Files
pytorch/test/cpp_extensions/msnpu_extension.cpp
Will Feng 8cde4c4d22 Remove Variable::Impl and DifferentiableViewImpl (#17072)
Summary:
As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR:
1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class
2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()`
3. Remove `Variable.data()` API
3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history.

After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't.

**Note that this PR is BC-breaking in the following use cases:**

**Use Case 1:**
Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type.

**Use Case 2:**
If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example:
```python
params = torch.tensor([1.5, 1.5]).requires_grad_()
with torch.no_grad():
    # Change gradient to a sparse tensor
    params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.]))

grad_saved = params.grad
params.backward(torch.tensor([1.5, 1.5]))
assert id(grad_saved) == id(params.grad)  # This will fail after this PR
```
The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072

Differential Revision: D14075257

Pulled By: yf225

fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
2019-05-23 21:09:04 -07:00

133 lines
3.9 KiB
C++

#include <torch/extension.h>
#include <ATen/ExtensionBackendRegistration.h>
using namespace at;
static int test_int;
Tensor get_dtype_tensor(caffe2::TypeMeta dtype) {
auto tensor_impl = c10::make_intrusive<TensorImpl, UndefinedTensorImpl>(
Storage(
dtype, 0, at::DataPtr(nullptr, Device(DeviceType::MSNPU, 0)), nullptr, false),
MSNPUTensorId());
return Tensor(std::move(tensor_impl));
}
Tensor zeros_override(IntArrayRef size, const TensorOptions & options) {
test_int = 0;
return get_dtype_tensor(options.dtype());
}
Tensor add_override(const Tensor & a, const Tensor & b , Scalar c) {
test_int = 1;
return get_dtype_tensor(a.dtype());
}
Tensor sum_override(const Tensor & self) {
test_int = 2;
return get_dtype_tensor(self.dtype());
}
// needed for sum backwards
Tensor expand_override(const Tensor & self, IntArrayRef size, bool implicit) {
return get_dtype_tensor(self.dtype());
}
Tensor kl_div_override(
const Tensor & self, const Tensor & target, int64_t reduction) {
test_int = 3;
return get_dtype_tensor(self.dtype());
}
Tensor kl_div_backward_override(
const Tensor & grad_output,
const Tensor & self,
const Tensor & target,
int64_t reduction) {
test_int = 4;
return get_dtype_tensor(self.dtype());
}
// ones_like is needed for autograd backwards
Tensor ones_like_override(const Tensor & self, const TensorOptions & options) {
return get_dtype_tensor(options.dtype());
}
void init_msnpu_extension() {
register_extension_backend_op(
Backend::MSNPU,
"zeros(IntArrayRef size, TensorOptions options) -> Tensor", &zeros_override);
register_extension_backend_op(
Backend::MSNPU,
"add(Tensor self, Tensor other, Scalar alpha) -> Tensor", &add_override);
register_extension_backend_op(
Backend::MSNPU,
"sum(Tensor self) -> Tensor", &sum_override);
register_extension_backend_op(
Backend::MSNPU,
"expand(Tensor self, IntArrayRef size, bool implicit) -> Tensor",
&expand_override);
register_extension_backend_op(
Backend::MSNPU,
"kl_div(Tensor self, Tensor target, int64_t reduction) -> Tensor",
&kl_div_override);
register_extension_backend_op(
Backend::MSNPU,
"kl_div_backward(Tensor grad_output, Tensor self, Tensor target, int64_t reduction) -> Tensor",
&kl_div_backward_override);
register_extension_backend_op(
Backend::MSNPU,
"ones_like(Tensor self, TensorOptions options) -> Tensor",
&ones_like_override);
}
// TODO: Extend this to exercise multi-device setting. In that case,
// we need to add a thread local variable to track the current device.
struct MSNPUGuardImpl final : public c10::impl::DeviceGuardImplInterface {
static constexpr DeviceType static_type = DeviceType::MSNPU;
MSNPUGuardImpl() {}
MSNPUGuardImpl(DeviceType t) {
AT_ASSERT(t == DeviceType::MSNPU);
}
DeviceType type() const override {
return DeviceType::MSNPU;
}
Device exchangeDevice(Device d) const override {
AT_ASSERT(d.type() == DeviceType::MSNPU);
AT_ASSERT(d.index() == 0);
return d;
}
Device getDevice() const override {
return Device(DeviceType::MSNPU, 0);
}
void setDevice(Device d) const override {
AT_ASSERT(d.type() == DeviceType::MSNPU);
AT_ASSERT(d.index() == 0);
}
void uncheckedSetDevice(Device d) const noexcept override {
}
Stream getStream(Device d) const noexcept override {
return Stream(Stream::DEFAULT, Device(DeviceType::MSNPU, 0));
}
Stream exchangeStream(Stream s) const noexcept override {
return Stream(Stream::DEFAULT, Device(DeviceType::MSNPU, 0));
}
DeviceIndex deviceCount() const noexcept override {
return 1;
}
};
constexpr DeviceType MSNPUGuardImpl::static_type;
C10_REGISTER_GUARD_IMPL(MSNPU, MSNPUGuardImpl);
int get_test_int() {
return test_int;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("init_msnpu_extension", &init_msnpu_extension);
m.def("get_test_int", &get_test_int);
}