Files
pytorch/test/higher_order_ops/test_with_effects.py
IvanKobzarev 8ae4f82243 [aotd] Support HOP effects in backward (#132638)
Support of effectful operations in backward:

1/ AOTD collects metadata from forward fn only, so we can have usage of effectful ops in backward, that were not used in forward => Allowing tokens discovery during joint function .

FunctionalTensorMode holds _tokens, in Joint function after tracing forward we memoize _tokens as `_tokens_forward_output`.

2/ Tokens are added as primals inputs (forward) in EffectTokensWrapper.
Tokens that will be used in backward are in partitioner saved values. We do not have control on which positions they are saved in forward outputs.

2/ If new tokens discovered in backward after tracing joint_fn, the result graph will be manually added in the end of primals.
_aot_autograd/utils.py

3/ All effectful ops during backward are marked with 'must_be_in_backward' partitioner_tag, to prevent partiitoner to place them in forward.

For that functional_tensor_mode got new optional state `self._effects_partitioner_tag` for effectful ops, to set after tracing forward.

There are additional changes in partitioner to improve functionality of 'must_be_in_backward'

4/ Unlift tokens now should run for both forward and backward.
- As saved for backward tokens are placed on non static places - we identify input and output tokens to erase, by input and output of `with_effects` operation
- In forward we can have input tokens, discovered in backward, that are not used in with_effects ops in forward, but saved for backward. We identify them by position in forward inputs.

5/ Adding aot debug logging for graphs before unlifting and before adding additional primal for backward tokens.

Tests:
```
python test/higher_order_ops/test_with_effects.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132638
Approved by: https://github.com/bdhirsh
2024-08-23 15:30:58 +00:00

908 lines
35 KiB
Python

# Owner(s): ["module: functorch"]
# flake8: noqa: B950
import unittest
from collections import deque
from functools import partial
from typing import List, TYPE_CHECKING
import torch
import torch._dynamo
import torch._functorch
import torch._inductor
import torch._inductor.decomposition
from functorch.compile import (
aot_function,
default_decompositions,
min_cut_rematerialization_partition,
nop,
)
from torch._functorch.aot_autograd import aot_export_module
from torch._higher_order_ops.effects import with_effects
from torch._higher_order_ops.torchbind import enable_torchbind_tracing
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_cuda import (
_get_torch_cuda_version,
SM70OrLater,
SM80OrLater,
)
from torch.testing._internal.common_quantization import skipIfNoDynamoSupport
from torch.testing._internal.common_utils import (
IS_WINDOWS,
run_tests,
skipIfTorchDynamo,
TEST_CUDA,
TEST_WITH_ROCM,
TestCase,
)
from torch.testing._internal.torchbind_impls import init_torchbind_implementations
if TYPE_CHECKING:
from torch.utils.hooks import RemovableHandle
from torch.testing._internal.two_tensor import TwoTensor
def extract_graph(fx_g, _, graph_cell):
graph_cell[0] = fx_g
return fx_g
def get_fw_bw_graph(
f, inps, partitioner=min_cut_rematerialization_partition, dynamic=False
):
fw_graph_cell = [None]
bw_graph_cell = [None]
requires_grad = False
def fn_req_grad(t):
nonlocal requires_grad
requires_grad = requires_grad or t.requires_grad
return t
torch.utils._pytree.tree_map_only(torch.Tensor, fn_req_grad, inps)
