mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Support of effectful operations in backward: 1/ AOTD collects metadata from forward fn only, so we can have usage of effectful ops in backward, that were not used in forward => Allowing tokens discovery during joint function . FunctionalTensorMode holds _tokens, in Joint function after tracing forward we memoize _tokens as `_tokens_forward_output`. 2/ Tokens are added as primals inputs (forward) in EffectTokensWrapper. Tokens that will be used in backward are in partitioner saved values. We do not have control on which positions they are saved in forward outputs. 2/ If new tokens discovered in backward after tracing joint_fn, the result graph will be manually added in the end of primals. _aot_autograd/utils.py 3/ All effectful ops during backward are marked with 'must_be_in_backward' partitioner_tag, to prevent partiitoner to place them in forward. For that functional_tensor_mode got new optional state `self._effects_partitioner_tag` for effectful ops, to set after tracing forward. There are additional changes in partitioner to improve functionality of 'must_be_in_backward' 4/ Unlift tokens now should run for both forward and backward. - As saved for backward tokens are placed on non static places - we identify input and output tokens to erase, by input and output of `with_effects` operation - In forward we can have input tokens, discovered in backward, that are not used in with_effects ops in forward, but saved for backward. We identify them by position in forward inputs. 5/ Adding aot debug logging for graphs before unlifting and before adding additional primal for backward tokens. Tests: ``` python test/higher_order_ops/test_with_effects.py ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/132638 Approved by: https://github.com/bdhirsh
908 lines
35 KiB
Python
908 lines
35 KiB
Python
# Owner(s): ["module: functorch"]
|
|
# flake8: noqa: B950
|
|
import unittest
|
|
from collections import deque
|
|
from functools import partial
|
|
from typing import List, TYPE_CHECKING
|
|
|
|
import torch
|
|
import torch._dynamo
|
|
import torch._functorch
|
|
import torch._inductor
|
|
import torch._inductor.decomposition
|
|
from functorch.compile import (
|
|
aot_function,
|
|
default_decompositions,
|
|
min_cut_rematerialization_partition,
|
|
nop,
|
|
)
|
|
from torch._functorch.aot_autograd import aot_export_module
|
|
from torch._higher_order_ops.effects import with_effects
|
|
from torch._higher_order_ops.torchbind import enable_torchbind_tracing
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal.common_cuda import (
|
|
_get_torch_cuda_version,
|
|
SM70OrLater,
|
|
SM80OrLater,
|
|
)
|
|
from torch.testing._internal.common_quantization import skipIfNoDynamoSupport
|
|
from torch.testing._internal.common_utils import (
|
|
IS_WINDOWS,
|
|
run_tests,
|
|
skipIfTorchDynamo,
|
|
TEST_CUDA,
|
|
TEST_WITH_ROCM,
|
|
TestCase,
|
|
)
|
|
from torch.testing._internal.torchbind_impls import init_torchbind_implementations
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch.utils.hooks import RemovableHandle
|
|
|
|
from torch.testing._internal.two_tensor import TwoTensor
|
|
|
|
|
|
def extract_graph(fx_g, _, graph_cell):
|
|
graph_cell[0] = fx_g
|
|
return fx_g
|
|
|
|
|
|
def get_fw_bw_graph(
|
|
f, inps, partitioner=min_cut_rematerialization_partition, dynamic=False
|
|
):
|
|
fw_graph_cell = [None]
|
|
bw_graph_cell = [None]
|
|
requires_grad = False
|
|
|
|
def fn_req_grad(t):
|
|
nonlocal requires_grad
|
|
requires_grad = requires_grad or t.requires_grad
|
|
return t
|
|
|
|
torch.utils._pytree.tree_map_only(torch.Tensor, fn_req_grad, inps)
|
|
|
|
out = aot_function(
|
|
f,
|
|
fw_compiler=partial(extract_graph, graph_cell=fw_graph_cell),
|
|
bw_compiler=partial(extract_graph, graph_cell=bw_graph_cell)
|
|
if requires_grad
|
|
else nop,
|
|
partition_fn=partitioner,
|
|
decompositions=default_decompositions,
