Files
pytorch/test/cpp/api/misc.cpp
Josh Varty 1cdcdd78af Kaiming Initialization (#14718)
Summary:
/cc goldsborough

Working on #14582

The corresponding python implementations are at: [pytorch/torch/nn/init.py](6302e4001a/torch/nn/init.py (L261-L327))

Here is my initial implementation of Kaiming Initialization. I have not been able to figure out how to successfully run tests locally so I haven't added any yet.

A couple questions:
- Are the enums defined in the right place? I copied their names from Python, but do you prefer different naming conventions for C++?
- To run tests locally do I use `python setup.py test`? Can I run just a subset of the tests somehow?
- Should I add my tests at [test/cpp/api/misc.cpp](https://github.com/pytorch/pytorch/blob/master/test/cpp/api/misc.cpp#L47-L54)?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14718

Differential Revision: D14049159

Pulled By: goldsborough

fbshipit-source-id: 966ac5126875936e69b185b5041f16476ed4cf70
2019-02-15 14:58:22 -08:00

44 lines
1.0 KiB
C++

#include <gtest/gtest.h>
#include <torch/nn/init.h>
#include <torch/nn/modules/linear.h>
#include <torch/types.h>
#include <torch/utils.h>
#include <test/cpp/api/support.h>
TEST(NoGradTest, SetsGradModeCorrectly) {
torch::manual_seed(0);
torch::NoGradGuard guard;
torch::nn::Linear model(5, 2);
auto x = torch::randn({10, 5}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_FALSE(model->weight.grad().defined());
}
struct AutogradTest : torch::test::SeedingFixture {
AutogradTest() {
x = torch::randn({3, 3}, torch::requires_grad());
y = torch::randn({3, 3});
z = x * y;
}
torch::Tensor x, y, z;
};
TEST_F(AutogradTest, CanTakeDerivatives) {
z.backward();
ASSERT_TRUE(x.grad().allclose(y));
}
TEST_F(AutogradTest, CanTakeDerivativesOfZeroDimTensors) {
z.sum().backward();
ASSERT_TRUE(x.grad().allclose(y));
}
TEST_F(AutogradTest, CanPassCustomGradientInputs) {
z.sum().backward(torch::ones({}) * 2);
ASSERT_TRUE(x.grad().allclose(y * 2));
}