mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR: 1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class 2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()` 3. Remove `Variable.data()` API 3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history. After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't. **Note that this PR is BC-breaking in the following use cases:** **Use Case 1:** Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type. **Use Case 2:** If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example: ```python params = torch.tensor([1.5, 1.5]).requires_grad_() with torch.no_grad(): # Change gradient to a sparse tensor params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.])) grad_saved = params.grad params.backward(torch.tensor([1.5, 1.5])) assert id(grad_saved) == id(params.grad) # This will fail after this PR ``` The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference. Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072 Differential Revision: D14075257 Pulled By: yf225 fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
1103 lines
39 KiB
C++
1103 lines
39 KiB
C++
#include <torch/csrc/autograd/python_function.h>
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
#include <structmember.h>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <exception>
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/autograd/grad_mode.h>
|
|
#include <torch/csrc/autograd/functions/accumulate_grad.h>
|
|
#include <torch/csrc/autograd/functions/basic_ops.h>
|
|
#include <torch/csrc/autograd/functions/utils.h>
|
|
#include <torch/csrc/autograd/python_cpp_function.h>
|
|
#include <torch/csrc/autograd/python_hook.h>
|
|
#include <torch/csrc/autograd/saved_variable.h>
|
|
#include <torch/csrc/autograd/python_anomaly_mode.h>
|
|
#include <torch/csrc/jit/tracer.h>
|
|
#include <torch/csrc/jit/python_tracer.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/utils/auto_gil.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
|
|
#include <exception>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace torch;
|
|
using namespace torch::autograd;
|
|
using namespace torch::jit;
|
|
using at::Tensor;
|
|
|
|
PyObject *THPFunctionClass = nullptr;
|
|
|
|
#define THPFunction_assert(condition, ...) \
|
|
if (!(condition)) { THPUtils_setError(__VA_ARGS__); throw python_error(); }
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
VariableInfo::VariableInfo(const Variable& var)
|
|
: type(&var.dispatch_type())
|
|
, device(var.device())
|
|
, scalar_type(var.scalar_type())
|
|
, size(var.sizes().vec())
|
|
, requires_grad(var.requires_grad()) {
|
|
}
|
|
|
|
Variable VariableInfo::zeros(at::OptionalDeviceGuard& device_guard) const {
|
|
// NB: This will NOT work if we ever get mixed device gradients
|
|
device_guard.reset_device(device);
|
|
return at::zeros(size, type->options(scalar_type));
|
|
}
|
|
|
|
auto PyFunction::legacy_apply(const variable_list& inputs) -> variable_list {
|
|
AutoGIL gil;
|
|
|
|
THPObjectPtr pyInputs(PyTuple_New(inputs.size()));
|
|
if (!pyInputs) throw python_error();
|
|
|
|
for (size_t i = 0; i != inputs.size(); ++i) {
|
|
PyTuple_SET_ITEM(pyInputs.get(), i, THPVariable_Wrap(inputs[i]));
|
|
}
|
|
|
|
THPObjectPtr r(PyObject_CallMethod(
|
|
obj, "_do_backward", "OO", pyInputs.get(), Py_True));
|
|
if (!r) throw python_error();
|
|
|
|
auto num_outputs = PyTuple_GET_SIZE(r.get());
|
|
tensor_list tensor_results(num_outputs);
|
|
for (int i = 0; i != num_outputs; ++i) {
|
|
PyObject* obj = PyTuple_GET_ITEM(r.get(), i);
|
|
if (obj != Py_None) {
|
|
if (!THPVariable_Check(obj)) {
|
|
std::string msg("expected Variable (got '");
|
|
msg += THPUtils_typename(obj);
|
|
msg += "')'";
|
|
throw std::runtime_error(msg);
|
|
}
|
|
tensor_results[i] = ((THPVariable*)obj)->cdata.tensor_data();
|
|
}
|
|
}
|
|
|
|
// XXX: this might get requires_grad wrong - there's no way to figure out
|
|
// if _do_backward didn't use ctx.saved_tensors and as a result some
|
|
// Variables might require grad, even if no args do. Unfortunately, this
|
|
// leads to unexpected error messages ("no nodes require computing gradients"),
|
|
// but I don't have a better idea. These functions would raise an error
|
|
// in backward anyway.
|
|
return wrap_outputs(
|
|
inputs,
|
|
std::move(tensor_results),
|
|
[this](edge_list&& next_edges) {
|
|
return std::make_shared<Error>(
|
|
name() + " is not differentiable twice", std::move(next_edges));
|
|
});
|
|
}
|
|
|
|
// NOTE: this function is written in a way that assumes it's only called for backward;
|
|
// it's used by engine.cpp. This is responsible for forwarding a call from
|
|
// C++'s Function::apply to a Python method "apply".
|
|
auto PyFunction::apply(variable_list&& inputs) -> variable_list {
|
|
AutoGIL gil;
|
|
at::OptionalDeviceGuard _device_guard;
|
|
THPFunction* py_fn = (THPFunction*)obj;
|
|
|
|
THPObjectPtr _legacy(PyObject_GetAttrString(obj, "_is_legacy"));
|
|
if (_legacy == Py_True) {
|
|
return legacy_apply(inputs);
|
|
}
|
|
|
|
// Massage a C++ variable_list into a Python arguments tuple
|
|
auto num_inputs = inputs.size();
|
|
THPObjectPtr pyInputs(PyTuple_New(num_inputs));
|
|
if (!pyInputs) throw python_error();
|
|
auto& output_info = py_fn->output_info;
|
|
for (size_t i = 0; i < num_inputs; ++i) {
|
|
PyObject* input;
|
|
if (inputs[i].defined()) {
|
|
input = THPVariable_Wrap(inputs[i]);
|
|
} else {
|
|
input = THPVariable_Wrap(output_info[i].zeros(_device_guard));
|
|
}
|
|
if (!input) throw python_error();
|
|
PyTuple_SET_ITEM(pyInputs.get(), i, input);
|
|
}
|
|
|
|
THPObjectPtr apply_fn(PyObject_GetAttrString(obj, "apply"));
|
|
if (!apply_fn) throw python_error();
|
|
THPObjectPtr r(PyObject_CallObject(apply_fn, pyInputs.get()));
|
|
if (!r) throw python_error();
|
|
ensure_tuple(r);
|
|
|
|
auto& is_variable_input = py_fn->is_variable_input;
|
|
int num_outputs = PyTuple_GET_SIZE(r.get());
|
|
int num_forward_inputs = is_variable_input.size();
|
|
// Returning too many results is ok, but only as long as they're all None.
