Files
pytorch/test/test_native_mha.py
Xinya Zhang 424156c26c [ROCm] Update to AOTriton 0.8b (#140172)
Notable new features for SDPA operators on AMD systems from AOTriton 0.8b:

1. Nestedtensor support;
2. MQA/GQA support;
3. Restore Efficient attention support for causal=True and seqlen_q != seqlen_k cases;
    + The kernel should use top-left alignment, bottom right alignment will be added later
4. Move gfx1100 (RX7900/W7800/W7900) out of experimental support status.
   However, users are strongly recommended to update to ROCM 6.2.4, notably for
   its firmware updates.

Related unit tests are enabled as well.

Notable related changes from AOTriton 0.8b:

1. AOTriton 0.8b moves the GPU kernel out of libaotriton.so to a separate directory `aotriton.images`;
2. LZMA replaces ZSTD as GPU kernel compression algorithm for better compression ratio: aotriton0.8b (.so + aotriton.images take 350MB) compared to aotriton0.7b .so: 800MB
3. The compression cannot be disabled now, and `liblzma` is hard run-time dependency.
    + Should not be a problem, since `lzma` is part of Python Standard Library

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140172
Approved by: https://github.com/jithunnair-amd, https://github.com/jeffdaily

Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
2024-12-06 21:45:18 +00:00

337 lines
14 KiB
Python

# Owner(s): ["module: nn"]
import math
import copy
import torch
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import parametrize, run_tests, TestCase, TEST_WITH_ROCM
class TestMHADeviceType(TestCase):
@torch.no_grad()
def _test_transform_bias_rescale_qkv_impl(
self, device, dtype, use_nt, use_padding=False
):
tests = [
(64, 4, 16, 8),
# dim_per_head = 12 does not divide evenly by CPU vectorization length of 8
(24, 2, 4, 2),
# Make sure CUDA can handle small input sizes
(2, 2, 2, 2),
# dim_per_head = 6 does not divide evenly by CUDA vectorization length of 4,
# causes alignment issues
(24, 4, 4, 2),
(48, 4, 16, 8),
]
for (embed_dim, num_heads, bs, sl) in tests:
with self.subTest(embed_dim=embed_dim, num_heads=num_heads, bs=bs, sl=sl):
torch.manual_seed(9343)
dense_x = x = (
torch.randn(bs, sl, 3 * embed_dim, device=device, dtype=dtype) * 10
)
if use_padding:
x[0][-1] = torch.full(x[0][-1].shape, float("-Inf"))
if use_nt:
xs = list(torch.unbind(x))
if use_padding:
xs[0] = xs[0][:-1]
x = torch.nested.nested_tensor(xs, device=device, dtype=dtype)
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
# We have to use inference_mode here because q/k/v are
# all views of the same Tensor, which autograd doesn't
# like. This is fine because this function is only
# exposed to Python for purposes of writing this test.
with torch.inference_mode():
(q, k, v) = torch._transform_bias_rescale_qkv(
x, qkv.bias, num_heads=num_heads
)
def simple_transform_bias_rescale_qkv(qkv, bias):
(q, k, v) = torch.split(qkv, embed_dim, dim=-1)
(q_bias, k_bias, v_bias) = torch.split(bias, embed_dim, dim=-1)
def embiggen(x):
if not use_nt:
return x
b, t, d = x.size()
t = t + (8 - t % 8) % 8
newsize = (b, t, d)
new_x = torch.zeros(newsize, device=device, dtype=dtype)
new_x[:x.size()[0], :x.size()[1], :x.size()[2]] = x
return new_x
return tuple(
embiggen(x).reshape(
(bs, -1, num_heads, embed_dim // num_heads)
).transpose(2, 1)
for x in (
(q + q_bias) / math.sqrt(embed_dim // num_heads),
(k + k_bias),
(v + v_bias),
)
)
correct_q, correct_k, correct_v = simple_transform_bias_rescale_qkv(
dense_x, qkv.bias
)
if use_nt and use_padding:
for t in (correct_q, correct_k, correct_v):
