Files
pytorch/caffe2/python/layers/fc_without_bias.py
Xuehai Pan 8d45f555d7 [BE] [1/3] Rewrite super() calls in caffe2 and benchmarks (#94587)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94587
Approved by: https://github.com/ezyang
2023-02-11 18:19:48 +00:00

64 lines
1.9 KiB
Python

## @package fc_without_bias
# Module caffe2.python.layers.fc_without_bias
from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer
from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin
import math
import numpy as np
class FCWithoutBias(SamplingTrainableMixin, ModelLayer):
def __init__(
self,
model,
input_record,
output_dims,
weight_init=None,
weight_optim=None,
name='fc_without_bias',
uniform_weight_init_scale_numerator=1.0,
**kwargs
):
super().__init__(model, name, input_record, **kwargs)
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
assert len(input_record.field_types()[0].shape) > 0, (
"FCWithoutBias expects limited dimensions of the input tensor"
)
input_dims = input_record.field_types()[0].shape[0]
assert input_dims > 0, (
"FCWithoutBias expects input dimensions > 0, got {}".format(input_dims)
)
self.output_schema = schema.Scalar(
(np.float32, (output_dims, )),
self.get_next_blob_reference('output')
)
scale = math.sqrt(uniform_weight_init_scale_numerator / input_dims)
weight_init = weight_init if weight_init else (
'UniformFill', {'min': -scale,
'max': scale}
)
self.w = self.create_param(param_name='w',
shape=[output_dims, input_dims],
initializer=weight_init,
optimizer=weight_optim)
def _add_ops(self, net, params):
net.MatMul(
self.input_record.field_blobs() + params,
self.output_schema.field_blobs(), trans_b=1, **self.kwargs
)
@property
def param_blobs(self):
return [self.w]