out = aot_function(
f,
fw_compiler=partial(extract_graph, graph_cell=fw_graph_cell),
bw_compiler=partial(extract_graph, graph_cell=bw_graph_cell)
if requires_grad
else nop,
partition_fn=partitioner,
decompositions=default_decompositions,
dynamic=dynamic,
)(*inps)
if requires_grad:
out.sum().backward()
return (fw_graph_cell[0], bw_graph_cell[0])
def make_inputs_non_leaves(inps):
return torch.utils._pytree.tree_map_only(torch.Tensor, lambda t: t.add(1), inps)
@unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't support")
class TestWithEffects(TestCase):
def setUp(self):
init_torchbind_implementations()
def test_print(self):
class M(torch.nn.Module):
def forward(self, x):
torch.ops.aten._print("moo")
res = x + x
torch.ops.aten._print("moo")
return (res,)
inputs = (torch.randn(3),)
# Without functionalization, print should just appear in the graph directly
gm = make_fx(M())(*inputs)
FileCheck().check_count("torch.ops.aten._print.default", 2, exactly=True).run(
gm.code
)
# With functionalization, it should appear wrapped with with_effects()
gm, gs = aot_export_module(M(), inputs, trace_joint=False)
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, arg0_1, arg1_1):
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops.aten._print.default, 'moo'); arg0_1 = None
getitem = with_effects[0]; with_effects = None
add = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2 = with_effects_1[0]; with_effects_1 = None
return (getitem_2, add)""",
)
self.assertEqual(len(gs.input_tokens), 1)
self.assertEqual(len(gs.output_tokens), 1)
with torch._functorch.config.patch(unlift_effect_tokens=True):
gm, gs = aot_export_module(M(), inputs, trace_joint=False)
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, arg1_1):
_make_token_default = torch.ops.prims._make_token.default()
with_effects = torch.ops.higher_order.with_effects(_make_token_default, torch.ops.aten._print.default, 'moo'); _make_token_default = None
getitem = with_effects[0]; with_effects = None
add = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2 = with_effects_1[0]; with_effects_1 = None
_sink_tokens_default = torch.ops.prims._sink_tokens.default([getitem_2]); getitem_2 = _sink_tokens_default = None
return [add]""", # noqa: B950
)
def test_torchbind_custom_op(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
return (x + torch.ops._TorchScriptTesting.takes_foo(self.attr, x),)
with enable_torchbind_tracing():
gm, gs = aot_export_module(M(), (torch.ones(2, 3),), trace_joint=False)
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, arg0_1, arg1_1):
_torchbind_obj0 = self._torchbind_obj0
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops._TorchScriptTesting.takes_foo.default, _torchbind_obj0, arg1_1); arg0_1 = _torchbind_obj0 = None
getitem = with_effects[0]
getitem_1 = with_effects[1]; with_effects = None
add = torch.ops.aten.add.Tensor(arg1_1, getitem_1); arg1_1 = getitem_1 = None
return (getitem, add)""", # noqa: B950
)
self.assertEqual(len(gs.input_tokens), 1)
self.assertEqual(len(gs.output_tokens), 1)
def test_print_with_buffer_mutations(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.buf = torch.nn.Buffer(torch.ones(3))
def forward(self, x):
torch.ops.aten._print("moo")
res = x + x
self.buf.add_(res)
res = self.buf + x
torch.ops.aten._print("moo")
return (res,)
inputs = (torch.randn(3),)
# With functionalization, it should appear wrapped with with_effects()
gm, gs = aot_export_module(M(), inputs, trace_joint=False)
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1):