t[t == float("-Inf")] = 0
self.assertEqual(q.size(), correct_q.size())
torch.testing.assert_close(q, correct_q)
torch.testing.assert_close(k, correct_k)
torch.testing.assert_close(v, correct_v)
@dtypesIfCUDA(torch.float)
@dtypes(torch.float)
@skipMeta
def test_transform_bias_rescale_qkv(self, device, dtype):
for use_padding in (False, True):
with self.subTest(use_padding=use_padding):
self._test_transform_bias_rescale_qkv_impl(
device, dtype, use_nt=False, use_padding=use_padding
)
@dtypesIfCUDA(torch.float)
@dtypes(torch.float)
@skipMeta
@onlyCUDA
def test_transform_bias_rescale_qkv_nested(self, device, dtype):
for use_padding in (False, True):
with self.subTest(use_padding=use_padding):
self._test_transform_bias_rescale_qkv_impl(
device, dtype, use_nt=True, use_padding=use_padding
)
def _test_multihead_attention_impl(
self, device, dtype, mode, use_nt, need_weights, average_attn_weights, use_padding=False, pad_all=False
):
embed_dim = 64
num_heads = 4
bs = 16
sl = 8
q = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
if use_padding:
if pad_all:
for q_i in q:
q_i[-1] = torch.zeros_like(q[0][-1], device=device, dtype=torch.float32)
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
for mask_i in mask:
mask_i[-1] = True
else:
q[0][-1] = torch.zeros_like(q[0][-1], device=device, dtype=torch.float32)
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
mask[0][-1] = True
if mode == "self":
k = q
v = q
elif mode == "encdec":
k = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
v = k
elif mode == "generic":
k = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
v = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
else:
self.fail(f"invalid mode `{mode}`!")
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=torch.float32)
native_qkv = copy.deepcopy(qkv).to(dtype=dtype)
proj = torch.nn.Linear(embed_dim, embed_dim, device=device, dtype=torch.float32)
native_proj = copy.deepcopy(proj).to(dtype=dtype)
pt = torch.nn.MultiheadAttention(
embed_dim, num_heads, batch_first=True, device=device, dtype=torch.float32
)
pt.in_proj_weight = qkv.weight
pt.in_proj_bias = qkv.bias
pt.out_proj.weight = proj.weight
pt.out_proj.bias = proj.bias
class NativeMHA(torch.nn.Module):
def __init__(self, embed_dim, num_heads, qkv, proj):
super().__init__()
self.qkv = qkv
self.proj = proj
self.embed_dim = embed_dim
self.num_heads = num_heads
def forward(self, q, k, v, key_padding_mask):
return torch._native_multi_head_attention(
q,
k,
v,
self.embed_dim,
self.num_heads,
self.qkv.weight,
self.qkv.bias,
self.proj.weight,
self.proj.bias,
key_padding_mask,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
mask_type=1, # mask_type = 1 => src_key_padding_mask, mask_type = 0 => src_mask
)
npt = NativeMHA(
embed_dim=embed_dim, num_heads=num_heads, qkv=native_qkv, proj=native_proj
).to(dtype)
if device == "cuda":
pt = pt.cuda()
npt = npt.cuda()
ypt, weight_pt = pt(
q,
k,
v,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
key_padding_mask=mask if use_padding else None,
)
if use_nt:
qs = list(torch.unbind(q))
if use_padding:
if pad_all:
qs = [x[:-1] for x in qs]
else:
qs[0] = qs[0][:-1]
q = torch.nested.nested_tensor(qs, device=device, dtype=dtype)
if mode == "self":
k = v = q
elif mode == "encdec":
k = torch.nested.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
v = k
else:
k = torch.nested.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
v = torch.nested.nested_tensor(torch.unbind(v), device=device, dtype=dtype)
native_q = q.to(dtype=dtype)