|
|
dynamic=dynamic,
|
|
)(*inps)
|
|
|
|
if requires_grad:
|
|
out.sum().backward()
|
|
|
|
return (fw_graph_cell[0], bw_graph_cell[0])
|
|
|
|
|
|
def make_inputs_non_leaves(inps):
|
|
return torch.utils._pytree.tree_map_only(torch.Tensor, lambda t: t.add(1), inps)
|
|
|
|
|
|
@unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't support")
|
|
class TestWithEffects(TestCase):
|
|
def setUp(self):
|
|
init_torchbind_implementations()
|
|
|
|
def test_print(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
torch.ops.aten._print("moo")
|
|
res = x + x
|
|
torch.ops.aten._print("moo")
|
|
return (res,)
|
|
|
|
inputs = (torch.randn(3),)
|
|
|
|
# Without functionalization, print should just appear in the graph directly
|
|
gm = make_fx(M())(*inputs)
|
|
FileCheck().check_count("torch.ops.aten._print.default", 2, exactly=True).run(
|
|
gm.code
|
|
)
|
|
|
|
# With functionalization, it should appear wrapped with with_effects()
|
|
gm, gs = aot_export_module(M(), inputs, trace_joint=False)
|
|
self.assertExpectedInline(
|
|
str(gm.code).strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops.aten._print.default, 'moo'); arg0_1 = None
|
|
getitem = with_effects[0]; with_effects = None
|
|
add = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
|
|
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
|
|
getitem_2 = with_effects_1[0]; with_effects_1 = None
|
|
return (getitem_2, add)""",
|
|
)
|
|
self.assertEqual(len(gs.input_tokens), 1)
|
|
self.assertEqual(len(gs.output_tokens), 1)
|
|
|
|
with torch._functorch.config.patch(unlift_effect_tokens=True):
|
|
gm, gs = aot_export_module(M(), inputs, trace_joint=False)
|
|
self.assertExpectedInline(
|
|
str(gm.code).strip(),
|
|
"""\
|
|
def forward(self, arg1_1):
|
|
_make_token_default = torch.ops.prims._make_token.default()
|
|
with_effects = torch.ops.higher_order.with_effects(_make_token_default, torch.ops.aten._print.default, 'moo'); _make_token_default = None
|
|
getitem = with_effects[0]; with_effects = None
|
|
add = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
|
|
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
|
|
getitem_2 = with_effects_1[0]; with_effects_1 = None
|
|
_sink_tokens_default = torch.ops.prims._sink_tokens.default([getitem_2]); getitem_2 = _sink_tokens_default = None
|
|
return [add]""", # noqa: B950
|
|
)
|
|
|
|
def test_torchbind_custom_op(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
|
|
|
|
def forward(self, x):
|
|
return (x + torch.ops._TorchScriptTesting.takes_foo(self.attr, x),)
|
|
|
|
with enable_torchbind_tracing():
|
|
gm, gs = aot_export_module(M(), (torch.ones(2, 3),), trace_joint=False)
|
|
|
|
self.assertExpectedInline(
|
|
str(gm.code).strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
_torchbind_obj0 = self._torchbind_obj0
|
|
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops._TorchScriptTesting.takes_foo.default, _torchbind_obj0, arg1_1); arg0_1 = _torchbind_obj0 = None
|
|
getitem = with_effects[0]
|
|
getitem_1 = with_effects[1]; with_effects = None
|
|
add = torch.ops.aten.add.Tensor(arg1_1, getitem_1); arg1_1 = getitem_1 = None
|
|
return (getitem, add)""", # noqa: B950
|
|
)
|
|
self.assertEqual(len(gs.input_tokens), 1)
|
|
self.assertEqual(len(gs.output_tokens), 1)
|
|
|
|
def test_print_with_buffer_mutations(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.buf = torch.nn.Buffer(torch.ones(3))
|
|
|
|
def forward(self, x):
|
|
torch.ops.aten._print("moo")
|
|
res = x + x
|
|
self.buf.add_(res)
|
|
res = self.buf + x
|
|
torch.ops.aten._print("moo")
|
|
return (res,)
|
|
|
|
inputs = (torch.randn(3),)
|
|
|
|
# With functionalization, it should appear wrapped with with_effects()
|
|
gm, gs = aot_export_module(M(), inputs, trace_joint=False)
|
|
self.assertExpectedInline(
|
|
str(gm.code).strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops.aten._print.default, 'moo'); arg0_1 = None
|
|
