mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
This reverts commit b1fd7708bd81d8d52908bf4459ed024471abd803. Reverted https://github.com/pytorch/pytorch/pull/137115 on behalf of https://github.com/huydhn due to The top of the stack has been reverted but it leaves trunk in a broken state, so I try to revert the rest of the stack ([comment](https://github.com/pytorch/pytorch/pull/137114#issuecomment-2400765603))
579 lines
21 KiB
Python
579 lines
21 KiB
Python
# mypy: ignore-errors
|
|
|
|
import collections
|
|
import contextlib
|
|
import functools
|
|
import inspect
|
|
from typing import Deque, Dict, List, TYPE_CHECKING
|
|
|
|
import torch._C
|
|
import torch.utils._pytree as pytree
|
|
from torch._guards import Source
|
|
from torch.overrides import (
|
|
_get_overloaded_args,
|
|
get_default_nowrap_functions,
|
|
TorchFunctionMode,
|
|
)
|
|
from torch.utils._device import DeviceContext
|
|
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder, install_guard
|
|
from ..polyfills import NoEnterTorchFunctionMode
|
|
from ..source import AttrSource, GlobalSource, TorchFunctionModeStackSource, TypeSource
|
|
from ..utils import (
|
|
class_has_getattribute,
|
|
clear_torch_function_mode_stack,
|
|
get_safe_global_name,
|
|
has_torch_function,
|
|
is_tensor_base_attr_getter,
|
|
set_torch_function_mode_stack,
|
|
)
|
|
from .base import VariableTracker
|
|
from .constant import ConstantVariable
|
|
from .ctx_manager import GenericContextWrappingVariable
|
|
from .lazy import LazyVariableTracker
|
|
from .lists import TupleVariable
|
|
from .tensor import TensorSubclassVariable, TensorVariable
|
|
from .user_defined import UserDefinedObjectVariable
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._dynamo.symbolic_convert import InstructionTranslator
|
|
|
|
|
|
# [Note: __torch_function__] This feature is a prototype and has some rough edges (contact mlazos with issues):
|
|
# At a high level, a torch function tensor subclass is represented as a TensorWithTFOverrideVariable, which dispatches
|
|
# __torch_function__ on attribute accesses, method calls, and torch API calls.
|
|
# The following is not supported:
|
|
# - triggering __torch_function__ on tensor subclass non-tensor custom attributes
|
|
# - graph breaking on mutating guardable tensor properties within a __torch_function__ context, this can cause
|
|
# excessive recompiles in certain degenerate cases
|
|
# - Matching the exact eager behavior of *ignoring* __torch_function__ objects in non-tensor argument positions of Torch API calls
|
|
|
|
# The following is supported:
|
|
# - static method impls of __torch_function__ on custom objects; this will trigger on torch API calls with the object as
|
|
# any argument
|
|
# - triggering __torch_function__ on torch API calls with tensor subclass arguments
|
|
# - __torch_function__ calls on base tensor attribute access and method calls for tensor subclass instances
|
|
# - matches the dispatch ordering behavior of eager __torch_function__ with subclass/object argumnents in any argument position