native_k = k.to(dtype=dtype)
native_v = v.to(dtype=dtype)
ynpt, weight_npt = npt(
native_q, native_k, native_v, key_padding_mask=mask if use_padding and not use_nt else None
)
if use_nt:
ynpt = ynpt.to_padded_tensor(0)
if pad_all:
ynpt_final = torch.zeros_like(ypt)
ynpt_final[:, :ynpt.shape[1], :] = ynpt
ynpt = ynpt_final
def do_pad_all(tensors):
for t in tensors:
for t_i in t:
t_i[-1] = torch.zeros_like(t_i[-1], device=device, dtype=dtype)
# PyTorch implementation returns non-zero junk in the padding
# locations; overwrite it so that the comparison works out.
if use_padding:
ypt[0][-1] = torch.zeros_like(ypt[0][-1], device=device, dtype=dtype)
ynpt[0][-1] = torch.zeros_like(ynpt[0][-1], device=device, dtype=dtype)
if pad_all:
do_pad_all((ypt, ynpt))
# Zero the last row of each TxT weight matrix
if need_weights:
if average_attn_weights:
weight_pt[0][-1] = torch.zeros_like(weight_pt[0][-1], device=device, dtype=dtype)
weight_npt[0][-1] = torch.zeros_like(weight_npt[0][-1], device=device, dtype=dtype)
if pad_all:
do_pad_all((weight_pt, weight_npt))
else:
for nh in range(num_heads):
weight_pt[0][nh][-1] = torch.zeros_like(weight_pt[0][nh][-1], device=device, dtype=dtype)
weight_npt[0][nh][-1] = torch.zeros_like(weight_npt[0][nh][-1], device=device, dtype=dtype)
if dtype == torch.half:
torch.testing.assert_close(ypt, ynpt.to(torch.float32), atol=1e-3, rtol=1e-3)
else:
# High rtol seems necessary for
# test_native_multihead_attention_cpu_float32 on Windows,
# otherwise 2e-4 would likely be fine.
torch.testing.assert_close(ypt, ynpt, atol=2e-5, rtol=2e-3)
if need_weights:
torch.testing.assert_close(weight_pt, weight_npt.to(torch.float32), atol=5e-4, rtol=5e-4)
else:
self.assertEqual(weight_pt, weight_npt)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@parametrize("use_nt", [False, True])
@parametrize("use_padding, pad_all", [(False, False), (True, False), (True, True)])
@parametrize("need_weights", [False])
@parametrize("average_attn_weights", [False, True])
@parametrize("fused", [False, True])
@torch.no_grad()
def test_native_multihead_self_attention(self, device, dtype, use_nt,
need_weights, average_attn_weights, use_padding, pad_all, fused):
if TEST_WITH_ROCM:
if use_nt and use_padding and pad_all:
self.skipTest("Large numerical errors on ROCM to investigate.")
if use_padding and not pad_all and fused:
self.skipTest("Large numerical errors on ROCM to investigate.")
for need_weights in (False, not pad_all):
with self.subTest(use_padding=use_padding, pad_all=pad_all,
use_nt=use_nt, need_weights=need_weights,
average_attn_weights=average_attn_weights):
with torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_mem_efficient=False
) if not fused else torch.backends.cuda.sdp_kernel(
enable_flash=True, enable_mem_efficient=True
):
self._test_multihead_attention_impl(
device,
dtype,
"self",
use_nt=use_nt,
use_padding=use_padding,
pad_all=pad_all,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@torch.no_grad()
def test_native_multihead_encoder_decoder_attention(self, device, dtype):
self._test_multihead_attention_impl(
device,
dtype,
"encdec",
use_nt=False,
need_weights=False,
average_attn_weights=False,
)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@torch.no_grad()
def test_native_multihead_attention(self, device, dtype):
self._test_multihead_attention_impl(
device,
dtype,
"generic",
use_nt=False,
need_weights=False,
average_attn_weights=False,
)
instantiate_device_type_tests(TestMHADeviceType, globals())
if __name__ == "__main__":
run_tests()