mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Changes: 1. Add `_private_register_pytree_node` API in both C++ and Python pytree. In C++ pytree, the API will only register pytree node for C++ pytree. In Python pytree, the API will only register pytree node for Python pytree. 2. Do not allow registering a type as pytree node twice in the Python pytree. 3. Add thread lock to the Python pytree node register API. 4. The old `_register_pytree_node` API will call the `_private_register_pytree_node` API and raise a deprecation warning. 5. Add a new `register_pytree_node` API to register node type in both C++ and Python implementations. 6. Add tests to ensure a warning will be raised when the old private function is called. Pull Request resolved: https://github.com/pytorch/pytorch/pull/112111 Approved by: https://github.com/zou3519
829 lines
28 KiB
Python
829 lines
28 KiB
Python
# Owner(s): ["module: pytree"]
|
|
|
|
import unittest
|
|
from collections import namedtuple, OrderedDict, UserDict
|
|
|
|
import torch
|
|
import torch.utils._cxx_pytree as cxx_pytree
|
|
import torch.utils._pytree as py_pytree
|
|
from torch.testing._internal.common_utils import (
|
|
instantiate_parametrized_tests,
|
|
parametrize,
|
|
run_tests,
|
|
subtest,
|
|
TEST_WITH_TORCHDYNAMO,
|
|
TestCase,
|
|
)
|
|
|
|
|
|
GlobalPoint = namedtuple("GlobalPoint", ["x", "y"])
|
|
|
|
|
|
class GlobalDummyType:
|
|
def __init__(self, x, y):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
|
|
class TestGenericPytree(TestCase):
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_register_pytree_node(self, pytree_impl):
|
|
class MyDict(UserDict):
|
|
pass
|
|
|
|
d = MyDict(a=1, b=2, c=3)
|
|
|
|
# Custom types are leaf nodes by default
|
|
values, spec = pytree_impl.tree_flatten(d)
|
|
self.assertEqual(values, [d])
|
|
self.assertIs(values[0], d)
|
|
self.assertEqual(d, pytree_impl.tree_unflatten(values, spec))
|
|
self.assertTrue(spec.is_leaf())
|
|
|
|
# Register MyDict as a pytree node
|
|
pytree_impl.register_pytree_node(
|
|
MyDict,
|
|
lambda d: (list(d.values()), list(d.keys())),
|
|
lambda values, keys: MyDict(zip(keys, values)),
|
|
)
|
|
|
|
values, spec = pytree_impl.tree_flatten(d)
|
|
self.assertEqual(values, [1, 2, 3])
|
|
self.assertEqual(d, pytree_impl.tree_unflatten(values, spec))
|
|
|
|
# Do not allow registering the same type twice
|
|
with self.assertRaisesRegex(ValueError, "already registered"):
|
|
pytree_impl.register_pytree_node(
|
|
MyDict,
|
|
lambda d: (list(d.values()), list(d.keys())),
|
|
lambda values, keys: MyDict(zip(keys, values)),
|
|
)
|
|
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_flatten_unflatten_leaf(self, pytree_impl):
|
|
def run_test_with_leaf(leaf):
|
|
values, treespec = pytree_impl.tree_flatten(leaf)
|
|
self.assertEqual(values, [leaf])
|
|
self.assertEqual(treespec, pytree_impl.LeafSpec())
|
|
|
|
unflattened = pytree_impl.tree_unflatten(values, treespec)
|
|
self.assertEqual(unflattened, leaf)
|
|
|
|
run_test_with_leaf(1)
|
|
run_test_with_leaf(1.0)
|
|
run_test_with_leaf(None)
|
|
run_test_with_leaf(bool)
|
|
run_test_with_leaf(torch.randn(3, 3))
|
|
|
|
@parametrize(
|
|
"pytree_impl,gen_expected_fn",
|
|
[
|
|
subtest(
|
|
(
|
|
py_pytree,
|
|
lambda lst: py_pytree.TreeSpec(
|
|
list, None, [py_pytree.LeafSpec() for _ in lst]
|
|
),
|
|
),
|
|
name="py",
|
|
),
|
|
subtest(
|
|
(cxx_pytree, lambda lst: cxx_pytree.tree_structure([0] * len(lst))),
|
|
name="cxx",
|
|
),
|
|
],
|
|
)
|
|
def test_flatten_unflatten_list(self, pytree_impl, gen_expected_fn):
|
|
def run_test(lst):
|
|
expected_spec = gen_expected_fn(lst)
|
|
values, treespec = pytree_impl.tree_flatten(lst)
|
|