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops.aten._print.default, 'moo'); arg0_1 = None
getitem = with_effects[0]; with_effects = None
add = torch.ops.aten.add.Tensor(arg2_1, arg2_1)
add_1 = torch.ops.aten.add.Tensor(arg1_1, add); arg1_1 = add = None
add_2 = torch.ops.aten.add.Tensor(add_1, arg2_1); arg2_1 = None
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2 = with_effects_1[0]; with_effects_1 = None
return (getitem_2, add_1, add_2)""",
)
self.assertEqual(len(gs.input_tokens), 1)
self.assertEqual(len(gs.output_tokens), 1)
self.assertEqual(len(gs.buffers_to_mutate), 1)
def test_print_with_input_mutations(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
torch.ops.aten._print("moo")
res = x + x
x.add_(res)
res = x + x
torch.ops.aten._print("moo")
return (res,)
inputs = (torch.randn(3),)
# With functionalization, it should appear wrapped with with_effects()
gm, gs = aot_export_module(M(), inputs, trace_joint=False)
self.assertEqual(len(gs.input_tokens), 1)
self.assertEqual(len(gs.output_tokens), 1)
self.assertEqual(len(gs.user_inputs_to_mutate), 1)
def test_alias_op(self):
def f(token, x):
token, out = with_effects(token, torch.ops.aten.absolute_.default, x)
return token, out
with self.assertRaisesRegex(
AssertionError, r"Ops with aliasing is not supported"
):
make_fx(f)(torch.tensor([]), torch.tensor(4))
def test_compile_aot_eager(self):
def f(x):
torch.ops.aten._print("moo")
res = x + x
torch.ops.aten._print("moo")
return res
inputs = (torch.randn(2, 3),)
res = torch.compile(f, backend="aot_eager")(*inputs)
self.assertTrue(torch.allclose(res, f(*inputs)))
@unittest.skipIf(IS_WINDOWS, "triton")
@unittest.skipIf(not SM70OrLater, "triton")
def test_compile_inductor(self):
def f(x):
torch.ops.aten._print("moo")
res = x + x
torch.ops.aten._print("moo")
return res
inputs = (torch.randn(2, 3),)
res = torch.compile(f, backend="inductor")(*inputs)
self.assertTrue(torch.allclose(res, f(*inputs)))
@unittest.skipIf(IS_WINDOWS, "Skipped on Windows!")
@skipIfNoDynamoSupport
def test_compile_inductor_external_op_return_none(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::inplace_add",
"(Tensor input, Tensor(a!) output) -> ()",
lib=lib,
)
def inplace_add(input: torch.Tensor, output: torch.Tensor) -> None:
assert input.device == output.device
output.add_(input)
lib.impl("inplace_add", inplace_add, "CompositeExplicitAutograd")
def f(x):
out = torch.empty(3)
out = torch.zeros_like(out)
torch.ops.mylib.inplace_add(x, out)
return out
inputs = (torch.randn(3),)
res = torch.compile(f, backend="inductor")(*inputs)
self.assertTrue(torch.allclose(res, f(*inputs)))
def test_compile_aot_eager_requires_grad(self):
def f(x):
torch.ops.aten._print("moo")
res = x + x
torch.ops.aten._print("moo")
return res
inputs = (torch.randn(2, 3, requires_grad=True),)
res = torch.compile(f, backend="aot_eager")(*inputs)
self.assertTrue(torch.allclose(res, f(*inputs)))
res.sum().backward()
@unittest.skipIf(IS_WINDOWS, "triton")
@unittest.skipIf(TEST_WITH_ROCM, "triton")
@unittest.skipIf(not SM80OrLater, "triton")
@unittest.skipIf(_get_torch_cuda_version() >= (11, 7), "triton")
@unittest.skipIf(not TEST_CUDA, "triton")
@skipIfNoDynamoSupport
def test_register_effectful_custom_op(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch._dynamo.config.capture_scalar_outputs = True
torch._dynamo.config.capture_dynamic_output_shape_ops = True
torch.library.define(
"mylib::record_scalar_tensor",
"(Tensor x, str prefix) -> ()",
lib=lib,
)
