Files
pytorch/caffe2/python/layers/batch_sigmoid_cross_entropy_loss.py
Xuehai Pan 8d45f555d7 [BE] [1/3] Rewrite super() calls in caffe2 and benchmarks (#94587)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94587
Approved by: https://github.com/ezyang
2023-02-11 18:19:48 +00:00

49 lines
1.4 KiB
Python

## @package batch_sigmoid_cross_entropy_loss
# Module caffe2.python.layers.batch_sigmoid_cross_entropy_loss
from caffe2.python import schema
from caffe2.python.layers.layers import ModelLayer
from caffe2.python.layers.tags import Tags
import numpy as np
class BatchSigmoidCrossEntropyLoss(ModelLayer):
def __init__(
self,
model,
input_record,
name='batch_sigmoid_cross_entropy_loss',
**kwargs
):
super().__init__(model, name, input_record, **kwargs)
assert schema.is_schema_subset(
schema.Struct(
('label', schema.Scalar(np.float32)),
('prediction', schema.Scalar(np.float32)),
),
input_record
)
assert input_record.prediction.field_type().shape == \
input_record.label.field_type().shape, \
"prediction and label must have the same shape"
self.tags.update([Tags.EXCLUDE_FROM_PREDICTION])
self.output_schema = schema.Scalar(
(np.float32, tuple()), self.get_next_blob_reference('loss')
)
def add_ops(self, net):
sigmoid_cross_entropy = net.SigmoidCrossEntropyWithLogits(
[self.input_record.prediction(), self.input_record.label()],
net.NextScopedBlob('sigmoid_cross_entropy')
)
net.AveragedLoss(
sigmoid_cross_entropy, self.output_schema.field_blobs())