self.assertTrue(isinstance(values, list))
|
|
self.assertEqual(values, lst)
|
|
self.assertEqual(treespec, expected_spec)
|
|
|
|
unflattened = pytree_impl.tree_unflatten(values, treespec)
|
|
self.assertEqual(unflattened, lst)
|
|
self.assertTrue(isinstance(unflattened, list))
|
|
|
|
run_test([])
|
|
run_test([1.0, 2])
|
|
run_test([torch.tensor([1.0, 2]), 2, 10, 9, 11])
|
|
|
|
@parametrize(
|
|
"pytree_impl,gen_expected_fn",
|
|
[
|
|
subtest(
|
|
(
|
|
py_pytree,
|
|
lambda tup: py_pytree.TreeSpec(
|
|
tuple, None, [py_pytree.LeafSpec() for _ in tup]
|
|
),
|
|
),
|
|
name="py",
|
|
),
|
|
subtest(
|
|
(cxx_pytree, lambda tup: cxx_pytree.tree_structure((0,) * len(tup))),
|
|
name="cxx",
|
|
),
|
|
],
|
|
)
|
|
def test_flatten_unflatten_tuple(self, pytree_impl, gen_expected_fn):
|
|
def run_test(tup):
|
|
expected_spec = gen_expected_fn(tup)
|
|
values, treespec = pytree_impl.tree_flatten(tup)
|
|
self.assertTrue(isinstance(values, list))
|
|
self.assertEqual(values, list(tup))
|
|
self.assertEqual(treespec, expected_spec)
|
|
|
|
unflattened = pytree_impl.tree_unflatten(values, treespec)
|
|
self.assertEqual(unflattened, tup)
|
|
self.assertTrue(isinstance(unflattened, tuple))
|
|
|
|
run_test(())
|
|
run_test((1.0,))
|
|
run_test((1.0, 2))
|
|
run_test((torch.tensor([1.0, 2]), 2, 10, 9, 11))
|
|
|
|
@parametrize(
|
|
"pytree_impl,gen_expected_fn",
|
|
[
|
|
subtest(
|
|
(
|
|
py_pytree,
|
|
lambda dct: py_pytree.TreeSpec(
|
|
dict,
|
|
list(dct.keys()),
|
|
[py_pytree.LeafSpec() for _ in dct.values()],
|
|
),
|
|
),
|
|
name="py",
|
|
),
|
|
subtest(
|
|
(
|
|
cxx_pytree,
|
|
lambda dct: cxx_pytree.tree_structure(dict.fromkeys(dct, 0)),
|
|
),
|
|
name="cxx",
|
|
),
|
|
],
|
|
)
|
|
def test_flatten_unflatten_dict(self, pytree_impl, gen_expected_fn):
|
|
def run_test(dct):
|
|
expected_spec = gen_expected_fn(dct)
|
|
values, treespec = pytree_impl.tree_flatten(dct)
|
|
self.assertTrue(isinstance(values, list))
|
|
self.assertEqual(values, list(dct.values()))
|
|
self.assertEqual(treespec, expected_spec)
|
|
|
|
unflattened = pytree_impl.tree_unflatten(values, treespec)
|
|
self.assertEqual(unflattened, dct)
|
|
self.assertTrue(isinstance(unflattened, dict))
|
|
|
|
run_test({})
|
|
run_test({"a": 1})
|
|
run_test({"abcdefg": torch.randn(2, 3)})
|
|
run_test({1: torch.randn(2, 3)})
|
|
run_test({"a": 1, "b": 2, "c": torch.randn(2, 3)})
|
|
|
|
@parametrize(
|
|
"pytree_impl,gen_expected_fn",
|
|
[
|
|
subtest(
|
|
(
|
|
py_pytree,
|
|
lambda odict: py_pytree.TreeSpec(
|
|
OrderedDict,
|
|
list(odict.keys()),
|
|
[py_pytree.LeafSpec() for _ in odict.values()],
|
|
),
|
|
),
|
|
name="py",
|
|
),
|
|
subtest(
|
|
(
|
|
cxx_pytree,
|
|
lambda odict: cxx_pytree.tree_structure(
|
|
OrderedDict.fromkeys(odict, 0)
|
|
),
|
|
),
|
|
name="cxx",
|
|
),
|
|
],
|
|
)
|
|
def test_flatten_unflatten_odict(self, pytree_impl, gen_expected_fn):
|
|
def run_test(odict):
|
|
expected_spec = gen_expected_fn(odict)
|
|
values, treespec = pytree_impl.tree_flatten(odict)
|
|
self.assertTrue(isinstance(values, list))
|
|
self.assertEqual(values, list(odict.values()))
|
|
self.assertEqual(treespec, expected_spec)
|
|
|
|
unflattened = pytree_impl.tree_unflatten(values, treespec)
|
|
self.assertEqual(unflattened, odict)
|
|
self.assertTrue(isinstance(unflattened, OrderedDict))
|
|
|
|
od = OrderedDict()
|
|
run_test(od)
|
|
|
|
od["b"] = 1
|
|
od["a"] = torch.tensor(3.14)
|
|
run_test(od)
|
|
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_flatten_unflatten_namedtuple(self, pytree_impl):
|
|
Point = namedtuple("Point", ["x", "y"])
|
|
|
|
def run_test(tup):
|
|
if pytree_impl is py_pytree:
|
|
expected_spec = py_pytree.TreeSpec(
|
|