getitem = with_effects[0]; with_effects = None
|
|
add = torch.ops.aten.add.Tensor(arg2_1, arg2_1)
|
|
add_1 = torch.ops.aten.add.Tensor(arg1_1, add); arg1_1 = add = None
|
|
add_2 = torch.ops.aten.add.Tensor(add_1, arg2_1); arg2_1 = None
|
|
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
|
|
getitem_2 = with_effects_1[0]; with_effects_1 = None
|
|
return (getitem_2, add_1, add_2)""",
|
|
)
|
|
self.assertEqual(len(gs.input_tokens), 1)
|
|
self.assertEqual(len(gs.output_tokens), 1)
|
|
self.assertEqual(len(gs.buffers_to_mutate), 1)
|
|
|
|
def test_print_with_input_mutations(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
torch.ops.aten._print("moo")
|
|
res = x + x
|
|
x.add_(res)
|
|
res = x + x
|
|
torch.ops.aten._print("moo")
|
|
return (res,)
|
|
|
|
inputs = (torch.randn(3),)
|
|
|
|
# With functionalization, it should appear wrapped with with_effects()
|
|
gm, gs = aot_export_module(M(), inputs, trace_joint=False)
|
|
self.assertEqual(len(gs.input_tokens), 1)
|
|
self.assertEqual(len(gs.output_tokens), 1)
|
|
self.assertEqual(len(gs.user_inputs_to_mutate), 1)
|
|
|
|
def test_alias_op(self):
|
|
def f(token, x):
|
|
token, out = with_effects(token, torch.ops.aten.absolute_.default, x)
|
|
return token, out
|
|
|
|
with self.assertRaisesRegex(
|
|
AssertionError, r"Ops with aliasing is not supported"
|
|
):
|
|
make_fx(f)(torch.tensor([]), torch.tensor(4))
|
|
|
|
def test_compile_aot_eager(self):
|
|
def f(x):
|
|
torch.ops.aten._print("moo")
|
|
res = x + x
|
|
torch.ops.aten._print("moo")
|
|
return res
|
|
|
|
inputs = (torch.randn(2, 3),)
|
|
|
|
res = torch.compile(f, backend="aot_eager")(*inputs)
|
|
self.assertTrue(torch.allclose(res, f(*inputs)))
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "triton")
|
|
@unittest.skipIf(not SM70OrLater, "triton")
|
|
def test_compile_inductor(self):
|
|
def f(x):
|
|
torch.ops.aten._print("moo")
|
|
res = x + x
|
|
torch.ops.aten._print("moo")
|
|
return res
|
|
|
|
inputs = (torch.randn(2, 3),)
|
|
|
|
res = torch.compile(f, backend="inductor")(*inputs)
|
|
self.assertTrue(torch.allclose(res, f(*inputs)))
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Skipped on Windows!")
|
|
@skipIfNoDynamoSupport
|
|
def test_compile_inductor_external_op_return_none(self):
|
|
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
|
|
torch.library.define(
|
|
"mylib::inplace_add",
|
|
"(Tensor input, Tensor(a!) output) -> ()",
|
|
lib=lib,
|
|
)
|
|
|
|
def inplace_add(input: torch.Tensor, output: torch.Tensor) -> None:
|
|
assert input.device == output.device
|
|
output.add_(input)
|
|
|
|
lib.impl("inplace_add", inplace_add, "CompositeExplicitAutograd")
|
|
|
|
def f(x):
|
|
out = torch.empty(3)
|
|
out = torch.zeros_like(out)
|
|
torch.ops.mylib.inplace_add(x, out)
|
|
return out
|
|
|
|
inputs = (torch.randn(3),)
|
|
|
|
res = torch.compile(f, backend="inductor")(*inputs)
|
|
self.assertTrue(torch.allclose(res, f(*inputs)))
|
|
|
|
def test_compile_aot_eager_requires_grad(self):
|
|
def f(x):
|
|
torch.ops.aten._print("moo")
|
|
res = x + x
|
|
torch.ops.aten._print("moo")
|
|
return res
|
|
|
|
inputs = (torch.randn(2, 3, requires_grad=True),)
|
|
|
|
res = torch.compile(f, backend="aot_eager")(*inputs)
|
|
self.assertTrue(torch.allclose(res, f(*inputs)))
|
|
|
|
res.sum().backward()
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "triton")
|
|
@unittest.skipIf(TEST_WITH_ROCM, "triton")
|
|
@unittest.skipIf(not SM80OrLater, "triton")
|
|
@unittest.skipIf(_get_torch_cuda_version() >= (11, 7), "triton")
|
|
@unittest.skipIf(not TEST_CUDA, "triton")
|
|
@skipIfNoDynamoSupport
|
|
def test_register_effectful_custom_op(self):
|
|
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
|
|
torch._dynamo.config.capture_scalar_outputs = True
|
|
torch._dynamo.config.capture_dynamic_output_shape_ops = True
|
|
|
|
torch.library.define(
|
|
"mylib::record_scalar_tensor",
|
|
"(Tensor x, str prefix) -> ()",
|
|
lib=lib,
|
|
)