|
|
|
|
# See https://docs.google.com/document/d/1WBxBSvW3NXhRp9ncmtokJloMLCtF4AYNhJaffvHe8Kw/edit#heading=h.vacn73lozd9w
|
|
# for more information on the design.
|
|
|
|
# To enable subclass behavior, add your tensor subclass type to traceable_tensor_subclasses in dynamo/config.py
|
|
|
|
|
|
banned_attrs = [
|
|
fn.__self__.__name__
|
|
for fn in get_default_nowrap_functions()
|
|
if is_tensor_base_attr_getter(fn)
|
|
]
|
|
|
|
# Today set default device is placed in the graph and guarded on separately
|
|
# so we should not trace through it. In the future we can trace it once
|
|
# mode tracing is implemented and not put in the graph, but this is more
|
|
# of a BE project and can be evaluated later
|
|
IGNORED_MODES = {DeviceContext}
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def get_prev_stack_var_name():
|
|
from ..bytecode_transformation import unique_id
|
|
|
|
return unique_id("___prev_torch_function_mode_stack")
|
|
|
|
|
|
# Used to clear/restore the python torch function mode stack and temporarily restore it as needed
|
|
class TorchFunctionModeStackStateManager:
|
|
def __init__(self):
|
|
self.stack = []
|
|
|
|
def __enter__(self):
|
|
self.stack = torch.overrides._get_current_function_mode_stack()
|
|
clear_torch_function_mode_stack()
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
set_torch_function_mode_stack(self.stack)
|
|
self.stack = []
|
|
|
|
@contextlib.contextmanager
|
|
def temp_restore_stack(self):
|
|
prev = torch.overrides._get_current_function_mode_stack()
|
|
set_torch_function_mode_stack(self.stack)
|
|
try:
|
|
yield
|
|
finally:
|
|
set_torch_function_mode_stack(prev)
|
|
|
|
|
|
torch_function_mode_stack_state_mgr = TorchFunctionModeStackStateManager()
|
|
|
|
|
|
class SymbolicTorchFunctionState:
|
|
def __init__(self, py_stack):
|
|
# This is annoyingly complicated because of how the torch function subclass + mode C API was designed
|
|
# There are two exposed C knobs here as contexts: torch._C.DisableTorchFunction and torch._C.DisableTorchFunctionSubclass
|
|
# These are their definitions:
|
|
# 1) torch._C._is_torch_function_enabled indicates that neither of the above knobs have been entered
|
|
# (if either are entered, this will be False)
|
|
# 2) torch._C._is_torch_function_mode_enabled indicates that either the torch mode stack is empty OR
|
|
# torch._C.DisableTorchFunction has been entered
|
|
# To disambiguate these and keep myself sane I added a C API to check whether all torch function
|
|
# concepts (modes and subclasses) are enabled.
|
|
# This only returns true iff we have not entered torch._C.DisableTorchFunction and allows us to separate
|
|
# the stack length from the enablement state of torch function modes.
|
|
# This is important because now if a mode is pushed while dynamo is tracing, we know whether
|
|
# or not torch function modes are enabled and whether we should trace it.
|
|
self.torch_function_subclass_enabled = torch._C._is_torch_function_enabled()
|
|
|
|
# This differs from the C API of the same name
|
|
# this will only be false iff we have entered torch._C.DisableTorchFunction
|
|
# and does not take into account the mode stack length, while the C API bundles these
|
|
# two concepts
|
|
self.torch_function_mode_enabled = (
|
|
not torch._C._is_torch_function_all_disabled()
|
|
)
|
|
|
|
self.cur_mode = None
|
|
|
|