|
|
// Truncate the result tuple in that case.
|
|
if (num_outputs > num_forward_inputs) {
|
|
bool all_none = true;
|
|
for (int i = num_forward_inputs; i < num_outputs; i++) {
|
|
all_none &= PyTuple_GET_ITEM(r.get(), i) == Py_None;
|
|
}
|
|
if (all_none) {
|
|
num_outputs = num_forward_inputs;
|
|
r = PyTuple_GetSlice(r.get(), 0, num_forward_inputs);
|
|
if (!r) throw python_error();
|
|
}
|
|
}
|
|
|
|
// Now the number of gradients should match
|
|
if (num_outputs != num_forward_inputs) {
|
|
std::string msg("function ");
|
|
msg += name() + " returned an incorrect number of gradients (expected ";
|
|
msg += std::to_string(num_forward_inputs) + ", got " ;
|
|
msg += std::to_string(num_outputs) + ")";
|
|
throw std::runtime_error(msg);
|
|
}
|
|
|
|
// Massage the Python results tuple back into a C++ variable_list
|
|
variable_list results;
|
|
results.reserve(num_outputs);
|
|
auto& input_info = py_fn->input_info;
|
|
for (int i = 0; i != num_outputs; ++i) {
|
|
PyObject* output = PyTuple_GET_ITEM(r.get(), i);
|
|
bool was_variable = is_variable_input[i];
|
|
if (!was_variable) {
|
|
if (output != Py_None) {
|
|
std::string msg("function ");
|
|
msg += name() + " returned a gradient different than None at position ";
|
|
msg += std::to_string(i + 1) + ", but the corresponding forward input was not a Variable";
|
|
throw std::runtime_error(msg);
|
|
}
|
|
continue;
|
|
}
|
|
if (output == Py_None) {
|
|
auto& info = input_info[results.size()];
|
|
if (info.requires_grad) {
|
|
results.emplace_back(info.zeros(_device_guard));
|
|
} else {
|
|
results.emplace_back();
|
|
}
|
|
} else {
|
|
if (!THPVariable_Check(output)) {
|
|
std::string msg("expected Variable or None (got ");
|
|
msg += THPUtils_typename(output);
|
|
msg += ")";
|
|
throw std::runtime_error(msg);
|
|
}
|
|
results.emplace_back(((THPVariable*)output)->cdata);
|
|
}
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
auto PyFunction::is_traceable() -> bool {
|
|
AutoGIL gil;
|
|
THPObjectPtr forward_class {PyObject_GetAttrString(obj, "_forward_cls")};
|
|
if (!forward_class) throw python_error();
|
|
THPObjectPtr traceable_py_bool {PyObject_GetAttrString(forward_class, "is_traceable")};
|
|
if (!traceable_py_bool) throw python_error();
|
|
return traceable_py_bool == Py_True;
|
|
}
|
|
|
|
auto PyFunction::release_variables() -> void {
|
|
AutoGIL gil;
|
|
auto f = (THPFunction*) obj;
|
|
f->saved_variables.clear();
|
|
f->has_freed_buffers = 1;
|
|
}
|
|
|
|
auto PyFunction::name() const -> std::string {
|
|
AutoGIL gil;
|
|
auto f = (THPFunction*) obj;
|
|
auto name = std::string(Py_TYPE(f)->tp_name);
|
|
THPObjectPtr _legacy(PyObject_GetAttrString(obj, "_is_legacy"));
|
|
if (_legacy == Py_True) {
|
|
name += "LegacyBackward";
|
|
}
|
|
return name;
|
|
}
|
|
|
|
auto PyFunction::get_shared_ptr() -> std::shared_ptr<Function> {
|
|
return THPFunction_asFunction((THPFunction*)obj);
|
|
}
|
|
|
|
}} // namespace torch::autograd
|
|
|
|
// Traverse and clear are required for supporting Python's GC cycle handling.
|
|
static int THPFunction_traverse(THPFunction *self, visitproc visit, void *arg)
|
|
{
|
|
for (const auto& hook : self->cdata.pre_hooks()) {
|
|
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
|
|
Py_VISIT(pyhook->dict);
|
|
}
|
|
}
|
|
for (const auto& hook : self->cdata.post_hooks()) {
|
|
if (auto pyhook = dynamic_cast<PyFunctionPostHook*>(hook.get())) {
|
|
Py_VISIT(pyhook->dict);
|
|
}
|
|
}
|
|
Py_VISIT(self->to_save);
|
|
Py_VISIT(self->non_differentiable);
|
|
Py_VISIT(self->dirty_tensors);
|
|
return 0;
|
|
}
|
|
|
|
static int THPFunction_clear(THPFunction *self)
|
|
{
|
|
self->cdata.clear_input_metadata();
|
|
|
|
Py_CLEAR(self->needs_input_grad);
|
|
|
|
Py_CLEAR(self->to_save);
|
|
Py_CLEAR(self->non_differentiable);
|
|
Py_CLEAR(self->dirty_tensors);
|
|
|
|
self->output_info.clear();
|
|
self->input_info.clear();
|
|
self->saved_variables.clear();
|
|
self->is_variable_input.clear();
|
|
|
|
// Moving the hooks out makes sure to first disassociate them from the
|
|
// function, but without destroying any of them. They will get deleted when
|
|
// exiting this scope. This is important, because deleting Python objects can
|
|
// trigger deletion of other objects, and they can reference this function,
|
|
// seeing it in a half-deleted state.