|
|
|
|
# global variable to store the recorded tensor and prefix.
|
|
recorded_dict = {}
|
|
|
|
# Pytorch custorm op implementation
|
|
@torch.library.impl(
|
|
"mylib::record_scalar_tensor",
|
|
"CompositeExplicitAutograd",
|
|
lib=lib,
|
|
)
|
|
def record_scalar_tensor(x, prefix):
|
|
recorded_dict[prefix] = x.clone()
|
|
return
|
|
|
|
# Meta function of the custom op
|
|
@torch.library.impl_abstract(
|
|
"mylib::record_scalar_tensor",
|
|
lib=lib,
|
|
)
|
|
def record_scalar_tensor_meta(x, prefix):
|
|
return
|
|
|
|
from torch._higher_order_ops.effects import (
|
|
_EffectType,
|
|
_register_effectful_op,
|
|
)
|
|
|
|
_register_effectful_op(
|
|
torch.ops.mylib.record_scalar_tensor.default, _EffectType.ORDERED
|
|
)
|
|
|
|
my_config = {}
|
|
my_config["MockModule"] = "mean"
|
|
my_config["MockModule.linear"] = "mean"
|
|
my_config["MockModule.relu"] = "mean"
|
|
|
|
class MyLinear(torch.nn.Module):
|
|
def __init__(self, in_features, out_features):
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(
|
|
torch.randn(out_features, in_features), requires_grad=True
|
|
)
|
|
self.bias = torch.nn.Parameter(
|
|
torch.randn(out_features), requires_grad=True
|
|
)
|
|
|
|
def forward(self, x):
|
|
return torch.nn.functional.linear(x, self.weight, self.bias)
|
|
|
|
class MockModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = MyLinear(10, 10)
|
|
self.register_buffer(
|
|
"buf0", torch.randn(10, 10, requires_grad=True)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return torch.nn.functional.relu(self.linear(x) + self.buf0)
|
|
|
|
def forward_hook(
|
|
module: torch.nn.Module,
|
|
inputs: torch.Tensor,
|
|
output: torch.Tensor,
|
|
prefix: str,
|
|
aggregate_method: str,
|
|
) -> torch.Tensor:
|
|
if aggregate_method == "mean":
|
|
torch.ops.mylib.record_scalar_tensor(output.mean(), prefix)
|
|
elif aggregate_method == "max":
|
|
torch.ops.mylib.record_scalar_tensor(output.max(), prefix)
|
|
else:
|
|
# demo purpose, using "min"
|
|
torch.ops.mylib.record_scalar_tensor(output.sum(), prefix)
|
|
return output
|
|
|
|
def add_hooks(module, config):
|
|
handles: List[RemovableHandle] = []
|
|
q = deque([(module.__class__.__name__, module)])
|
|
while q:
|
|
name, m = q.pop()
|
|
children = [(name + "." + n, y) for (n, y) in m.named_children()]
|
|
q.extend(children)
|
|
aggregate_method = config.get(name, "mean")
|
|
prefix = name + ":" + aggregate_method
|
|
handle = m.register_forward_hook(
|
|
partial(
|
|
forward_hook,
|
|
prefix=prefix,
|
|
aggregate_method=aggregate_method,
|
|
)
|
|
)
|
|
if handle:
|
|
handles.append(handle)
|
|
return handles
|
|
|
|
x = torch.randn(10, 10, device="cuda")
|
|
mod = MockModule().to("cuda")
|
|
|
|
add_hooks(mod, my_config)
|
|
|
|
opt_mod = torch.compile(backend="inductor")(mod)
|
|
y = opt_mod(x)
|
|
|
|
self.assertTrue(torch.allclose(y, mod(x)))
|
|
# Ensure it works well with backward
|
|
y.sum().backward()
|
|
# Ensure the grad is existing
|
|
self.assertTrue(isinstance(opt_mod.linear.weight.grad, torch.Tensor))
|
|
|
|
self.assertEqual(len(recorded_dict), 2)
|
|
self.assertTrue("MockModule.linear:mean" in recorded_dict)
|
|
self.assertTrue("MockModule:mean" in recorded_dict)
|
|
|
|
@skipIfNoDynamoSupport
|
|
def test_effectful_custom_op_with_subclasses(self):
|
|
with torch.library._scoped_library("_mylib", "FRAGMENT") as lib:
|
|
lib.define("zoo(Tensor x) -> Tensor")
|
|
lib.define("zoo2(Tensor x) -> Tensor")
|
|
|
|
d = {"fw": 0, "bw": 0}
|
|
|
|
def reset_counter():
|
|
d["fw"] = 0
|
|
d["bw"] = 0
|
|
|
|
def assert_counter(fw, bw):
|
|
self.assertEqual(d["fw"], fw)
|
|
self.assertEqual(d["bw"], bw)
|
|
|
|
def foo_impl(a):
|
|
d["fw"] = d["fw"] + 1
|
|
return 2 * a.clone()
|
|
|
|
def foo_meta(a):
|
|
return a.clone()
|
|
|
|
def foo2_impl(x):
|
|
d["bw"] = d["bw"] + 1
|
|
return x.clone()
|
|
|
|
def foo2_meta(a):
|
|
return a.clone()
|
|
|
|
for backend in ["CPU", "CUDA"]:
|
|
lib.impl("zoo", foo_impl, backend)
|
|
lib.impl("zoo2", foo2_impl, backend)
|
|
lib.impl("zoo", foo_meta, "Meta")
|
|
lib.impl("zoo2", foo2_meta, "Meta")
|
|
|
|
def foo_bwd(ctx, grad):
|
|
torch.ops._mylib.zoo2(grad)
|
|
return grad.clone()
|
|
|
|
torch.library.register_autograd("_mylib::zoo", foo_bwd, lib=lib)
|
|
|
|
from torch._higher_order_ops.effects import (
|
|
_EffectType,
|
|
_register_effectful_op,
|
|
)
|
|
|
|
_register_effectful_op(torch.ops._mylib.zoo.default, _EffectType.ORDERED)
|
|
_register_effectful_op(torch.ops._mylib.zoo2.default, _EffectType.ORDERED)
|
|
|
|
def fn(x, y):
|
|
return torch.ops._mylib.zoo(x) + y
|
|
|
|
def ins_sc():
|
|
return (
|
|
TwoTensor(
|
|
torch.tensor([1.0, 2.0, 3.0]), torch.tensor([1.0, 2.0, 3.0])
|
|
),
|
|
torch.tensor([4.0, 5.0, 6.0]),
|
|
)
|
|
|
|
def ins_dense():
|
|
return torch.tensor([1.0, 2.0, 3.0]), torch.tensor([4.0, 5.0, 6.0])
|
|
|
|
for i, (ins_fn, expected_fw_count) in enumerate(
|
|
zip([ins_sc, ins_dense], [2, 1])
|
|
):
|
|
reset_counter()
|
|
ref_out = fn(*ins_fn())
|
|
assert_counter(expected_fw_count, 0)
|
|
|
|
compiled_fn = torch.compile(fn, backend="aot_eager")
|
|
out = compiled_fn(*ins_fn())
|
|
reset_counter()
|
|
out = compiled_fn(*ins_fn())
|
|
assert_counter(expected_fw_count, 0)
|
|
|
|
self.assertEqual(ref_out, out)
|
|
|
|
def ins_dense_req_grad():
|
|
return (
|
|
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
|
|
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
|
|
)
|
|
|
|
def ins_sc_req_grad():
|
|
return (
|
|
TwoTensor(
|
|
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
|
|
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
|
|
),
|
|
TwoTensor(
|
|
torch.tensor([7.0, 8.0, 9.0], requires_grad=True),
|
|
torch.tensor([10.0, 11.0, 12.0], requires_grad=True),
|
|
),
|
|
)
|
|
|
|
for i, (
|
|
ins_fn_req_grad,
|
|
(
|
|
expected_fw_count,
|
|
expected_fw_count_after_bw,
|
|
expected_bw_count_after_bw,
|
|
),
|
|
) in enumerate(
|
|
zip([ins_dense_req_grad, ins_sc_req_grad], [(1, 1, 1), (2, 2, 2)])
|
|
):
|
|
ref_ins = ins_fn_req_grad()
|
|
reset_counter()
|
|
ref_out = fn(*ref_ins)
|
|
assert_counter(expected_fw_count, 0)
|
|
ref_out.sum().backward()
|
|
assert_counter(expected_fw_count_after_bw, expected_bw_count_after_bw)
|
|
|
|
compiled_fn = torch.compile(fn, fullgraph=True)
|
|
|
|
ins = ins_fn_req_grad()
|
|
out = compiled_fn(*ins)
|
|
reset_counter()
|
|
out = compiled_fn(*ins)
|
|
assert_counter(expected_fw_count, 0)
|
|
self.assertEqual(ref_out, out)
|
|
out.sum().backward()
|
|
assert_counter(expected_fw_count_after_bw, expected_bw_count_after_bw)
|
|
self.assertEqual(ref_ins[1].grad, ins[1].grad)
|
|
self.assertEqual(ref_ins[0].grad, ins[0].grad)
|
|
|
|
fw_graph, bw_graph = get_fw_bw_graph(fn, ins_sc_req_grad())
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_1, primals_2, primals_3, primals_4, primals_5):
|
|
with_effects = torch.ops.higher_order.with_effects(primals_1, torch.ops._mylib.zoo.default, primals_2); primals_1 = primals_2 = None
|
|
getitem = with_effects[0]
|
|
getitem_1 = with_effects[1]; with_effects = None
|
|
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops._mylib.zoo.default, primals_3); getitem = primals_3 = None
|
|
getitem_2 = with_effects_1[0]
|
|
getitem_3 = with_effects_1[1]; with_effects_1 = None
|
|
add = torch.ops.aten.add.Tensor(getitem_1, primals_4); getitem_1 = primals_4 = None
|
|
add_1 = torch.ops.aten.add.Tensor(getitem_3, primals_5); getitem_3 = primals_5 = None
|
|
return (getitem_2, add, add_1)""",
|
|
)
|
|
self.assertExpectedInline(
|
|
bw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, tangents_1, tangents_2, tangents_token):
|
|
with_effects_2 = torch.ops.higher_order.with_effects(tangents_token, torch.ops._mylib.zoo2.default, tangents_1); tangents_token = None
|
|
getitem_4 = with_effects_2[0]; with_effects_2 = None
|
|