# global variable to store the recorded tensor and prefix.
recorded_dict = {}
# Pytorch custorm op implementation
@torch.library.impl(
"mylib::record_scalar_tensor",
"CompositeExplicitAutograd",
lib=lib,
)
def record_scalar_tensor(x, prefix):
recorded_dict[prefix] = x.clone()
return
# Meta function of the custom op
@torch.library.impl_abstract(
"mylib::record_scalar_tensor",
lib=lib,
)
def record_scalar_tensor_meta(x, prefix):
return
from torch._higher_order_ops.effects import (
_EffectType,
_register_effectful_op,
)
_register_effectful_op(
torch.ops.mylib.record_scalar_tensor.default, _EffectType.ORDERED
)
my_config = {}
my_config["MockModule"] = "mean"
my_config["MockModule.linear"] = "mean"
my_config["MockModule.relu"] = "mean"
class MyLinear(torch.nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
self.weight = torch.nn.Parameter(
torch.randn(out_features, in_features), requires_grad=True
)
self.bias = torch.nn.Parameter(
torch.randn(out_features), requires_grad=True
)
def forward(self, x):
return torch.nn.functional.linear(x, self.weight, self.bias)
class MockModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = MyLinear(10, 10)
self.register_buffer(
"buf0", torch.randn(10, 10, requires_grad=True)
)
def forward(self, x):
return torch.nn.functional.relu(self.linear(x) + self.buf0)
def forward_hook(
module: torch.nn.Module,
inputs: torch.Tensor,
output: torch.Tensor,
prefix: str,
aggregate_method: str,
) -> torch.Tensor:
if aggregate_method == "mean":
torch.ops.mylib.record_scalar_tensor(output.mean(), prefix)
elif aggregate_method == "max":
torch.ops.mylib.record_scalar_tensor(output.max(), prefix)
else:
# demo purpose, using "min"
torch.ops.mylib.record_scalar_tensor(output.sum(), prefix)
return output
def add_hooks(module, config):
handles: List[RemovableHandle] = []
q = deque([(module.__class__.__name__, module)])
while q:
name, m = q.pop()
children = [(name + "." + n, y) for (n, y) in m.named_children()]
q.extend(children)
aggregate_method = config.get(name, "mean")
prefix = name + ":" + aggregate_method
handle = m.register_forward_hook(
partial(
forward_hook,
prefix=prefix,
aggregate_method=aggregate_method,
)
)
if handle:
handles.append(handle)
return handles
x = torch.randn(10, 10, device="cuda")
mod = MockModule().to("cuda")
add_hooks(mod, my_config)
opt_mod = torch.compile(backend="inductor")(mod)
y = opt_mod(x)
self.assertTrue(torch.allclose(y, mod(x)))
# Ensure it works well with backward
y.sum().backward()
# Ensure the grad is existing
self.assertTrue(isinstance(opt_mod.linear.weight.grad, torch.Tensor))
self.assertEqual(len(recorded_dict), 2)
self.assertTrue("MockModule.linear:mean" in recorded_dict)
self.assertTrue("MockModule:mean" in recorded_dict)
@skipIfNoDynamoSupport
def test_effectful_custom_op_with_subclasses(self):
with torch.library._scoped_library("_mylib", "FRAGMENT") as lib:
lib.define("zoo(Tensor x) -> Tensor")
lib.define("zoo2(Tensor x) -> Tensor")
d = {"fw": 0, "bw": 0}
def reset_counter():
d["fw"] = 0
d["bw"] = 0
def assert_counter(fw, bw):
self.assertEqual(d["fw"], fw)
self.assertEqual(d["bw"], bw)
def foo_impl(a):
d["fw"] = d["fw"] + 1
return 2 * a.clone()
def foo_meta(a):
return a.clone()
def foo2_impl(x):
d["bw"] = d["bw"] + 1
return x.clone()
def foo2_meta(a):
return a.clone()
for backend in ["CPU", "CUDA"]:
lib.impl("zoo", foo_impl, backend)
lib.impl("zoo2", foo2_impl, backend)
lib.impl("zoo", foo_meta, "Meta")