|
|
auto pre_hooks = std::move(self->cdata.pre_hooks());
|
|
auto post_hooks = std::move(self->cdata.post_hooks());
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void THPFunction_dealloc(THPFunction* self)
|
|
{
|
|
PyObject_GC_UnTrack(self);
|
|
THPFunction_clear(self);
|
|
self->cdata.~PyFunction();
|
|
self->output_info.~vector();
|
|
self->input_info.~vector();
|
|
self->saved_variables.~vector();
|
|
self->is_variable_input.~vector();
|
|
Py_TYPE(self)->tp_free((PyObject*)self);
|
|
}
|
|
|
|
PyObject *THPFunction_new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
|
|
{
|
|
PyObject* obj = type->tp_alloc(type, 0);
|
|
if (!obj) return nullptr;
|
|
// Python zero-initializes the object memory, so there's no need to initialize
|
|
// most fields
|
|
THPFunction* self = (THPFunction*)obj;
|
|
new (&self->cdata) PyFunction(obj);
|
|
new (&self->output_info) std::vector<VariableInfo>();
|
|
new (&self->input_info) std::vector<VariableInfo>();
|
|
new (&self->saved_variables) std::vector<SavedVariable>();
|
|
new (&self->is_variable_input) std::vector<bool>();
|
|
return obj;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Forward
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
using t2var_type = std::unordered_map<PyObject *, THPVariable *>;
|
|
|
|
// Bump the counters of all recorded dirty input tensors, adding each of them
|
|
// into dirty_inputs. Also does some sanity checking.
|
|
static std::vector<PyObject*> _mark_dirty(THPFunction *self)
|
|
{
|
|
// Increase versions of modified tensors
|
|
std::vector<PyObject*> dirty_inputs;
|
|
if (!self->dirty_tensors) return dirty_inputs;
|
|
|
|
THPFunction_assert(PyTuple_Check(self->dirty_tensors), "autograd "
|
|
"internal error: dirty_tensors attribute is expected to be a tuple "
|
|
"but is %s", THPUtils_typename(self->dirty_tensors));
|
|
Py_ssize_t num_dirty = PyTuple_GET_SIZE(self->dirty_tensors);
|
|
for (int i = 0; i < num_dirty; i++) {
|
|
PyObject *obj = PyTuple_GET_ITEM(self->dirty_tensors, i);
|
|
THPFunction_assert(THPVariable_Check(obj), "mark_dirty can "
|
|
"only accept variables, but argument %d is of type %s", i,
|
|
THPUtils_typename(obj));
|
|
|
|
dirty_inputs.push_back(obj);
|
|
auto variable = (THPVariable*)obj;
|
|
variable->cdata.bump_version();
|
|
}
|
|
// We're not going to ever need this so let's remove references now
|
|
Py_CLEAR(self->dirty_tensors);
|
|
return dirty_inputs;
|
|
}
|
|
|
|
static std::unordered_set<PyObject*> _parse_non_differentiable(THPFunction *self);
|
|
|
|
// Given a Python tuple of raw output tensors (raw_output), set each of
|
|
// the corresponding entries in a different Python tuple (outputs) with
|
|
// these tensors wrapped with variables. We save the gradient function (self)
|
|
// to the variable if the output requires grad.
|
|
//
|
|
// There is a considerable amount of complexity to handle if the operation
|
|
// that produced these output tensors is inplace. A mapping of *input*
|
|
// tensors to variables (t2var) is used to test if this occurred, and
|
|
// the set of dirty tensors (dirty_inputs) is used to figure out what to
|
|
// do in this case. After this method is run, t2var is extended with
|
|
// mappings for output tensors as well.
|
|
static void _wrap_outputs(THPFunction *self,
|
|
PyObject* inputs_tuple, PyObject *raw_output, PyObject *outputs, bool is_executable)
|
|
{
|
|
auto cdata = is_executable ? THPFunction_asFunction(self) : nullptr;
|
|
Py_ssize_t num_outputs = PyTuple_GET_SIZE(raw_output);
|
|
if (is_executable) {
|
|
self->output_info.clear();
|
|
self->output_info.reserve(num_outputs);
|
|
}
|
|
|
|
std::unordered_set<PyObject*> inputs;
|
|
int num_inputs = PyTuple_GET_SIZE(inputs_tuple);
|
|
for (int i = 0; i < num_inputs; i++) {
|
|
inputs.emplace(PyTuple_GET_ITEM(inputs_tuple, i));
|
|
}
|
|
|
|
auto non_differentiable = _parse_non_differentiable(self);
|
|
auto dirty_inputs = _mark_dirty(self);
|
|
|
|
auto as_variable = [&](PyObject* obj, int i) -> Variable {
|
|
if (THPVariable_Check(obj)) {
|
|
return ((THPVariable*)obj)->cdata;
|
|
}
|
|
throw TypeError("%s.forward: expected Variable (got %s) for return value %d",
|
|
Py_TYPE(self)->tp_name, Py_TYPE(obj)->tp_name, i);
|
|
};
|
|
|
|
// Sets the grad_fn and output_nr of an output Variable.
|
|
auto set_history = [&](Variable& var, uint32_t output_nr, bool is_input, bool is_modified,
|
|
bool is_differentiable) {
|
|
if (!is_differentiable) {
|
|
if (!var.requires_grad()) {
|
|
return;
|
|
}
|
|
// NB: we don't support returning non-differentiable views that could require grad
|
|
if (var.is_view()) {
|
|
throw std::runtime_error("Returning Variables sharing storage with other Variables "
|
|
"that require grad is not supported in Python functions. "
|
|
"Please submit a feature request if you hit this error.");
|
|
}
|
|
// Return detached aliases of inputs, instead of changing their requires_grad
|
|
// property.
|
|
if (is_input) {
|
|
var = var.detach();
|
|
} else {
|
|
var.detach_();
|
|
}
|
|
} else if (is_modified) {
|
|
if (var.is_leaf() && var.requires_grad()) {
|
|
throw std::runtime_error("a leaf Variable that requires grad has been used in an in-place operation.");
|
|
}
|
|
// If the input was modified, transplant the grad_fn in the graph:
|
|
// grad_fn <- variable <- self ==> grad_fn <- self <- variable
|
|
var.grad().reset();
|
|
var.clear_hooks();
|
|
if (auto grad_acc_fn = var.try_get_grad_accumulator()) {
|
|
auto grad_acc = dynamic_cast<AccumulateGrad*>(grad_acc_fn.get());
|
|
grad_acc->variable.reset();
|
|
}
|
|
if (cdata) {
|
|
var.rebase_history({cdata, output_nr});
|
|
}
|
|
} else if (is_input) {
|
|
// An input has been returned, but it wasn't modified. Return it as a view
|
|
// so that we can attach a new grad_fn to the Variable.
