mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Changes: 1. Add `_private_register_pytree_node` API in both C++ and Python pytree. In C++ pytree, the API will only register pytree node for C++ pytree. In Python pytree, the API will only register pytree node for Python pytree. 2. Do not allow registering a type as pytree node twice in the Python pytree. 3. Add thread lock to the Python pytree node register API. 4. The old `_register_pytree_node` API will call the `_private_register_pytree_node` API and raise a deprecation warning. 5. Add a new `register_pytree_node` API to register node type in both C++ and Python implementations. 6. Add tests to ensure a warning will be raised when the old private function is called. Pull Request resolved: https://github.com/pytorch/pytorch/pull/112111 Approved by: https://github.com/zou3519
55 lines
2.3 KiB
Python
55 lines
2.3 KiB
Python
from typing import Any, Dict, Iterable, List, Tuple
|
|
|
|
from ._compatibility import compatibility
|
|
from torch.utils._pytree import Context, register_pytree_node
|
|
|
|
__all__ = ["immutable_list", "immutable_dict"]
|
|
|
|
_help_mutation = """\
|
|
If you are attempting to modify the kwargs or args of a torch.fx.Node object,
|
|
instead create a new copy of it and assign the copy to the node:
|
|
new_args = ... # copy and mutate args
|
|
node.args = new_args
|
|
"""
|
|
|
|
def _no_mutation(self, *args, **kwargs):
|
|
raise NotImplementedError(f"'{type(self).__name__}' object does not support mutation. {_help_mutation}")
|
|
|
|
def _create_immutable_container(base, mutable_functions):
|
|
container = type('immutable_' + base.__name__, (base,), {})
|
|
for attr in mutable_functions:
|
|
setattr(container, attr, _no_mutation)
|
|
return container
|
|
|
|
immutable_list = _create_immutable_container(list,
|
|
['__delitem__', '__iadd__', '__imul__', '__setitem__', 'append',
|
|
'clear', 'extend', 'insert', 'pop', 'remove'])
|
|
immutable_list.__reduce__ = lambda self: (immutable_list, (tuple(iter(self)),))
|
|
immutable_list.__hash__ = lambda self: hash(tuple(self))
|
|
|
|
compatibility(is_backward_compatible=True)(immutable_list)
|
|
|
|
immutable_dict = _create_immutable_container(dict, ['__delitem__', '__setitem__', 'clear', 'pop', 'popitem', 'update'])
|
|
immutable_dict.__reduce__ = lambda self: (immutable_dict, (iter(self.items()),))
|
|
immutable_dict.__hash__ = lambda self: hash(tuple(self.items()))
|
|
compatibility(is_backward_compatible=True)(immutable_dict)
|
|
|
|
|
|
# Register immutable collections for PyTree operations
|
|
|
|
def _immutable_dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]:
|
|
return list(d.values()), list(d.keys())
|
|
|
|
def _immutable_dict_unflatten(values: Iterable[Any], context: Context) -> Dict[Any, Any]:
|
|
return immutable_dict(dict(zip(context, values)))
|
|
|
|
def _immutable_list_flatten(d: List[Any]) -> Tuple[List[Any], Context]:
|
|
return d, None
|
|
|
|
def _immutable_list_unflatten(values: Iterable[Any], context: Context) -> List[Any]:
|
|
return immutable_list(values)
|
|
|
|
|
|
register_pytree_node(immutable_dict, _immutable_dict_flatten, _immutable_dict_unflatten)
|
|
register_pytree_node(immutable_list, _immutable_list_flatten, _immutable_list_unflatten)
|