lib.impl("zoo2", foo2_meta, "Meta")
def foo_bwd(ctx, grad):
torch.ops._mylib.zoo2(grad)
return grad.clone()
torch.library.register_autograd("_mylib::zoo", foo_bwd, lib=lib)
from torch._higher_order_ops.effects import (
_EffectType,
_register_effectful_op,
)
_register_effectful_op(torch.ops._mylib.zoo.default, _EffectType.ORDERED)
_register_effectful_op(torch.ops._mylib.zoo2.default, _EffectType.ORDERED)
def fn(x, y):
return torch.ops._mylib.zoo(x) + y
def ins_sc():
return (
TwoTensor(
torch.tensor([1.0, 2.0, 3.0]), torch.tensor([1.0, 2.0, 3.0])
),
torch.tensor([4.0, 5.0, 6.0]),
)
def ins_dense():
return torch.tensor([1.0, 2.0, 3.0]), torch.tensor([4.0, 5.0, 6.0])
for i, (ins_fn, expected_fw_count) in enumerate(
zip([ins_sc, ins_dense], [2, 1])
):
reset_counter()
ref_out = fn(*ins_fn())
assert_counter(expected_fw_count, 0)
compiled_fn = torch.compile(fn, backend="aot_eager")
out = compiled_fn(*ins_fn())
reset_counter()
out = compiled_fn(*ins_fn())
assert_counter(expected_fw_count, 0)
self.assertEqual(ref_out, out)
def ins_dense_req_grad():
return (
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
)
def ins_sc_req_grad():
return (
TwoTensor(
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
),
TwoTensor(
torch.tensor([7.0, 8.0, 9.0], requires_grad=True),
torch.tensor([10.0, 11.0, 12.0], requires_grad=True),
),
)
for i, (
ins_fn_req_grad,
(
expected_fw_count,
expected_fw_count_after_bw,
expected_bw_count_after_bw,
),
) in enumerate(
zip([ins_dense_req_grad, ins_sc_req_grad], [(1, 1, 1), (2, 2, 2)])
):
ref_ins = ins_fn_req_grad()
reset_counter()
ref_out = fn(*ref_ins)
assert_counter(expected_fw_count, 0)
ref_out.sum().backward()
assert_counter(expected_fw_count_after_bw, expected_bw_count_after_bw)
compiled_fn = torch.compile(fn, fullgraph=True)
ins = ins_fn_req_grad()
out = compiled_fn(*ins)
reset_counter()
out = compiled_fn(*ins)
assert_counter(expected_fw_count, 0)
self.assertEqual(ref_out, out)
out.sum().backward()
assert_counter(expected_fw_count_after_bw, expected_bw_count_after_bw)
self.assertEqual(ref_ins[1].grad, ins[1].grad)
self.assertEqual(ref_ins[0].grad, ins[0].grad)
fw_graph, bw_graph = get_fw_bw_graph(fn, ins_sc_req_grad())
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, primals_1, primals_2, primals_3, primals_4, primals_5):
with_effects = torch.ops.higher_order.with_effects(primals_1, torch.ops._mylib.zoo.default, primals_2); primals_1 = primals_2 = None
getitem = with_effects[0]
getitem_1 = with_effects[1]; with_effects = None
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops._mylib.zoo.default, primals_3); getitem = primals_3 = None
getitem_2 = with_effects_1[0]
getitem_3 = with_effects_1[1]; with_effects_1 = None
add = torch.ops.aten.add.Tensor(getitem_1, primals_4); getitem_1 = primals_4 = None
add_1 = torch.ops.aten.add.Tensor(getitem_3, primals_5); getitem_3 = primals_5 = None
return (getitem_2, add, add_1)""",
)
self.assertExpectedInline(
bw_graph.code.strip(),
"""\
def forward(self, tangents_1, tangents_2, tangents_token):
with_effects_2 = torch.ops.higher_order.with_effects(tangents_token, torch.ops._mylib.zoo2.default, tangents_1); tangents_token = None
getitem_4 = with_effects_2[0]; with_effects_2 = None
with_effects_3 = torch.ops.higher_order.with_effects(getitem_4, torch.ops._mylib.zoo2.default, tangents_2); getitem_4 = None
getitem_6 = with_effects_3[0]; with_effects_3 = None
clone = torch.ops.aten.clone.default(tangents_1)