TorchFunctionModeStackVariable.reset()
|
|
|
|
self.mode_stack: Deque[TorchFunctionModeVariable] = collections.deque()
|
|
|
|
for i, val in enumerate(py_stack):
|
|
self.mode_stack.append(
|
|
LazyVariableTracker.create(val, source=TorchFunctionModeStackSource(i))
|
|
)
|
|
|
|
def in_torch_function_mode(self):
|
|
return len(self.mode_stack) > 0
|
|
|
|
def pop_torch_function_mode(self):
|
|
return self.mode_stack.pop()
|
|
|
|
def push_torch_function_mode(self, mode_var):
|
|
self.mode_stack.append(mode_var)
|
|
|
|
def call_torch_function_mode(self, tx, fn, types, args, kwargs):
|
|
with self._pop_mode_for_inlining() as cur_mode:
|
|
return cur_mode.call_torch_function(tx, fn, types, args, kwargs)
|
|
|
|
@contextlib.contextmanager
|
|
def _pop_mode_for_inlining(self):
|
|
old_mode = self.cur_mode
|
|
self.cur_mode = self.pop_torch_function_mode()
|
|
try:
|
|
yield self.cur_mode
|
|
finally:
|
|
mode = self.cur_mode
|
|
self.cur_mode = old_mode
|
|
self.push_torch_function_mode(mode)
|
|
|
|
|
|
class TorchFunctionModeStackVariable(VariableTracker):
|
|
"""Fake VT to use as a dummy object, indicating the presence of torch function mode stack mutation"""
|
|
|
|
# singleton value representing the global torch function mode stack
|
|
# singleton (it exists in C++)
|
|
stack_value_singleton = object()
|
|
|
|
# offset is used to track if we have inserted/removed a
|
|
# device context which is always placed at the bottom of the stack
|
|
# if a device context is inserted, the graph will run this mutation
|
|
# so when we want to reconstruct any other modes on the stack
|
|
# their indices should be shifted right by 1 (+1)
|
|
# Conversely, if there was a device context on the stack, and the graph
|
|
# mutates the stack to remove that context (set default device to None)
|
|
# each of the indices of other modes should be shifted left by 1 (-1)
|
|
offset = 0
|
|
|
|
def __init__(self, source, symbolic_stack):
|
|
self.source = source
|
|
self.symbolic_stack = symbolic_stack
|
|
|
|
@classmethod
|
|
def reset(cls):
|
|
cls.offset = 0
|
|
|
|
@classmethod
|
|
def register_mutation(cls, tx: "InstructionTranslator"):
|
|
if cls.stack_value_singleton not in tx.output.side_effects:
|
|
var = cls(
|
|
source=Source(),
|
|
symbolic_stack=tx.symbolic_torch_function_state.mode_stack,
|
|
)
|
|
tx.output.side_effects.track_mutable(cls.stack_value_singleton, var)
|
|
tx.output.side_effects.mutation(var)
|
|
|
|
@classmethod
|
|
def register_device_context_insertion(cls, tx: "InstructionTranslator"):
|
|
stack = tx.symbolic_torch_function_state.mode_stack
|
|
if stack and cls.is_device_context(stack[0]):
|
|
return
|
|
else:
|
|
cls.offset += 1
|
|
stack.insert(
|
|
0,
|
|
TorchFunctionModeVariable(
|
|
None, source=TorchFunctionModeStackSource(-cls.offset)
|
|
),
|
|
)
|
|
|
|
@classmethod
|
|
def clear_default_device(cls, tx: "InstructionTranslator"):
|
|
stack = tx.symbolic_torch_function_state.mode_stack
|
|
if stack and cls.is_device_context(stack[0]):
|
|
stack.popleft()
|
|
cls.offset -= 1
|
|
|
|
@staticmethod
|
|
def is_device_context(var):
|
|
return isinstance(var.value, DeviceContext) or var.value is None
|
|
|
|
@classmethod
|
|
def get_mode_index(cls, ind):
|
|
return ind + cls.offset
|
|
|
|
|
|
class TorchFunctionModeVariable(GenericContextWrappingVariable):
|
|
@staticmethod
|
|
def is_supported_torch_function_mode(ty):