with_effects_3 = torch.ops.higher_order.with_effects(getitem_4, torch.ops._mylib.zoo2.default, tangents_2); getitem_4 = None
|
|
getitem_6 = with_effects_3[0]; with_effects_3 = None
|
|
clone = torch.ops.aten.clone.default(tangents_1)
|
|
clone_1 = torch.ops.aten.clone.default(tangents_2)
|
|
return (clone, clone_1, tangents_1, tangents_2, getitem_6)""",
|
|
)
|
|
|
|
def test_effects_and_input_mutation_return(self):
|
|
def fn(a, b):
|
|
torch.ops.aten._print("effect")
|
|
return torch.sin(a, out=b)
|
|
|
|
inp = [torch.randn(3, 3), torch.ones(3, 3)]
|
|
ref_out = fn(*inp)
|
|
out = torch.compile(fn, fullgraph=True)(*inp)
|
|
self.assertEqual(ref_out, out)
|
|
|
|
fw_graph, bw_graph = get_fw_bw_graph(fn, inp)
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1, arg2_1):
|
|
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops.aten._print.default, 'effect'); arg0_1 = None
|
|
getitem = with_effects[0]; with_effects = None
|
|
sin = torch.ops.aten.sin.default(arg1_1); arg1_1 = None
|
|
return (getitem, sin, sin)""",
|
|
)
|
|
|
|
def test_effects_and_input_output_view_simple(self):
|
|
def fn(a):
|
|
return a.view(-1)
|
|
|
|
inp = [torch.ones(2, 2, requires_grad=False).add(1)]
|
|
ref_out = fn(*inp)
|
|
out = torch.compile(fn, fullgraph=True)(*inp)
|
|
self.assertEqual(ref_out, out)
|
|
|
|
inp = [torch.ones(2, 2, requires_grad=True).add(1)]
|
|
ref_out = fn(*inp)
|
|
out = torch.compile(fn, fullgraph=True)(*inp)
|
|
self.assertEqual(ref_out, out)
|
|
|
|
fw_graph, bw_graph = get_fw_bw_graph(fn, inp)
|
|
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1):
|
|
view = torch.ops.aten.view.default(arg0_1, [-1]); arg0_1 = None
|
|
return (view,)""",
|
|
)
|
|
|
|
def test_effects_and_aliased_outputs(self):
|
|
def fn(a):
|
|
b = a.mul(2)
|
|
torch.ops.aten._print("effect")
|
|
c = b.view(-1)
|
|
return b, c
|
|
|
|
f_compiled = aot_function(fn, nop)
|
|
for req_grad in [True, False]:
|
|
inp = torch.ones(3, requires_grad=req_grad)
|
|
out_ref = fn(inp)
|
|
out_test = f_compiled(inp)
|
|
self.assertEqual(out_ref[0], out_test[0])
|
|
self.assertEqual(out_ref[1], out_test[1])
|
|
# Try mutating one of the outputs, which is aliased.
|
|
out_ref[0].mul_(3)
|
|
out_test[0].mul_(3)
|
|
# Assert that the aliasing relationship was preserved
|
|
self.assertEqual(out_ref[0], out_test[0])
|
|
self.assertEqual(out_ref[1], out_test[1])
|
|
|
|
def test_effects_and_input_mutation_is_output(self):
|
|
def fn(a):
|
|
a.mul_(2)
|
|
torch.ops.aten._print("effect")
|
|
return a
|
|
|
|
inp = make_inputs_non_leaves([torch.ones(3, 3, requires_grad=True)])
|
|
ref_out = fn(*inp)
|
|
out = torch.compile(fn, backend="aot_eager", fullgraph=True)(*inp)
|
|
self.assertEqual(ref_out, out)
|
|
|
|
inp = [torch.ones(3, 3, requires_grad=False)]
|
|
ref_out = fn(*inp)
|
|
out = torch.compile(fn, backend="aot_eager", fullgraph=True)(*inp)
|
|
self.assertEqual(ref_out, out)
|
|
|
|
fw_graph, bw_graph = get_fw_bw_graph(fn, inp)
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, arg0_1, arg1_1):
|
|
mul = torch.ops.aten.mul.Tensor(arg1_1, 2); arg1_1 = None
|
|
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops.aten._print.default, 'effect'); arg0_1 = None
|
|
getitem = with_effects[0]; with_effects = None
|
|
return (getitem, mul, mul)""",
|
|
)
|
|
|
|
@skipIfTorchDynamo()
|
|
def test_effectful_op_in_backward(self):
|
|
with torch.library._scoped_library("_mylib", "FRAGMENT") as lib:
|
|
lib.define("foo(Tensor x) -> Tensor")
|
|
|
|
def foo_impl(a):
|
|
return a.clone()
|
|
|
|
def foo_bwd(ctx, grad):
|
|
return torch.ops._mylib.foo(grad)
|
|
|
|
for backend in ["CPU", "CUDA", "Meta"]:
|
|
lib.impl("foo", foo_impl, backend)
|
|
|
|
torch.library.register_autograd("_mylib::foo", foo_bwd, lib=lib)
|
|
|
|
from torch._higher_order_ops.effects import (
|
|
_deregister_effectful_op,
|
|
_EffectType,
|
|
_register_effectful_op,
|
|
)
|
|
|
|