clone_1 = torch.ops.aten.clone.default(tangents_2)
return (clone, clone_1, tangents_1, tangents_2, getitem_6)""",
)
def test_effects_and_input_mutation_return(self):
def fn(a, b):
torch.ops.aten._print("effect")
return torch.sin(a, out=b)
inp = [torch.randn(3, 3), torch.ones(3, 3)]
ref_out = fn(*inp)
out = torch.compile(fn, fullgraph=True)(*inp)
self.assertEqual(ref_out, out)
fw_graph, bw_graph = get_fw_bw_graph(fn, inp)
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, arg0_1, arg1_1, arg2_1):
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops.aten._print.default, 'effect'); arg0_1 = None
getitem = with_effects[0]; with_effects = None
sin = torch.ops.aten.sin.default(arg1_1); arg1_1 = None
return (getitem, sin, sin)""",
)
def test_effects_and_input_output_view_simple(self):
def fn(a):
return a.view(-1)
inp = [torch.ones(2, 2, requires_grad=False).add(1)]
ref_out = fn(*inp)
out = torch.compile(fn, fullgraph=True)(*inp)
self.assertEqual(ref_out, out)
inp = [torch.ones(2, 2, requires_grad=True).add(1)]
ref_out = fn(*inp)
out = torch.compile(fn, fullgraph=True)(*inp)
self.assertEqual(ref_out, out)
fw_graph, bw_graph = get_fw_bw_graph(fn, inp)
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, arg0_1):
view = torch.ops.aten.view.default(arg0_1, [-1]); arg0_1 = None
return (view,)""",
)
def test_effects_and_aliased_outputs(self):
def fn(a):
b = a.mul(2)
torch.ops.aten._print("effect")
c = b.view(-1)
return b, c
f_compiled = aot_function(fn, nop)
for req_grad in [True, False]:
inp = torch.ones(3, requires_grad=req_grad)
out_ref = fn(inp)
out_test = f_compiled(inp)
self.assertEqual(out_ref[0], out_test[0])
self.assertEqual(out_ref[1], out_test[1])
# Try mutating one of the outputs, which is aliased.
out_ref[0].mul_(3)
out_test[0].mul_(3)
# Assert that the aliasing relationship was preserved
self.assertEqual(out_ref[0], out_test[0])
self.assertEqual(out_ref[1], out_test[1])
def test_effects_and_input_mutation_is_output(self):
def fn(a):
a.mul_(2)
torch.ops.aten._print("effect")
return a
inp = make_inputs_non_leaves([torch.ones(3, 3, requires_grad=True)])
ref_out = fn(*inp)
out = torch.compile(fn, backend="aot_eager", fullgraph=True)(*inp)
self.assertEqual(ref_out, out)
inp = [torch.ones(3, 3, requires_grad=False)]
ref_out = fn(*inp)
out = torch.compile(fn, backend="aot_eager", fullgraph=True)(*inp)
self.assertEqual(ref_out, out)
fw_graph, bw_graph = get_fw_bw_graph(fn, inp)
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, arg0_1, arg1_1):
mul = torch.ops.aten.mul.Tensor(arg1_1, 2); arg1_1 = None
with_effects = torch.ops.higher_order.with_effects(arg0_1, torch.ops.aten._print.default, 'effect'); arg0_1 = None
getitem = with_effects[0]; with_effects = None
return (getitem, mul, mul)""",
)
@skipIfTorchDynamo()
def test_effectful_op_in_backward(self):
with torch.library._scoped_library("_mylib", "FRAGMENT") as lib:
lib.define("foo(Tensor x) -> Tensor")
def foo_impl(a):
return a.clone()
def foo_bwd(ctx, grad):
return torch.ops._mylib.foo(grad)
for backend in ["CPU", "CUDA", "Meta"]:
lib.impl("foo", foo_impl, backend)
torch.library.register_autograd("_mylib::foo", foo_bwd, lib=lib)
from torch._higher_order_ops.effects import (
_deregister_effectful_op,
_EffectType,
_register_effectful_op,
)
_register_effectful_op(torch.ops._mylib.foo.default, _EffectType.ORDERED)
try:
def fn(x, y):
return torch.ops._mylib.foo(x) + y
def ins_dense_req_grad():
return (