|
|
# Supported in this sense means we can support graph breaks under the
|
|
# context.
|
|
# We are able to trace custom modes but if there are graph breaks under them
|
|
# and they have a custom __enter__/__exit__ we don't handle this for the
|
|
# same reason we don't handle generic context managers: there may be side effects
|
|
# that are now affected by executing the funtion across two frames instead of one
|
|
# Today we support the enter/exit of the default TorchFunctionMode as well as
|
|
# DeviceContext (which is used for set_default_device)
|
|
return issubclass(ty, (NoEnterTorchFunctionMode, DeviceContext)) or (
|
|
not class_has_getattribute(ty)
|
|
and inspect.getattr_static(ty, "__enter__") == TorchFunctionMode.__enter__
|
|
and inspect.getattr_static(ty, "__exit__") == TorchFunctionMode.__exit__
|
|
)
|
|
|
|
def __init__(self, value, source=None, **kwargs):
|
|
if value is not None:
|
|
super().__init__(value, **kwargs)
|
|
self.value = value
|
|
self.cm_obj = value # needed for BC with calling enter from CM code
|
|
self.source = source
|
|
|
|
def reconstruct(self, codegen):
|
|
# This shouldn't be called unless we have a source
|
|
assert self.source
|
|
self.source.reconstruct(codegen)
|
|
|
|
def module_name(self):
|
|
return self.value.__module__
|
|
|
|
def fn_name(self):
|
|
return type(self.value).__name__
|
|
|
|
def python_type(self):
|
|
return type(self.value)
|
|
|
|
def call_torch_function(self, tx: "InstructionTranslator", fn, types, args, kwargs):
|
|
return call_torch_function(
|
|
tx,
|
|
self,
|
|
build_torch_function_fn(tx, self.value, self.source),
|
|
fn,
|
|
types,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
def enter(self, tx):
|
|
from .torch import TorchInGraphFunctionVariable
|
|
|
|
if isinstance(self.value, NoEnterTorchFunctionMode):
|
|
return ConstantVariable.create(None)
|
|
|
|
TorchInGraphFunctionVariable(
|
|
torch._C._push_on_torch_function_stack
|
|
).call_function(tx, [self], {})
|
|
return ConstantVariable.create(None)
|
|
|
|
def exit(self, tx: "InstructionTranslator", *args):
|
|
from .torch import TorchInGraphFunctionVariable
|
|
|
|
TorchInGraphFunctionVariable(torch._C._pop_torch_function_stack).call_function(
|
|
tx, [], {}
|
|
)
|
|
return ConstantVariable.create(None)
|
|
|
|
def reconstruct_type(self, codegen):
|
|
ty = NoEnterTorchFunctionMode
|
|
codegen(
|
|
AttrSource(
|
|
codegen.tx.import_source(ty.__module__),
|
|
ty.__name__,
|
|
)
|
|
)
|
|
|
|
def supports_graph_breaks(self):
|
|
return True
|
|
|
|
def exit_on_graph_break(self):
|
|
return False
|
|
|
|
|
|
def _get_all_args(args, kwargs):
|
|
return _flatten_vts(pytree.arg_tree_leaves(*args, **kwargs))
|
|
|
|
|
|
def _flatten_vts(vts):
|
|
from collections import deque
|
|
|
|
from .dicts import ConstDictVariable
|
|
from .lazy import LazyVariableTracker
|
|
from .lists import ListVariable
|
|
|
|
vts = deque(vts)
|
|
output = []
|
|
|
|
while vts:
|
|
vt = vts.pop()
|
|
LazyVariableTracker.realize_all(vt)
|
|
if isinstance(vt, ListVariable):
|
|
vts.extend(vt.items)
|
|
elif isinstance(vt, ConstDictVariable):
|
|
vts.extend(vt.items.values())
|
|
else:
|
|
output.append(vt)
|
|
|
|
return output
|
|
|
|
|
|
def _get_subclass_type(var):
|
|
assert isinstance(var, (TensorWithTFOverrideVariable, UserDefinedObjectVariable))
|
|
return var.python_type()
|
|
|
|
|
|
def _get_subclass_type_var(tx: "InstructionTranslator", var):
|
|
assert isinstance(var, (TensorWithTFOverrideVariable, UserDefinedObjectVariable))
|
|
if isinstance(var, TensorWithTFOverrideVariable):
|
|
return var.class_type_var(tx)
|
|
elif isinstance(var, UserDefinedObjectVariable):
|
|
from .builder import SourcelessBuilder, VariableBuilder