|
|
var = var.view_as(var);
|
|
var.set_gradient_edge({cdata, output_nr});
|
|
} else if (cdata) {
|
|
var.set_gradient_edge({cdata, output_nr});
|
|
}
|
|
};
|
|
|
|
for (int i = 0; i < num_outputs; i++) {
|
|
PyObject* obj = PyTuple_GET_ITEM(raw_output, i);
|
|
|
|
bool is_input = inputs.count(obj) > 0;
|
|
bool is_modified = std::find(dirty_inputs.begin(), dirty_inputs.end(), obj) != dirty_inputs.end();
|
|
bool is_differentiable = is_executable && non_differentiable.count(obj) == 0;
|
|
|
|
// Note that output Variables may be repeated. In that case, the last call
|
|
// to set_history wins.
|
|
auto var = as_variable(obj, i);
|
|
if (cdata) {
|
|
auto output_nr = cdata->add_input_metadata(var);
|
|
AT_ASSERT(i == (int)output_nr);
|
|
}
|
|
set_history(var, i, is_input, is_modified, is_differentiable);
|
|
|
|
if (is_executable) {
|
|
self->output_info.emplace_back(var);
|
|
}
|
|
|
|
PyTuple_SET_ITEM(outputs, i, THPVariable_Wrap(var));
|
|
}
|
|
}
|
|
|
|
// Save any variables that requested by to_save
|
|
static void _save_variables(THPFunction* self)
|
|
{
|
|
if (!self->to_save) return;
|
|
|
|
THPFunction_assert(PyTuple_Check(self->to_save), "autograd internal "
|
|
"error: to_save attribute is expected to be a tuple but is %s",
|
|
THPUtils_typename(self->to_save));
|
|
Py_ssize_t num_saved = PyTuple_GET_SIZE(self->to_save);
|
|
self->saved_variables.clear();
|
|
self->saved_variables.reserve(num_saved);
|
|
auto cdata_ptr = &self->cdata;
|
|
for (int i = 0; i < num_saved; i++) {
|
|
PyObject *obj = PyTuple_GET_ITEM(self->to_save, i);
|
|
if (obj == Py_None) {
|
|
self->saved_variables.emplace_back();
|
|
continue;
|
|
} else if (THPVariable_Check(obj)) {
|
|
auto variable = (THPVariable*)obj;
|
|
bool is_output = variable->cdata.grad_fn().get() == cdata_ptr;
|
|
self->saved_variables.emplace_back(variable->cdata, is_output);
|
|
} else {
|
|
throw TypeError(
|
|
"save_for_backward can only save variables, but argument %d is of "
|
|
"type %s", i, Py_TYPE(obj)->tp_name);
|
|
}
|
|
}
|
|
// Free .to_save
|
|
Py_CLEAR(self->to_save);
|
|
}
|
|
|
|
// Mark requires_grad = 0 on non-differentiable variables (as per non_differentiable)
|
|
static std::unordered_set<PyObject*>
|
|
_parse_non_differentiable(THPFunction *self)
|
|
{
|
|
std::unordered_set<PyObject*> set;
|
|
if (!self->non_differentiable) return set;
|
|
|
|
THPFunction_assert(PyTuple_Check(self->non_differentiable), "autograd "
|
|
"internal error: non_differentiable attribute is expected to be a "
|
|
"tuple but is %s", THPUtils_typename(self->non_differentiable));
|
|
Py_ssize_t num_nondiff = PyTuple_GET_SIZE(self->non_differentiable);
|
|
set.reserve(num_nondiff);
|
|
for (int i = 0; i < num_nondiff; i++) {
|
|
PyObject *t = PyTuple_GET_ITEM(self->non_differentiable, i);
|
|
THPFunction_assert(THPVariable_Check(t), "mark_non_differentiable "
|
|
"only accepts variable arguments, but got %s", THPUtils_typename(t));
|
|
set.insert(t);
|
|
}
|
|
Py_CLEAR(self->non_differentiable);
|
|
return set;
|
|
}
|
|
|
|
struct UnpackedInput {
|
|
THPObjectPtr input_tuple;
|
|
variable_list input_vars;
|
|
};
|
|
|
|
struct InputFlags {
|
|
bool is_executable = false;
|
|
edge_list next_edges;
|
|
THPObjectPtr needs_input_grad;
|
|
std::vector<bool> is_variable_input;
|
|
};
|
|
|
|
template<bool enforce_variables>
|
|
std::pair<UnpackedInput, InputFlags> unpack_input(PyObject *args) {
|
|
UnpackedInput unpacked;
|
|
InputFlags flags;
|
|
|
|
auto num_args = PyTuple_GET_SIZE(args);
|
|
unpacked.input_tuple = PyTuple_New(num_args);
|
|
flags.needs_input_grad = PyTuple_New(num_args);
|
|
for (int i = 0; i < num_args; i++) {
|
|
PyObject *arg = PyTuple_GET_ITEM(args, i);
|
|
|
|
bool is_variable = THPVariable_Check(arg);
|
|
flags.is_variable_input.push_back(is_variable);
|
|
if (!is_variable) {
|
|
// TODO: remove this code path once Variable and Tensor are merged in Python
|
|
if (enforce_variables) {
|
|
THPUtils_setError("expected a Variable argument, but got %s",
|
|
THPUtils_typename(arg));
|
|
throw python_error();
|
|
}
|
|
Py_INCREF(Py_False);
|
|
PyTuple_SET_ITEM(flags.needs_input_grad.get(), i, Py_False);
|
|
} else {
|
|
THPVariable* variable = (THPVariable*)arg;
|
|
unpacked.input_vars.push_back(variable->cdata);
|
|
PyObject* needs_grad = variable->cdata.requires_grad() ? Py_True : Py_False;
|
|
Py_INCREF(needs_grad);
|
|
PyTuple_SET_ITEM(flags.needs_input_grad.get(), i, needs_grad);
|
|
}
|
|
Py_INCREF(arg);
|
|
PyTuple_SET_ITEM(unpacked.input_tuple.get(), i, arg);
|
|
}
|
|
|
|
flags.is_executable = GradMode::is_enabled() && any_variable_requires_grad(unpacked.input_vars);
|
|
flags.next_edges = collect_next_edges(unpacked.input_vars);
|
|
return std::make_pair(std::move(unpacked), std::move(flags));
|
|
}
|
|
|
|
static void _assert_not_tracing(const char* name, const variable_list& input_vars) {
|
|
if (tracer::isTracing()) {
|
|
std::ostringstream oss;
|
|
oss << "Attempted to trace " << name;
|
|
oss << ", but tracing of legacy functions is not supported";
|
|
throw std::runtime_error(oss.str());
|
|
}
|
|
}
|
|
|
|
static Node* _trace_pre_record(
|
|
PyObject* op_obj,
|
|
PyObject *input_objects,
|
|
const variable_list& input_vars) {
|
|