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
)
def ins_sc_req_grad():
return (
TwoTensor(
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
),
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
)
for i, ins_fn in enumerate([ins_dense_req_grad, ins_sc_req_grad]):
ref_ins = ins_fn()
ref_out = fn(*ref_ins)
ref_out.sum().backward()
compiled_fn = torch.compile(fn, backend="inductor", fullgraph=True)
ins = ins_fn()
out = compiled_fn(*ins)
self.assertEqual(ref_out, out)
out.sum().backward()
self.assertEqual(ref_ins[1].grad, ins[1].grad)
self.assertEqual(ref_ins[0].grad, ins[0].grad)
fw_graph, bw_graph = get_fw_bw_graph(fn, ins)
if i == 0:
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, primals_1, primals_2, primals_3):
with_effects = torch.ops.higher_order.with_effects(primals_1, torch.ops._mylib.foo.default, primals_2); primals_1 = primals_2 = None
getitem = with_effects[0]
getitem_1 = with_effects[1]; with_effects = None
add = torch.ops.aten.add.Tensor(getitem_1, primals_3); getitem_1 = primals_3 = None
return (getitem, add)""",
)
self.assertExpectedInline(
bw_graph.code.strip(),
"""\
def forward(self, tangents_1, tangents_token):
with_effects_1 = torch.ops.higher_order.with_effects(tangents_token, torch.ops._mylib.foo.default, tangents_1); tangents_token = None
getitem_2 = with_effects_1[0]
getitem_3 = with_effects_1[1]; with_effects_1 = None
return (getitem_3, tangents_1, getitem_2)""",
)
elif i == 1:
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, primals_1, primals_2, primals_3, primals_4):
with_effects = torch.ops.higher_order.with_effects(primals_1, torch.ops._mylib.foo.default, primals_2); primals_1 = primals_2 = None
getitem = with_effects[0]
getitem_1 = with_effects[1]; with_effects = None
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops._mylib.foo.default, primals_3); getitem = primals_3 = None
getitem_2 = with_effects_1[0]
getitem_3 = with_effects_1[1]; with_effects_1 = None
add = torch.ops.aten.add.Tensor(getitem_1, primals_4); getitem_1 = None
add_1 = torch.ops.aten.add.Tensor(getitem_3, primals_4); getitem_3 = primals_4 = None
return (getitem_2, add, add_1)""",
)
self.assertExpectedInline(
bw_graph.code.strip(),
"""\
def forward(self, tangents_1, tangents_2, tangents_token):
with_effects_2 = torch.ops.higher_order.with_effects(tangents_token, torch.ops._mylib.foo.default, tangents_1); tangents_token = None
getitem_4 = with_effects_2[0]
getitem_5 = with_effects_2[1]; with_effects_2 = None
with_effects_3 = torch.ops.higher_order.with_effects(getitem_4, torch.ops._mylib.foo.default, tangents_2); getitem_4 = None
getitem_6 = with_effects_3[0]
getitem_7 = with_effects_3[1]; with_effects_3 = None
return (getitem_5, getitem_7, tangents_1, tangents_2, getitem_6)""",
)
else:
raise NotImplementedError
finally:
_deregister_effectful_op(torch.ops._mylib.foo.default)
@skipIfNoDynamoSupport
def test_regular_effectful_op_only_in_backward(self):
from torch._higher_order_ops.effects import (
_deregister_effectful_op,
_EffectType,
_register_effectful_op,
)
_register_effectful_op(torch.ops.aten.cos.default, _EffectType.ORDERED)
try:
def fn(x):
return x.sin()
def inps_fn():
return (torch.tensor([1.0, 2.0, 3.0], requires_grad=True),)
torch.compile(fn, backend="inductor", fullgraph=True)(*inps_fn())
fw_graph, bw_graph = get_fw_bw_graph(fn, inps_fn())
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, primals_1):
sin = torch.ops.aten.sin.default(primals_1)
