mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75463 This better matches how the corresponding Bazel library does it. Differential Revision: [D35480501](https://our.internmc.facebook.com/intern/diff/D35480501/) **NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D35480501/)! Approved by: https://github.com/albanD, https://github.com/malfet
218 lines
8.3 KiB
Python
218 lines
8.3 KiB
Python
import argparse
|
|
import os
|
|
import pathlib
|
|
import sys
|
|
import yaml
|
|
from typing import Any, List, Optional, cast
|
|
|
|
try:
|
|
# use faster C loader if available
|
|
from yaml import CSafeLoader as YamlLoader
|
|
except ImportError:
|
|
from yaml import SafeLoader as YamlLoader # type: ignore[misc]
|
|
|
|
source_files = {'.py', '.cpp', '.h'}
|
|
|
|
NATIVE_FUNCTIONS_PATH = 'aten/src/ATen/native/native_functions.yaml'
|
|
|
|
# TODO: This is a little inaccurate, because it will also pick
|
|
# up setup_helper scripts which don't affect code generation
|
|
def all_generator_source() -> List[str]:
|
|
r = []
|
|
for directory, _, filenames in os.walk('tools'):
|
|
for f in filenames:
|
|
if os.path.splitext(f)[1] in source_files:
|
|
full = os.path.join(directory, f)
|
|
r.append(full)
|
|
return sorted(r)
|
|
|
|
|
|
def generate_code(ninja_global: Optional[str] = None,
|
|
native_functions_path: Optional[str] = None,
|
|
install_dir: Optional[str] = None,
|
|
subset: Optional[str] = None,
|
|
disable_autograd: bool = False,
|
|
force_schema_registration: bool = False,
|
|
operator_selector: Any = None) -> None:
|
|
from tools.autograd.gen_autograd import gen_autograd, gen_autograd_python
|
|
from tools.autograd.gen_annotated_fn_args import gen_annotated
|
|
from tools.codegen.selective_build.selector import SelectiveBuilder
|
|
|
|
|
|
# Build ATen based Variable classes
|
|
if install_dir is None:
|
|
install_dir = 'torch/csrc'
|
|
python_install_dir = 'torch/testing/_internal/generated'
|
|
else:
|
|
python_install_dir = install_dir
|
|
autograd_gen_dir = os.path.join(install_dir, 'autograd', 'generated')
|
|
jit_gen_dir = os.path.join(install_dir, 'jit', 'generated')
|
|
for d in (autograd_gen_dir, jit_gen_dir, python_install_dir):
|
|
if not os.path.exists(d):
|
|
os.makedirs(d)
|
|
runfiles_dir = os.environ.get("RUNFILES_DIR", None)
|
|
data_dir = os.path.join(runfiles_dir, 'pytorch') if runfiles_dir else ''
|
|
tools_jit_templates = os.path.join(data_dir, 'tools', 'jit', 'templates')
|
|
autograd_dir = os.fspath(pathlib.Path(__file__).parent.parent / "autograd")
|
|
|
|
if subset == "pybindings" or not subset:
|
|
gen_autograd_python(
|
|
native_functions_path or NATIVE_FUNCTIONS_PATH,
|
|
autograd_gen_dir,
|
|
autograd_dir)
|
|
|
|
if operator_selector is None:
|
|
operator_selector = SelectiveBuilder.get_nop_selector()
|
|
|
|
if subset == "libtorch" or not subset:
|
|
|
|
gen_autograd(
|
|
native_functions_path or NATIVE_FUNCTIONS_PATH,
|
|
autograd_gen_dir,
|
|
autograd_dir,
|
|
disable_autograd=disable_autograd,
|
|
operator_selector=operator_selector,
|
|
)
|
|
|
|
if subset == "python" or not subset:
|
|
gen_annotated(
|
|
native_functions_path or NATIVE_FUNCTIONS_PATH,
|
|
python_install_dir,
|
|
autograd_dir)
|
|
|
|
|
|
def get_selector_from_legacy_operator_selection_list(
|
|
selected_op_list_path: str,
|
|
) -> Any:
|
|
with open(selected_op_list_path, 'r') as f:
|
|
# strip out the overload part
|
|
# It's only for legacy config - do NOT copy this code!
|
|
selected_op_list = {
|
|
opname.split('.', 1)[0] for opname in yaml.load(f, Loader=YamlLoader)