_register_effectful_op(torch.ops._mylib.foo.default, _EffectType.ORDERED)
|
|
try:
|
|
|
|
def fn(x, y):
|
|
return torch.ops._mylib.foo(x) + y
|
|
|
|
def ins_dense_req_grad():
|
|
return (
|
|
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
|
|
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
|
|
)
|
|
|
|
def ins_sc_req_grad():
|
|
return (
|
|
TwoTensor(
|
|
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
|
|
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
|
|
),
|
|
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
|
|
)
|
|
|
|
for i, ins_fn in enumerate([ins_dense_req_grad, ins_sc_req_grad]):
|
|
ref_ins = ins_fn()
|
|
|
|
ref_out = fn(*ref_ins)
|
|
ref_out.sum().backward()
|
|
|
|
compiled_fn = torch.compile(fn, backend="inductor", fullgraph=True)
|
|
ins = ins_fn()
|
|
out = compiled_fn(*ins)
|
|
self.assertEqual(ref_out, out)
|
|
out.sum().backward()
|
|
self.assertEqual(ref_ins[1].grad, ins[1].grad)
|
|
self.assertEqual(ref_ins[0].grad, ins[0].grad)
|
|
|
|
fw_graph, bw_graph = get_fw_bw_graph(fn, ins)
|
|
if i == 0:
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_1, primals_2, primals_3):
|
|
with_effects = torch.ops.higher_order.with_effects(primals_1, torch.ops._mylib.foo.default, primals_2); primals_1 = primals_2 = None
|
|
getitem = with_effects[0]
|
|
getitem_1 = with_effects[1]; with_effects = None
|
|
add = torch.ops.aten.add.Tensor(getitem_1, primals_3); getitem_1 = primals_3 = None
|
|
return (getitem, add)""",
|
|
)
|
|
self.assertExpectedInline(
|
|
bw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, tangents_1, tangents_token):
|
|
with_effects_1 = torch.ops.higher_order.with_effects(tangents_token, torch.ops._mylib.foo.default, tangents_1); tangents_token = None
|
|
getitem_2 = with_effects_1[0]
|
|
getitem_3 = with_effects_1[1]; with_effects_1 = None
|
|
return (getitem_3, tangents_1, getitem_2)""",
|
|
)
|
|
elif i == 1:
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_1, primals_2, primals_3, primals_4):
|
|
with_effects = torch.ops.higher_order.with_effects(primals_1, torch.ops._mylib.foo.default, primals_2); primals_1 = primals_2 = None
|
|
getitem = with_effects[0]
|
|
getitem_1 = with_effects[1]; with_effects = None
|
|
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops._mylib.foo.default, primals_3); getitem = primals_3 = None
|
|
getitem_2 = with_effects_1[0]
|
|
getitem_3 = with_effects_1[1]; with_effects_1 = None
|
|
add = torch.ops.aten.add.Tensor(getitem_1, primals_4); getitem_1 = None
|
|
add_1 = torch.ops.aten.add.Tensor(getitem_3, primals_4); getitem_3 = primals_4 = None
|
|
return (getitem_2, add, add_1)""",
|
|
)
|
|
self.assertExpectedInline(
|
|
bw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, tangents_1, tangents_2, tangents_token):
|
|
with_effects_2 = torch.ops.higher_order.with_effects(tangents_token, torch.ops._mylib.foo.default, tangents_1); tangents_token = None
|
|
getitem_4 = with_effects_2[0]
|
|
getitem_5 = with_effects_2[1]; with_effects_2 = None
|
|
with_effects_3 = torch.ops.higher_order.with_effects(getitem_4, torch.ops._mylib.foo.default, tangents_2); getitem_4 = None
|
|
getitem_6 = with_effects_3[0]
|
|
getitem_7 = with_effects_3[1]; with_effects_3 = None
|
|
return (getitem_5, getitem_7, tangents_1, tangents_2, getitem_6)""",
|
|
)
|
|
else:
|
|
raise NotImplementedError
|
|
finally:
|
|
_deregister_effectful_op(torch.ops._mylib.foo.default)
|
|
|
|
@skipIfNoDynamoSupport
|
|
def test_regular_effectful_op_only_in_backward(self):
|
|
from torch._higher_order_ops.effects import (
|
|
_deregister_effectful_op,
|
|
_EffectType,
|
|
_register_effectful_op,
|
|
)
|
|
|
|
_register_effectful_op(torch.ops.aten.cos.default, _EffectType.ORDERED)
|
|
try:
|
|
|
|
def fn(x):
|
|
return x.sin()
|
|
|
|
def inps_fn():
|
|
return (torch.tensor([1.0, 2.0, 3.0], requires_grad=True),)
|
|
|
|
torch.compile(fn, backend="inductor", fullgraph=True)(*inps_fn())