|
|
|
|
if var.source:
|
|
return VariableBuilder(tx, TypeSource(var.source))(var.python_type())
|
|
else:
|
|
return SourcelessBuilder.create(tx, var.python_type())
|
|
|
|
|
|
def _is_attr_overidden(tx: "InstructionTranslator", var, name):
|
|
import torch
|
|
|
|
overridden = False
|
|
try:
|
|
attr_val = inspect.getattr_static(var.python_type(), name)
|
|
overridden |= attr_val != getattr(torch.Tensor, name)
|
|
except AttributeError:
|
|
pass
|
|
|
|
return overridden
|
|
|
|
|
|
def call_torch_function(
|
|
tx, torch_function_type, torch_function_var, fn, types, args, kwargs
|
|
):
|
|
from .builder import SourcelessBuilder
|
|
|
|
# signature:
|
|
# def __torch_function__(cls, func, types, args=(), kwargs=None):
|
|
tf_args = (
|
|
torch_function_type,
|
|
fn,
|
|
types,
|
|
SourcelessBuilder.create(tx, tuple(args)),
|
|
SourcelessBuilder.create(tx, kwargs),
|
|
)
|
|
return tx.inline_user_function_return(torch_function_var, tf_args, {})
|
|
|
|
|
|
def build_torch_function_fn(tx: "InstructionTranslator", value, source):
|
|
from .builder import SourcelessBuilder, VariableBuilder
|
|
|
|
if source:
|
|
return VariableBuilder(
|
|
tx,
|
|
AttrSource(AttrSource(source, "__torch_function__"), "__func__"),
|
|
)(value.__torch_function__.__func__)
|
|
else:
|
|
return SourcelessBuilder.create(tx, value.__torch_function__.__func__)
|
|
|
|
|
|
def can_dispatch_torch_function(tx: "InstructionTranslator", args, kwargs):
|
|
has_overridden_args = any(
|
|
has_torch_function(arg) for arg in _get_all_args(args, kwargs)
|
|
)
|
|
tf_state = tx.symbolic_torch_function_state
|
|
return (has_overridden_args and tf_state.torch_function_subclass_enabled) or (
|
|
tf_state.torch_function_mode_enabled and tf_state.in_torch_function_mode()
|
|
)
|
|
|
|
|
|
def dispatch_torch_function(tx: "InstructionTranslator", fn, args, kwargs):
|
|
"""Gathers all args that are TensorWithTFOverrideVariable and dispatches based on the ordering in _get_overloaded_args"""
|
|
|
|
all_args = _get_all_args(args, kwargs)
|
|
overloaded_args = _get_overloaded_args(
|
|
[arg for arg in all_args if has_torch_function(arg)],
|
|
_get_subclass_type,
|
|
)
|
|
|
|
types = TupleVariable([_get_subclass_type_var(tx, arg) for arg in overloaded_args])
|
|
|
|
if tx.symbolic_torch_function_state.in_torch_function_mode():
|
|
res = tx.symbolic_torch_function_state.call_torch_function_mode(
|
|
tx, fn, types, args, kwargs
|
|
)
|
|
if not (isinstance(res, ConstantVariable) and res.value is NotImplemented):
|
|
return res
|
|
|
|
for arg in overloaded_args:
|
|
res = arg.call_torch_function(
|
|
tx,
|
|
fn,
|
|
types,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
if not (isinstance(res, ConstantVariable) and res.value is NotImplemented):
|
|
return res
|
|
|
|
unimplemented(
|
|
f"All __torch_function__ overrides for call {fn} with args {args} and kwargs {kwargs} returned NotImplemented"
|
|
)
|
|
|
|
|
|
class TensorWithTFOverrideVariable(TensorVariable):
|
|
"""
|
|
Represents a tensor subclass instance with a __torch_function__ override.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
self.torch_function_fn = kwargs.pop("torch_function_fn")
|
|
super().__init__(*args, **kwargs)
|
|
|
|
@classmethod
|
|
def from_tensor_var(cls, tx, tensor_var, class_type, torch_function_fn):
|
|
import torch
|
|
|
|
kwargs = dict(tensor_var.__dict__)
|
|
assert (
|
|
kwargs.pop("class_type") is torch.Tensor
|
|
), "invalid class type in TensorWithTFOverrideVariable.from_tensor_var"
|
|
var = cls(torch_function_fn=torch_function_fn, class_type=class_type, **kwargs)
|
|
var.install_global(tx)
|
|
return var
|
|
|
|
def install_global(self, tx):