if (!jit::tracer::isTracing()) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Save scalar args and the calling convention
|
|
auto num_args = PyTuple_GET_SIZE(input_objects);
|
|
pyobj_list scalar_args;
|
|
std::string arg_types;
|
|
arg_types.reserve(num_args);
|
|
scalar_args.reserve(num_args);
|
|
for (int i = 0; i < num_args; i++) {
|
|
PyObject *arg_object = PyTuple_GET_ITEM(input_objects, i);
|
|
if (THPVariable_Check(arg_object)) {
|
|
arg_types.push_back('d');
|
|
} else {
|
|
arg_types.push_back('c');
|
|
Py_INCREF(arg_object);
|
|
scalar_args.emplace_back(arg_object);
|
|
}
|
|
}
|
|
|
|
Py_INCREF(op_obj);
|
|
auto pyobj = THPObjectPtr(op_obj);
|
|
return jit::tracer::preRecordPythonTrace(
|
|
std::move(pyobj), arg_types, input_vars, std::move(scalar_args));
|
|
}
|
|
|
|
static void _trace_post_record(
|
|
Node* node,
|
|
PyObject* op_obj,
|
|
const variable_list& input_vars,
|
|
PyObject *output_objects,
|
|
bool is_inplace,
|
|
bool unpack_output) {
|
|
if (!jit::tracer::isTracing()) {
|
|
return;
|
|
}
|
|
|
|
node->i_(attr::inplace, is_inplace);
|
|
|
|
// Isolate C variable ptrs in a vector
|
|
int num_outputs = PyTuple_GET_SIZE(output_objects);
|
|
variable_list output_vars(num_outputs);
|
|
auto graph = node->owningGraph();
|
|
node->addOutput();
|
|
if (!unpack_output) {
|
|
std::vector<TypePtr> tuple_values(num_outputs, TensorType::get());
|
|
TypePtr tuple_type = TupleType::create(std::move(tuple_values));
|
|
node->output()->setType(tuple_type);
|
|
auto unpacked = graph->createTupleUnpack(node->output())->insertAfter(node);
|
|
node = unpacked;
|
|
}
|
|
for (int i = 0; i < num_outputs; ++i) {
|
|
auto var = (THPVariable*)PyTuple_GET_ITEM(output_objects, i);
|
|
Value* value = node->outputs()[i];
|
|
if (var->cdata.defined()) {
|
|
value->inferTypeFrom(var->cdata);
|
|
jit::tracer::setValueTrace(autograd::as_variable_ref(var->cdata), value);
|
|
}
|
|
}
|
|
}
|
|
|
|
PyObject* process_outputs(PyObject *op_obj, THPFunction* grad_fn, const UnpackedInput& unpacked,
|
|
PyObject *inputs, THPObjectPtr&& raw_output, bool is_executable,
|
|
Node* node) {
|
|
bool unpack_output = ensure_tuple(raw_output);
|
|
|
|
auto num_outputs = PyTuple_GET_SIZE(raw_output.get());
|
|
|
|
THPObjectPtr outputs(PyTuple_New(num_outputs));
|
|
if (!outputs) throw python_error();
|
|
|
|
grad_fn->cdata.clear_input_metadata();
|
|
|
|
// Record type, device, and size information about inputs
|
|
if (is_executable) {
|
|
grad_fn->input_info.clear();
|
|
grad_fn->input_info.reserve(unpacked.input_vars.size());
|
|
for (auto& var : unpacked.input_vars) {
|
|
grad_fn->input_info.emplace_back(var);
|
|
}
|
|
}
|
|
|
|
bool is_inplace = static_cast<bool>(grad_fn->dirty_tensors);
|
|
_wrap_outputs(grad_fn, inputs, raw_output, outputs, is_executable);
|
|
_trace_post_record(node, op_obj, unpacked.input_vars, outputs, is_inplace, unpack_output);
|
|
if (is_executable) {
|
|
_save_variables(grad_fn);
|
|
} else {
|
|
// Remove unnecessary attributes
|
|
Py_XDECREF(grad_fn->to_save);
|
|
grad_fn->to_save = nullptr;
|
|
Py_XDECREF(grad_fn->non_differentiable);
|
|
grad_fn->non_differentiable = nullptr;
|
|
}
|
|
|
|
// Unpack the output, unless .forward() returned a tuple
|
|
if (unpack_output) {
|
|
PyObject *output = PyTuple_GET_ITEM(outputs.get(), 0);
|
|
Py_INCREF(output);
|
|
return output;
|
|
}
|
|
|
|
return outputs.release();
|
|
}
|
|
|
|
// Legacy codepath
|
|
PyObject *THPFunction_do_forward(THPFunction *self, PyObject *_inputs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
RECORD_FUNCTION(
|
|
Py_TYPE(self)->tp_name,
|
|
std::vector<c10::IValue>(),
|
|
Function::peek_at_next_sequence_nr());
|
|
|
|
auto info_pair = unpack_input<true>(_inputs);
|
|
auto& unpacked_input = info_pair.first;
|
|
auto& input_info = info_pair.second;
|
|
bool is_executable = input_info.is_executable;
|
|
self->cdata.set_next_edges(std::move(input_info.next_edges));
|
|
self->needs_input_grad = input_info.needs_input_grad.release();
|
|
|
|
// We don't support tracing in the legacy code path
|
|
_assert_not_tracing(Py_TYPE(self)->tp_name, unpacked_input.input_vars);
|
|
|
|
// Now we're ready to call a forward (implemented in Python)
|
|
THPObjectPtr raw_output;
|
|
{
|
|
AutoGradMode grad_mode(false);
|
|
THPObjectPtr forward_fn(PyObject_GetAttrString((PyObject*)self, "forward"));
|
|
if (!forward_fn) return nullptr;
|
|
raw_output = PyObject_CallObject(forward_fn, unpacked_input.input_tuple);
|
|
if (!raw_output) return nullptr;
|
|
}
|
|
|
|
return process_outputs(nullptr, self, unpacked_input, _inputs, std::move(raw_output),
|
|
is_executable, nullptr);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPFunction_apply(PyObject *cls, PyObject *inputs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
RECORD_FUNCTION(
|
|
((PyTypeObject*)cls)->tp_name,
|
|
std::vector<c10::IValue>(),
|
|
Function::peek_at_next_sequence_nr());
|
|
|
|
THPObjectPtr backward_cls(PyObject_GetAttrString(cls, "_backward_cls"));
|
|
if (!backward_cls) return nullptr;
|
|
THPObjectPtr ctx_obj(PyObject_CallFunctionObjArgs(backward_cls, nullptr));
|
|
if (!ctx_obj) return nullptr;
|
|
THPFunction* ctx = (THPFunction*)ctx_obj.get();
|
|
|
|
// Prepare inputs and allocate context (grad fn)
|
|
auto info_pair = unpack_input<false>(inputs);
