.dropout_prob_predict)
|