|
|
|
|
fw_graph, bw_graph = get_fw_bw_graph(fn, inps_fn())
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_1):
|
|
sin = torch.ops.aten.sin.default(primals_1)
|
|
return (sin, primals_1)""",
|
|
)
|
|
self.assertExpectedInline(
|
|
bw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_1, tangents_1, tangents_token):
|
|
with_effects = torch.ops.higher_order.with_effects(tangents_token, torch.ops.aten.cos.default, primals_1); tangents_token = primals_1 = None
|
|
getitem = with_effects[0]
|
|
getitem_1 = with_effects[1]; with_effects = None
|
|
mul = torch.ops.aten.mul.Tensor(tangents_1, getitem_1); tangents_1 = getitem_1 = None
|
|
return (mul, getitem)""",
|
|
)
|
|
|
|
def inps_fn_sc():
|
|
return (
|
|
TwoTensor(
|
|
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
|
|
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
|
|
),
|
|
)
|
|
|
|
torch.compile(fn, backend="inductor", fullgraph=True)(*inps_fn_sc())
|
|
fw_graph, bw_graph = get_fw_bw_graph(fn, inps_fn_sc())
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_1, primals_2):
|
|
sin = torch.ops.aten.sin.default(primals_1)
|
|
sin_1 = torch.ops.aten.sin.default(primals_2)
|
|
return (sin, sin_1, primals_1, primals_2)""",
|
|
)
|
|
self.assertExpectedInline(
|
|
bw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_1, primals_2, tangents_1, tangents_2, tangents_token):
|
|
with_effects = torch.ops.higher_order.with_effects(tangents_token, torch.ops.aten.cos.default, primals_1); tangents_token = primals_1 = None
|
|
getitem = with_effects[0]
|
|
getitem_1 = with_effects[1]; with_effects = None
|
|
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops.aten.cos.default, primals_2); getitem = primals_2 = None
|
|
getitem_2 = with_effects_1[0]
|
|
getitem_3 = with_effects_1[1]; with_effects_1 = None
|
|
mul = torch.ops.aten.mul.Tensor(tangents_1, getitem_1); tangents_1 = getitem_1 = None
|
|
mul_1 = torch.ops.aten.mul.Tensor(tangents_2, getitem_3); tangents_2 = getitem_3 = None
|
|
return (mul, mul_1, getitem_2)""",
|
|
)
|
|
finally:
|
|
_deregister_effectful_op(torch.ops.aten.cos.default)
|
|
|
|
@skipIfNoDynamoSupport
|
|
def test_regular_effectful_op_in_forward_and_backward(self):
|
|
from torch._higher_order_ops.effects import (
|
|
_deregister_effectful_op,
|
|
_EffectType,
|
|
_register_effectful_op,
|
|
)
|
|
|
|
_register_effectful_op(torch.ops.aten.cos.default, _EffectType.ORDERED)
|
|
try:
|
|
|
|
def fn(x):
|
|
x = x.cos()
|
|
return x.sin()
|
|
|
|
inps = (torch.tensor([1.0, 2.0, 3.0], requires_grad=True),)
|
|
torch.compile(fn, backend="inductor", fullgraph=True)(*inps)
|
|
|
|
fw_graph, bw_graph = get_fw_bw_graph(fn, inps)
|
|
self.assertExpectedInline(
|
|
fw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_1, primals_2):
|
|
with_effects = torch.ops.higher_order.with_effects(primals_1, torch.ops.aten.cos.default, primals_2); primals_1 = None
|
|
getitem = with_effects[0]
|
|
getitem_1 = with_effects[1]; with_effects = None
|
|
sin = torch.ops.aten.sin.default(getitem_1)
|
|
return (getitem, sin, primals_2, getitem_1)""",
|
|
)
|
|
self.assertExpectedInline(
|
|
bw_graph.code.strip(),
|
|
"""\
|
|
def forward(self, primals_2, getitem_1, tangents_1, tangents_token):
|
|
with_effects_1 = torch.ops.higher_order.with_effects(tangents_token, torch.ops.aten.cos.default, getitem_1); tangents_token = getitem_1 = None
|
|
getitem_2 = with_effects_1[0]
|
|
getitem_3 = with_effects_1[1]; with_effects_1 = None
|
|
mul = torch.ops.aten.mul.Tensor(tangents_1, getitem_3); tangents_1 = getitem_3 = None
|
|
sin_1 = torch.ops.aten.sin.default(primals_2); primals_2 = None
|
|
neg = torch.ops.aten.neg.default(sin_1); sin_1 = None
|
|
mul_1 = torch.ops.aten.mul.Tensor(mul, neg); mul = neg = None
|
|
return (mul_1, getitem_2)""",
|
|
)
|
|
finally:
|
|
_deregister_effectful_op(torch.ops.aten.cos.default)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|