|
|
UnpackedInput& unpacked_input = info_pair.first;
|
|
InputFlags& input_info = info_pair.second;
|
|
|
|
// Record input nodes if tracing
|
|
auto* node = _trace_pre_record(cls, inputs, unpacked_input.input_vars);
|
|
|
|
// Initialize backward function (and ctx)
|
|
bool is_executable = input_info.is_executable;
|
|
ctx->cdata.set_next_edges(std::move(input_info.next_edges));
|
|
ctx->needs_input_grad = input_info.needs_input_grad.release();
|
|
ctx->is_variable_input = std::move(input_info.is_variable_input);
|
|
|
|
// Prepend ctx to input_tuple, in preparation for static method call
|
|
auto num_args = PyTuple_GET_SIZE(inputs);
|
|
THPObjectPtr ctx_input_tuple(PyTuple_New(num_args + 1));
|
|
PyTuple_SET_ITEM(ctx_input_tuple.get(), 0, ctx_obj.release());
|
|
for (int i = 0; i < num_args; ++i) {
|
|
PyObject *arg = PyTuple_GET_ITEM(unpacked_input.input_tuple.get(), i);
|
|
Py_INCREF(arg);
|
|
PyTuple_SET_ITEM(ctx_input_tuple.get(), i + 1, arg);
|
|
}
|
|
|
|
// Call forward
|
|
THPObjectPtr tensor_outputs;
|
|
{
|
|
AutoGradMode grad_mode(false);
|
|
THPObjectPtr forward_fn(PyObject_GetAttrString(cls, "forward"));
|
|
if (!forward_fn) return nullptr;
|
|
tensor_outputs = PyObject_CallObject(forward_fn, ctx_input_tuple);
|
|
if (!tensor_outputs) return nullptr;
|
|
}
|
|
|
|
return process_outputs(cls, ctx, unpacked_input, inputs, std::move(tensor_outputs),
|
|
is_executable, node);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Backward
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static void _prepare_grads(THPFunction *self, THPObjectPtr& raw_grads, bool is_grad_output)
|
|
{
|
|
at::OptionalDeviceGuard device_guard;
|
|
int num_grads = PyTuple_GET_SIZE(raw_grads.get());
|
|
// First, check if any of grads is None. If not, there's nothing to do
|
|
bool has_none = false;
|
|
for (int i = 0; i < num_grads; i++) {
|
|
has_none |= PyTuple_GET_ITEM(raw_grads.get(), i) == Py_None;
|
|
}
|
|
if (!has_none)
|
|
return;
|
|
|
|
THPObjectPtr grads;
|
|
grads = PyTuple_New(num_grads);
|
|
if (!grads) throw python_error();
|
|
|
|
// Look for Nones and replace them with new buffers
|
|
auto& grads_info = is_grad_output ? self->output_info : self->input_info;
|
|
AT_ASSERT(grads_info.size() == (size_t)num_grads);
|
|
for (int i = 0; i < num_grads; i++) {
|
|
PyObject *grad = PyTuple_GET_ITEM(raw_grads.get(), i);
|
|
if (grad == Py_None) {
|
|
grad = THPVariable_Wrap(grads_info[i].zeros(device_guard));
|
|
if (!grad) throw python_error();
|
|
} else {
|
|
Py_INCREF(grad);
|
|
}
|
|
PyTuple_SET_ITEM(grads.get(), i, grad);
|
|
}
|
|
raw_grads = grads.release();
|
|
}
|
|
|
|
static void _trim_grad_input(THPFunction *self, THPObjectPtr& grad_input)
|
|
{
|
|
int num_grads = PyTuple_GET_SIZE(grad_input.get());
|
|
const int num_outputs = self->cdata.num_outputs();
|
|
if (num_grads > num_outputs) {
|
|
// Check that all extra grads are none
|
|
bool all_none = true;
|
|
for (int i = num_outputs; i < num_grads; i++) {
|
|
all_none = (PyTuple_GET_ITEM(grad_input.get(), i) == Py_None);
|
|
if (!all_none) break;
|
|
}
|
|
// If yes, slice the tuple
|
|
if (all_none) {
|
|
num_grads = num_outputs;
|
|
grad_input = PyTuple_GetSlice(grad_input.get(), 0, num_grads);
|
|
if (!grad_input) throw python_error();
|
|
}
|
|
}
|
|
}
|
|
|
|
PyObject * THPFunction_do_backward(THPFunction *self, PyObject *args)
|
|
{
|
|
try {
|
|
Py_ssize_t num_args = args ? PyTuple_GET_SIZE(args) : 0;
|
|
THPUtils_assert(num_args == 2, "_do_backward expects exactly two arguments");
|
|
PyObject *raw_grad_output = PyTuple_GET_ITEM(args, 0);
|
|
PyObject *retain_variables = PyTuple_GET_ITEM(args, 1);
|
|
if (!PyTuple_Check(raw_grad_output) || !PyBool_Check(retain_variables)) {
|
|
THPUtils_invalidArguments(args, nullptr, "_do_backward", 1, "(tuple, bool)");
|
|
return nullptr;
|
|
}
|
|
THPUtils_assert(PyTuple_GET_SIZE(raw_grad_output) == self->cdata.num_inputs(),
|
|
"%s got an invalid number of gradients (expected %d got %d)",
|
|
THPUtils_typename(self), self->cdata.num_inputs(),
|
|
PyTuple_GET_SIZE(raw_grad_output));
|
|
|
|
// Some of the output might have been unused, so we have to allocate
|
|
// zero-filled buffers instead
|
|
Py_INCREF(raw_grad_output);
|
|
THPObjectPtr grad_output(raw_grad_output);
|
|
_prepare_grads(self, grad_output, true);
|
|
|
|
// self.backward(*grad_output)
|
|
THPObjectPtr backward_fn(PyObject_GetAttrString((PyObject*)self, "backward"));
|
|
THPUtils_assert(backward_fn.get(), "function %s doesn't implement a required "
|
|
"'backward' method", THPUtils_typename((PyObject*)self));
|
|
THPObjectPtr grad_input(PyObject_CallObject(backward_fn, grad_output.get()));
|
|
if (!grad_input) return nullptr;
|
|
ensure_tuple(grad_input);
|
|
|
|
// We allow functions to return more gradients, than there were outputs,
|
|
// if and only if the additional ones are all None
|
|
_trim_grad_input(self, grad_input);
|
|
int num_grads = PyTuple_GET_SIZE(grad_input.get());
|
|
int num_outputs = self->cdata.num_outputs();
|
|
THPUtils_assert(num_grads == num_outputs, "%s returned an invalid number of "
|
|
"gradient tensors (expected %d, but got %d)", THPUtils_typename(self),
|
|
num_outputs, num_grads);
|
|
|
|
// If any of the remaining grad_inputs are None, zero them.