|
|
}
|
|
|
|
# Internal build doesn't use this flag any more. Only used by OSS
|
|
# build now. Every operator should be considered a root operator
|
|
# (hence generating unboxing code for it, which is consistent with
|
|
# the current behaviour), and also be considered as used for
|
|
# training, since OSS doesn't support training on mobile for now.
|
|
#
|
|
is_root_operator = True
|
|
is_used_for_training = True
|
|
|
|
from tools.codegen.selective_build.selector import SelectiveBuilder
|
|
selector = SelectiveBuilder.from_legacy_op_registration_allow_list(
|
|
selected_op_list,
|
|
is_root_operator,
|
|
is_used_for_training,
|
|
)
|
|
|
|
return selector
|
|
|
|
|
|
def get_selector(
|
|
selected_op_list_path: Optional[str],
|
|
operators_yaml_path: Optional[str],
|
|
) -> Any:
|
|
# cwrap depends on pyyaml, so we can't import it earlier
|
|
root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
sys.path.insert(0, root)
|
|
from tools.codegen.selective_build.selector import SelectiveBuilder
|
|
|
|
assert not (selected_op_list_path is not None and
|
|
operators_yaml_path is not None), \
|
|
("Expected at most one of selected_op_list_path and " +
|
|
"operators_yaml_path to be set.")
|
|
|
|
if selected_op_list_path is None and operators_yaml_path is None:
|
|
return SelectiveBuilder.get_nop_selector()
|
|
elif selected_op_list_path is not None:
|
|
return get_selector_from_legacy_operator_selection_list(selected_op_list_path)
|
|
else:
|
|
return SelectiveBuilder.from_yaml_path(cast(str, operators_yaml_path))
|
|
|
|
|
|
def main() -> None:
|
|
parser = argparse.ArgumentParser(description='Autogenerate code')
|
|
parser.add_argument('--native-functions-path')
|
|
parser.add_argument('--ninja-global')
|
|
parser.add_argument('--install_dir')
|
|
parser.add_argument(
|
|
'--subset',
|
|
help='Subset of source files to generate. Can be "libtorch" or "pybindings". Generates both when omitted.'
|
|
)
|
|
parser.add_argument(
|
|
'--disable-autograd',
|
|
default=False,
|
|
action='store_true',
|
|
help='It can skip generating autograd related code when the flag is set',
|
|
)
|
|
parser.add_argument(
|
|
'--selected-op-list-path',
|
|
help='Path to the YAML file that contains the list of operators to include for custom build.',
|
|
)
|
|
parser.add_argument(
|
|
'--operators_yaml_path',
|
|
help='Path to the model YAML file that contains the list of operators to include for custom build.',
|
|
)
|
|
parser.add_argument(
|
|
'--force_schema_registration',
|
|
action='store_true',
|
|
help='force it to generate schema-only registrations for ops that are not'
|
|
'listed on --selected-op-list'
|
|
)
|
|
parser.add_argument(
|
|
'--gen_lazy_ts_backend',
|
|
action='store_true',
|
|
help='Enable generation of the torch::lazy TorchScript backend'
|
|
)
|
|
parser.add_argument(
|
|
'--per_operator_headers',
|
|
action='store_true',
|
|
help='Build lazy tensor ts backend with per-operator ATen headers, must match how ATen was built'
|
|
)
|
|
options = parser.parse_args()
|
|
|
|
generate_code(
|
|
options.ninja_global,
|
|
options.native_functions_path,
|
|
options.install_dir,
|
|
options.subset,
|
|
options.disable_autograd,
|
|
options.force_schema_registration,
|
|
# options.selected_op_list
|
|
operator_selector=get_selector(options.selected_op_list_path, options.operators_yaml_path),
|
|
)
|
|
|
|
if options.gen_lazy_ts_backend:
|
|
aten_path = os.path.dirname(os.path.dirname(options.native_functions_path))
|
|
ts_backend_yaml = os.path.join(aten_path, 'native/ts_native_functions.yaml')
|
|
ts_native_functions = "torch/csrc/lazy/ts_backend/ts_native_functions.cpp"
|
|
ts_node_base = "torch/csrc/lazy/ts_backend/ts_node.h"
|
|
if options.install_dir is None:
|
|
options.install_dir = "torch/csrc"
|
|
lazy_install_dir = os.path.join(options.install_dir, "lazy/generated")
|
|
if not os.path.exists(lazy_install_dir):
|
|
os.makedirs(lazy_install_dir)
|
|
|
|
assert os.path.isfile(ts_backend_yaml), f"Unable to access ts_backend_yaml: {ts_backend_yaml}"
|
|
assert os.path.isfile(ts_native_functions), f"Unable to access {ts_native_functions}"
|
|
from tools.codegen.gen_lazy_tensor import run_gen_lazy_tensor
|
|
from tools.codegen.dest.lazy_ir import TSLazyIR
|
|
run_gen_lazy_tensor(aten_path=aten_path,
|
|
source_yaml=ts_backend_yaml,
|
|
backend_name="TorchScript",
|
|
output_dir=lazy_install_dir,
|
|
dry_run=False,
|
|
impl_path=ts_native_functions,
|
|
node_base="TsNode",
|
|
node_base_hdr=ts_node_base,
|
|
build_in_tree=True,
|
|
lazy_ir_cls=TSLazyIR,
|
|
per_operator_headers=options.per_operator_headers,
|
|
gen_forced_fallback_code=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|