|
|
# stash the subclass type to rewrap an output tensor if needed
|
|
# this is needed because the actual type needs to be available
|
|
# each time the compiled artifact is run and outputs a wrapped tensor.
|
|
if self.global_mangled_class_name(tx) not in tx.output.global_scope:
|
|
# Safe because global_mangled_class_name figures it out
|
|
tx.output.install_global_unsafe(
|
|
self.global_mangled_class_name(tx), self.class_type
|
|
)
|
|
|
|
def python_type(self):
|
|
return self.class_type
|
|
|
|
def class_type_var(self, tx):
|
|
return TensorSubclassVariable(
|
|
self.class_type, source=GlobalSource(self.global_mangled_class_name(tx))
|
|
)
|
|
|
|
def global_mangled_class_name(self, tx):
|
|
return get_safe_global_name(
|
|
tx, f"__subclass_{self.class_type.__name__}", self.class_type
|
|
)
|
|
|
|
def var_getattr(self, tx: "InstructionTranslator", name):
|
|
# [Note: __torch_function__] We currently only support attributes that are defined on
|
|
# base tensors, custom attribute accesses will graph break.
|
|
import torch
|
|
|
|
from .builder import SourcelessBuilder
|
|
|
|
if name in banned_attrs:
|
|
unimplemented(
|
|
f"Accessing {name} on a tensor subclass with a __torch_function__ override is not supported"
|
|
)
|
|
|
|
if _is_attr_overidden(tx, self, name):
|
|
unimplemented(
|
|
f"Accessing overridden method/attribute {name} on a tensor"
|
|
" subclass with a __torch_function__ override is not supported"
|
|
)
|
|
|
|
if tx.output.torch_function_enabled and hasattr(torch.Tensor, name):
|
|
if self.source:
|
|
install_guard(
|
|
AttrSource(AttrSource(self.source, "__class__"), name).make_guard(
|
|
GuardBuilder.FUNCTION_MATCH
|
|
)
|
|
)
|
|
get_fn = SourcelessBuilder.create(tx, getattr(torch.Tensor, name).__get__)
|
|
|
|
return self.call_torch_function(
|
|
tx,
|
|
get_fn,
|
|
TupleVariable([self.class_type_var(tx)]),
|
|
[self],
|
|
{},
|
|
)
|
|
else:
|
|
return super().var_getattr(tx, name)
|
|
|
|
def call_torch_function(self, tx: "InstructionTranslator", fn, types, args, kwargs):
|
|
return call_torch_function(
|
|
tx,
|
|
self.class_type_var(tx),
|
|
self.torch_function_fn,
|
|
fn,
|
|
types,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
# This code block implements inlining the __torch_function__ override
|
|
# of `call_method`.
|
|
if tx.output.torch_function_enabled:
|
|
import torch
|
|
|
|
from .builder import SourcelessBuilder, VariableBuilder
|
|
|
|
if _is_attr_overidden(tx, self, name):
|
|
unimplemented(
|
|
f"Calling overridden method {name} on a tensor"
|
|
" subclass with a __torch_function__ override is not supported"
|
|
)
|
|
|
|
# [Note: __torch_function__] Currently we only support methods that are defined on tensor
|
|
# we will graph break in other cases this will need a bigger overhaul of extracting methods/comparing them for equality
|
|
# We've established with the above check that the method is not overridden, so we guard that the method is the same
|
|
# as the impl defined on tensor and retrieve it
|
|
if self.source:
|
|
func_var = VariableBuilder(
|
|
tx, AttrSource(AttrSource(self.source, "__class__"), name)
|
|
)(inspect.getattr_static(self.python_type(), name))
|
|
else:
|
|
func_var = SourcelessBuilder.create(tx, getattr(torch.Tensor, name))
|
|
return dispatch_torch_function(tx, func_var, [self] + args, kwargs)
|
|
else:
|
|
return super().call_method(tx, name, args, kwargs)
|