return (sin, primals_1)""",
)
self.assertExpectedInline(
bw_graph.code.strip(),
"""\
def forward(self, primals_1, tangents_1, tangents_token):
with_effects = torch.ops.higher_order.with_effects(tangents_token, torch.ops.aten.cos.default, primals_1); tangents_token = primals_1 = None
getitem = with_effects[0]
getitem_1 = with_effects[1]; with_effects = None
mul = torch.ops.aten.mul.Tensor(tangents_1, getitem_1); tangents_1 = getitem_1 = None
return (mul, getitem)""",
)
def inps_fn_sc():
return (
TwoTensor(
torch.tensor([1.0, 2.0, 3.0], requires_grad=True),
torch.tensor([4.0, 5.0, 6.0], requires_grad=True),
),
)
torch.compile(fn, backend="inductor", fullgraph=True)(*inps_fn_sc())
fw_graph, bw_graph = get_fw_bw_graph(fn, inps_fn_sc())
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, primals_1, primals_2):
sin = torch.ops.aten.sin.default(primals_1)
sin_1 = torch.ops.aten.sin.default(primals_2)
return (sin, sin_1, primals_1, primals_2)""",
)
self.assertExpectedInline(
bw_graph.code.strip(),
"""\
def forward(self, primals_1, primals_2, tangents_1, tangents_2, tangents_token):
with_effects = torch.ops.higher_order.with_effects(tangents_token, torch.ops.aten.cos.default, primals_1); tangents_token = primals_1 = None
getitem = with_effects[0]
getitem_1 = with_effects[1]; with_effects = None
with_effects_1 = torch.ops.higher_order.with_effects(getitem, torch.ops.aten.cos.default, primals_2); getitem = primals_2 = None
getitem_2 = with_effects_1[0]
getitem_3 = with_effects_1[1]; with_effects_1 = None
mul = torch.ops.aten.mul.Tensor(tangents_1, getitem_1); tangents_1 = getitem_1 = None
mul_1 = torch.ops.aten.mul.Tensor(tangents_2, getitem_3); tangents_2 = getitem_3 = None
return (mul, mul_1, getitem_2)""",
)
finally:
_deregister_effectful_op(torch.ops.aten.cos.default)
@skipIfNoDynamoSupport
def test_regular_effectful_op_in_forward_and_backward(self):
from torch._higher_order_ops.effects import (
_deregister_effectful_op,
_EffectType,
_register_effectful_op,
)
_register_effectful_op(torch.ops.aten.cos.default, _EffectType.ORDERED)
try:
def fn(x):
x = x.cos()
return x.sin()
inps = (torch.tensor([1.0, 2.0, 3.0], requires_grad=True),)
torch.compile(fn, backend="inductor", fullgraph=True)(*inps)
fw_graph, bw_graph = get_fw_bw_graph(fn, inps)
self.assertExpectedInline(
fw_graph.code.strip(),
"""\
def forward(self, primals_1, primals_2):
with_effects = torch.ops.higher_order.with_effects(primals_1, torch.ops.aten.cos.default, primals_2); primals_1 = None
getitem = with_effects[0]
getitem_1 = with_effects[1]; with_effects = None
sin = torch.ops.aten.sin.default(getitem_1)
return (getitem, sin, primals_2, getitem_1)""",
)
self.assertExpectedInline(
bw_graph.code.strip(),
"""\
def forward(self, primals_2, getitem_1, tangents_1, tangents_token):
with_effects_1 = torch.ops.higher_order.with_effects(tangents_token, torch.ops.aten.cos.default, getitem_1); tangents_token = getitem_1 = None
getitem_2 = with_effects_1[0]
getitem_3 = with_effects_1[1]; with_effects_1 = None
mul = torch.ops.aten.mul.Tensor(tangents_1, getitem_3); tangents_1 = getitem_3 = None
sin_1 = torch.ops.aten.sin.default(primals_2); primals_2 = None
neg = torch.ops.aten.neg.default(sin_1); sin_1 = None
mul_1 = torch.ops.aten.mul.Tensor(mul, neg); mul = neg = None
return (mul_1, getitem_2)""",
)
finally:
_deregister_effectful_op(torch.ops.aten.cos.default)
if __name__ == "__main__":
run_tests()