mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR: 1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class 2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()` 3. Remove `Variable.data()` API 3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history. After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't. **Note that this PR is BC-breaking in the following use cases:** **Use Case 1:** Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type. **Use Case 2:** If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example: ```python params = torch.tensor([1.5, 1.5]).requires_grad_() with torch.no_grad(): # Change gradient to a sparse tensor params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.])) grad_saved = params.grad params.backward(torch.tensor([1.5, 1.5])) assert id(grad_saved) == id(params.grad) # This will fail after this PR ``` The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference. Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072 Differential Revision: D14075257 Pulled By: yf225 fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
186 lines
7.0 KiB
C++
186 lines
7.0 KiB
C++
#include <torch/csrc/Generator.h>
|
|
|
|
#include <structmember.h>
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <TH/TH.h>
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/autograd/generated/VariableType.h>
|
|
#include <torch/csrc/utils/tensor_types.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
|
|
using namespace at;
|
|
using namespace torch;
|
|
|
|
PyObject *THPGeneratorClass = nullptr;
|
|
|
|
PyObject * THPGenerator_New()
|
|
{
|
|
PyObject *args = PyTuple_New(0);
|
|
if (!args) {
|
|
PyErr_SetString(PyExc_RuntimeError, "Could not create a new generator object - "
|
|
"failed to allocate argument tuple");
|
|
return nullptr;
|
|
}
|
|
PyObject *result = PyObject_Call((PyObject*)THPGeneratorClass, args, nullptr);
|
|
Py_DECREF(args);
|
|
return result;
|
|
}
|
|
|
|
PyObject * THPGenerator_NewWithGenerator(at::Generator& cdata)
|
|
{
|
|
auto type = (PyTypeObject*)THPGeneratorClass;
|
|
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
|
|
if (!self) throw python_error();
|
|
auto self_ = reinterpret_cast<THPGenerator*>(self.get());
|
|
self_->cdata = &cdata;
|
|
return self.release();
|
|
}
|
|
|
|
static void THPGenerator_dealloc(THPGenerator* self)
|
|
{
|
|
if (self->owner) {
|
|
delete self->cdata;
|
|
}
|
|
Py_TYPE(self)->tp_free((PyObject*)self);
|
|
}
|
|
|
|
static PyObject * THPGenerator_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
if ((args && PyTuple_Size(args) != 0) || kwargs) {
|
|
THPUtils_setError("torch.Generator constructor doesn't accept any arguments");
|
|
return nullptr;
|
|
}
|
|
THPGeneratorPtr self((THPGenerator *)type->tp_alloc(type, 0));
|
|
// having to pick a specific type rather than just a backend here is strange,
|
|
// but we don't really have fully fledged backend objects.
|
|
self->cdata = at::CPU(at::kFloat).generator().release();
|
|
self->owner = true;
|
|
return (PyObject*)self.release();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_getState(THPGenerator *self)
|
|
{
|
|
using namespace torch::autograd;
|
|
HANDLE_TH_ERRORS
|
|
THGenerator *generator = THPGenerator_TH_CData(self);
|
|
Variable var = torch::empty({0}, at::device(at::kCPU).dtype(at::kByte));
|
|
THByteTensor_getRNGState(generator, (THByteTensor*)(var.unsafeGetTensorImpl()));
|
|
return THPVariable_Wrap(std::move(var));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_setState(THPGenerator *self, PyObject *_new_state)
|
|
{
|
|
using namespace torch::autograd;
|
|
HANDLE_TH_ERRORS
|
|
if (!THPVariable_Check(_new_state)) {
|
|
throw TypeError("expected a torch.ByteTensor, but got %s", Py_TYPE(_new_state)->tp_name);
|
|
}
|
|
auto& tensor = ((THPVariable*)_new_state)->cdata;
|
|
if (tensor.layout() != kStrided || tensor.device().type() != kCPU || tensor.scalar_type() != kByte) {
|
|
auto type_name = torch::utils::type_to_string(tensor.dispatch_type(), tensor.scalar_type());
|
|
throw TypeError("expected a torch.ByteTensor, but got %s", type_name.c_str());
|
|
}
|
|
THGenerator *generator = THPGenerator_TH_CData(self);
|
|
THByteTensor_setRNGState(generator, (THByteTensor*)tensor.unsafeGetTensorImpl());
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_manualSeed(THPGenerator *self, PyObject *seed)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto generator = self->cdata;
|
|
THPUtils_assert(THPUtils_checkLong(seed), "manual_seed expected a long, "
|
|
"but got %s", THPUtils_typename(seed));
|
|
generator->manualSeed(THPUtils_unpackLong(seed));
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_seed(THPGenerator *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packUInt64(self->cdata->seed());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPGenerator_initialSeed(THPGenerator *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packUInt64(self->cdata->initialSeed());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyMethodDef THPGenerator_methods[] = {
|
|
{"get_state", (PyCFunction)THPGenerator_getState, METH_NOARGS, nullptr},
|
|
{"set_state", (PyCFunction)THPGenerator_setState, METH_O, nullptr},
|
|
{"manual_seed", (PyCFunction)THPGenerator_manualSeed, METH_O, nullptr},
|
|
{"seed", (PyCFunction)THPGenerator_seed, METH_NOARGS, nullptr},
|
|
{"initial_seed", (PyCFunction)THPGenerator_initialSeed, METH_NOARGS, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
static struct PyMemberDef THPGenerator_members[] = {
|
|
{(char*)"_cdata", T_ULONGLONG, offsetof(THPGenerator, cdata), READONLY, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
PyTypeObject THPGeneratorType = {
|
|
PyVarObject_HEAD_INIT(nullptr, 0)
|
|
"torch._C.Generator", /* tp_name */
|
|
sizeof(THPGenerator), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)THPGenerator_dealloc, /* tp_dealloc */
|
|
nullptr, /* tp_print */
|
|
nullptr, /* tp_getattr */
|
|
nullptr, /* tp_setattr */
|
|
nullptr, /* tp_reserved */
|
|
nullptr, /* tp_repr */
|
|
nullptr, /* tp_as_number */
|
|
nullptr, /* tp_as_sequence */
|
|
nullptr, /* tp_as_mapping */
|
|
nullptr, /* tp_hash */
|
|
nullptr, /* tp_call */
|
|
nullptr, /* tp_str */
|
|
nullptr, /* tp_getattro */
|
|
nullptr, /* tp_setattro */
|
|
nullptr, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
nullptr, /* tp_doc */
|
|
nullptr, /* tp_traverse */
|
|
nullptr, /* tp_clear */
|
|
nullptr, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
nullptr, /* tp_iter */
|
|
nullptr, /* tp_iternext */
|
|
THPGenerator_methods, /* tp_methods */
|
|
THPGenerator_members, /* tp_members */
|
|
nullptr, /* tp_getset */
|
|
nullptr, /* tp_base */
|
|
nullptr, /* tp_dict */
|
|
nullptr, /* tp_descr_get */
|
|
nullptr, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
nullptr, /* tp_init */
|
|
nullptr, /* tp_alloc */
|
|
THPGenerator_pynew, /* tp_new */
|
|
};
|
|
|
|
bool THPGenerator_init(PyObject *module)
|
|
{
|
|
THPGeneratorClass = (PyObject*)&THPGeneratorType;
|
|
if (PyType_Ready(&THPGeneratorType) < 0)
|
|
return false;
|
|
Py_INCREF(&THPGeneratorType);
|
|
PyModule_AddObject(module, "Generator", (PyObject *)&THPGeneratorType);
|
|
return true;
|
|
}
|