|
|
_prepare_grads(self, grad_input, false);
|
|
return grad_input.release();
|
|
|
|
} catch (python_error& e) {
|
|
return nullptr;
|
|
} catch (std::exception& e) {
|
|
THPUtils_setError(e.what());
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Other methods / attributes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
PyObject* THPFunction__register_hook_dict(THPFunction *self, PyObject *_var)
|
|
{
|
|
THPUtils_assert(THPVariable_Check(_var), "_register_hook_dict expected a variable");
|
|
THPVariable *var = (THPVariable*)_var;
|
|
std::unique_ptr<FunctionPreHook> hook(new PyFunctionPreHook(
|
|
var->backward_hooks, var->cdata.output_nr()));
|
|
self->cdata.add_pre_hook(std::move(hook));
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THPFunction_register_hook(THPFunction *self, PyObject *hook)
|
|
{
|
|
return torch::autograd::registerFunctionHook(self->cdata, hook);
|
|
}
|
|
|
|
static PyObject *unpack_saved_variables(
|
|
THPFunction *self,
|
|
const std::function<PyObject*(const Variable&)>& unpack_fn)
|
|
{
|
|
THPUtils_assert(!self->has_freed_buffers, ERR_BACKWARD_TWICE);
|
|
auto& saved_variables = self->saved_variables;
|
|
if (saved_variables.empty())
|
|
return PyTuple_New(0);
|
|
|
|
int num_saved = saved_variables.size();
|
|
THPObjectPtr saved(PyTuple_New(num_saved));
|
|
if (!saved)
|
|
return nullptr;
|
|
auto saved_for = THPFunction_asFunction(self);
|
|
for (int i = 0; i < num_saved; i++) {
|
|
auto unpacked_var = saved_variables[i].unpack(saved_for);
|
|
THPObjectPtr value;
|
|
if (!unpacked_var.defined()) {
|
|
Py_INCREF(Py_None);
|
|
value = Py_None;
|
|
} else {
|
|
value = unpack_fn(unpacked_var);
|
|
}
|
|
PyTuple_SET_ITEM(saved.get(), i, value.release());
|
|
}
|
|
return saved.release();
|
|
}
|
|
|
|
PyObject *THPFunction_saved_tensors(THPFunction *self, void *_unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return unpack_saved_variables(self, [](const Variable& var) {
|
|
return THPVariable_Wrap(var);
|
|
});
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPFunction_saved_variables(THPFunction *self, void *_unused)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto r = PyErr_WarnEx(PyExc_DeprecationWarning,
|
|
"'saved_variables' is deprecated; use 'saved_tensors'", 0);
|
|
if (r != 0) throw python_error();
|
|
return unpack_saved_variables(self, [](const Variable& var) {
|
|
return THPVariable_Wrap(var);
|
|
});
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPFunction_next_functions(THPFunction *self, void *_unused)
|
|
{
|
|
const auto num_outputs = self->cdata.num_outputs();
|
|
THPObjectPtr result(PyTuple_New(num_outputs));
|
|
if (!result)
|
|
return nullptr;
|
|
for (uint32_t i = 0; i < num_outputs; i++) {
|
|
THPObjectPtr fn_tuple(PyTuple_New(2));
|
|
if (!fn_tuple) return nullptr;
|
|
const auto& edge = self->cdata.next_edge(i);
|
|
PyObject* fn = functionToPyObject(edge.function);
|
|
if (!fn) return nullptr;
|
|
PyTuple_SET_ITEM(fn_tuple.get(), 0, fn);
|
|
PyTuple_SET_ITEM(fn_tuple.get(), 1, THPUtils_packInt64(edge.input_nr));
|
|
PyTuple_SET_ITEM(result.get(), i, fn_tuple.release());
|
|
}
|
|
return result.release();
|
|
}
|
|
|
|
PyObject *THPFunction_metadata(THPFunction *self, void *_unused)
|
|
{
|
|
auto metadata = static_cast<PyAnomalyMetadata*>(self->cdata.metadata())->dict();
|
|
|
|
Py_INCREF(metadata);
|
|
return metadata;
|
|
}
|
|
|
|
typedef PyObject *(*getter)(PyObject *, void *);
|
|
typedef int (*setter)(PyObject *, PyObject *, void *);
|
|
|
|
namespace {
|
|
|
|
template<PyObject* THPFunction::*ptr>
|
|
PyObject* getObject(PyObject* obj, void* _unused) {
|
|
auto self = (THPFunction*)obj;
|
|
PyObject* value = self->*ptr;
|
|
if (!value) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
Py_INCREF(value);
|
|
return value;
|
|
}
|
|
|
|
template<PyObject* THPFunction::*ptr>
|
|
int setObject(PyObject* obj, PyObject* value, void* _unused) {
|
|
auto self = (THPFunction*)obj;
|
|
if (value == Py_None) {
|
|
value = nullptr;
|
|
}
|
|
Py_XDECREF((self->*ptr));
|
|
Py_XINCREF(value);
|
|
self->*ptr = value;
|
|
return 0;
|
|
}
|
|
|
|
template<typename M, M THPFunction::*ptr, PyObject* (*Convert)(long)>
|
|
PyObject* getMember(PyObject* obj, void* _unused) {
|
|
auto self = (THPFunction*)obj;
|
|
return Convert(self->*ptr);
|
|
}
|
|
|
|
template<typename M, M Function::*ptr, PyObject* (*Convert)(long)>
|
|
PyObject* getImplMember(PyObject* obj, void* _unused) {
|
|
auto self = (THPFunction*)obj;
|
|
return Convert(self->cdata.*ptr);
|
|
}
|
|
|
|
PyObject* getRequiresGrad(PyObject* obj, void* _unused) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
}
|
|
|
|
static struct PyGetSetDef THPFunction_properties[] = {
|
|
{"saved_tensors", (getter)THPFunction_saved_tensors, nullptr, nullptr, nullptr},
|
|
{"saved_variables", (getter)THPFunction_saved_variables, nullptr, nullptr, nullptr},
|
|
{"next_functions", (getter)THPFunction_next_functions, nullptr, nullptr, nullptr},
|
|
{"to_save", &getObject<&THPFunction::to_save>, &setObject<&THPFunction::to_save>, nullptr, nullptr},
|
|
{"non_differentiable", &getObject<&THPFunction::non_differentiable>, &setObject<&THPFunction::non_differentiable>, nullptr, nullptr},
|
|
{"dirty_tensors", &getObject<&THPFunction::dirty_tensors>, &setObject<&THPFunction::dirty_tensors>, nullptr, nullptr},
|
|
{"needs_input_grad", &getObject<&THPFunction::needs_input_grad>, nullptr, nullptr, nullptr},
|
|
{"requires_grad", getRequiresGrad, nullptr, nullptr, nullptr},
|
|
{"metadata", (getter)THPFunction_metadata, nullptr, nullptr, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
static struct PyMethodDef THPFunction_methods[] = {
|
|
{(char*)"apply", (PyCFunction)THPFunction_apply, METH_CLASS | METH_VARARGS, nullptr},
|
|
{(char*)"_do_forward", (PyCFunction)THPFunction_do_forward, METH_VARARGS, nullptr},
|
|
{(char*)"_do_backward", (PyCFunction)THPFunction_do_backward, METH_VARARGS, nullptr},
|
|
{(char*)"_register_hook_dict", (PyCFunction)THPFunction__register_hook_dict, METH_O, nullptr},
|
|
{(char*)"register_hook", (PyCFunction)THPFunction_register_hook, METH_O, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
PyTypeObject THPFunctionType = {
|
|
PyVarObject_HEAD_INIT(nullptr, 0)
|
|
"torch._C._FunctionBase", /* tp_name */
|
|
sizeof(THPFunction), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)THPFunction_dealloc, /* tp_dealloc */
|
|
nullptr, /* tp_print */
|
|
nullptr, /* tp_getattr */
|
|
nullptr, /* tp_setattr */
|
|
nullptr, /* tp_reserved */
|
|
nullptr, /* tp_repr */
|
|
nullptr, /* tp_as_number */
|
|
nullptr, /* tp_as_sequence */
|
|
nullptr, /* tp_as_mapping */
|
|
nullptr, /* tp_hash */
|
|
nullptr, /* tp_call */
|
|
nullptr, /* tp_str */
|
|
nullptr, /* tp_getattro */
|
|
nullptr, /* tp_setattro */
|
|
nullptr, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
|
|
nullptr, /* tp_doc */
|
|
(traverseproc)THPFunction_traverse, /* tp_traverse */
|
|
(inquiry)THPFunction_clear, /* tp_clear */
|
|
nullptr, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
nullptr, /* tp_iter */
|
|
nullptr, /* tp_iternext */
|
|
THPFunction_methods, /* tp_methods */
|
|
nullptr, /* tp_members */
|
|
THPFunction_properties, /* tp_getset */
|
|
nullptr, /* tp_base */
|
|
nullptr, /* tp_dict */
|
|
nullptr, /* tp_descr_get */
|
|
nullptr, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
nullptr, /* tp_init */
|
|
nullptr, /* tp_alloc */
|
|
THPFunction_new /* tp_new */
|
|
};
|
|
|
|
bool THPFunction_initModule(PyObject *module)
|
|
{
|
|
if (PyType_Ready(&THPFunctionType) < 0)
|
|
return false;
|
|
Py_INCREF(&THPFunctionType);
|
|
PyModule_AddObject(module, "_FunctionBase", (PyObject *)&THPFunctionType);
|
|
return true;
|
|
}
|
|
|
|
struct Decref {
|
|
void operator()(PyFunction* p) const {
|
|
AutoGIL gil;
|
|
Py_DECREF(p->obj);
|
|
}
|
|
};
|
|
|
|
// Similar to shared_from_this. There's a problem that the Python object
|
|
// and its cdata depend on each other being alive, so we can't keep
|
|
// shared_ptrs as members, but we'd like to be able to manage the lifetime of
|
|
// the objects using shared_ptrs in the C++ graph. This returns a new
|
|
// shared_ptr, which will decrement the Python reference count when it's
|
|
// destructed. WARNING: it's generally not safe to create weak_ptrs from
|
|
// these shared_ptrs since multiple shared_ptrs may control the same underlying
|
|
// object.
|
|
std::shared_ptr<PyFunction> THPFunction_asFunction(THPFunction* self)
|
|
{
|
|
if (!self) {
|
|
return std::shared_ptr<PyFunction>();
|
|
}
|
|
|
|
Py_INCREF((PyObject*)self);
|
|
return std::shared_ptr<PyFunction>(&self->cdata, Decref());
|
|
}
|