namedtuple, Point, [py_pytree.LeafSpec() for _ in tup]
|
|
)
|
|
else:
|
|
expected_spec = cxx_pytree.tree_structure(Point(0, 1))
|
|
values, treespec = pytree_impl.tree_flatten(tup)
|
|
self.assertTrue(isinstance(values, list))
|
|
self.assertEqual(values, list(tup))
|
|
self.assertEqual(treespec, expected_spec)
|
|
|
|
unflattened = pytree_impl.tree_unflatten(values, treespec)
|
|
self.assertEqual(unflattened, tup)
|
|
self.assertTrue(isinstance(unflattened, Point))
|
|
|
|
run_test(Point(1.0, 2))
|
|
run_test(Point(torch.tensor(1.0), 2))
|
|
|
|
@parametrize(
|
|
"op",
|
|
[
|
|
subtest(torch.max, name="max"),
|
|
subtest(torch.min, name="min"),
|
|
],
|
|
)
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_flatten_unflatten_return_type(self, pytree_impl, op):
|
|
x = torch.randn(3, 3)
|
|
expected = op(x, dim=0)
|
|
|
|
values, spec = pytree_impl.tree_flatten(expected)
|
|
# Check that values is actually List[Tensor] and not (ReturnType(...),)
|
|
for value in values:
|
|
self.assertTrue(isinstance(value, torch.Tensor))
|
|
result = pytree_impl.tree_unflatten(values, spec)
|
|
|
|
self.assertEqual(type(result), type(expected))
|
|
self.assertEqual(result, expected)
|
|
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_flatten_unflatten_nested(self, pytree_impl):
|
|
def run_test(pytree):
|
|
values, treespec = pytree_impl.tree_flatten(pytree)
|
|
self.assertTrue(isinstance(values, list))
|
|
self.assertEqual(len(values), treespec.num_leaves)
|
|
|
|
# NB: python basic data structures (dict list tuple) all have
|
|
# contents equality defined on them, so the following works for them.
|
|
unflattened = pytree_impl.tree_unflatten(values, treespec)
|
|
self.assertEqual(unflattened, pytree)
|
|
|
|
cases = [
|
|
[()],
|
|
([],),
|
|
{"a": ()},
|
|
{"a": 0, "b": [{"c": 1}]},
|
|
{"a": 0, "b": [1, {"c": 2}, torch.randn(3)], "c": (torch.randn(2, 3), 1)},
|
|
]
|
|
for case in cases:
|
|
run_test(case)
|
|
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_treemap(self, pytree_impl):
|
|
def run_test(pytree):
|
|
def f(x):
|
|
return x * 3
|
|
|
|
sm1 = sum(map(f, pytree_impl.tree_leaves(pytree)))
|
|
sm2 = sum(pytree_impl.tree_leaves(pytree_impl.tree_map(f, pytree)))
|
|
self.assertEqual(sm1, sm2)
|
|
|
|
def invf(x):
|
|
return x // 3
|
|
|
|
self.assertEqual(
|
|
pytree_impl.tree_map(invf, pytree_impl.tree_map(f, pytree)),
|
|
pytree,
|
|
)
|
|
|
|
cases = [
|
|
[()],
|
|
([],),
|
|
{"a": ()},
|
|
{"a": 1, "b": [{"c": 2}]},
|
|
{"a": 0, "b": [2, {"c": 3}, 4], "c": (5, 6)},
|
|
]
|
|
for case in cases:
|
|
run_test(case)
|
|
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_tree_only(self, pytree_impl):
|
|
self.assertEqual(
|
|
pytree_impl.tree_map_only(int, lambda x: x + 2, [0, "a"]), [2, "a"]
|
|
)
|
|
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_tree_all_any(self, pytree_impl):
|
|
self.assertTrue(pytree_impl.tree_all(lambda x: x % 2, [1, 3]))
|
|
self.assertFalse(pytree_impl.tree_all(lambda x: x % 2, [0, 1]))
|
|
self.assertTrue(pytree_impl.tree_any(lambda x: x % 2, [0, 1]))
|
|
self.assertFalse(pytree_impl.tree_any(lambda x: x % 2, [0, 2]))
|
|
self.assertTrue(pytree_impl.tree_all_only(int, lambda x: x % 2, [1, 3, "a"]))
|
|
self.assertFalse(pytree_impl.tree_all_only(int, lambda x: x % 2, [0, 1, "a"]))
|
|
self.assertTrue(pytree_impl.tree_any_only(int, lambda x: x % 2, [0, 1, "a"]))
|
|
self.assertFalse(pytree_impl.tree_any_only(int, lambda x: x % 2, [0, 2, "a"]))
|
|
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_broadcast_to_and_flatten(self, pytree_impl):
|
|
cases = [
|
|
(1, (), []),
|
|
# Same (flat) structures
|
|
((1,), (0,), [1]),
|
|
([1], [0], [1]),
|
|
((1, 2, 3), (0, 0, 0), [1, 2, 3]),
|
|
({"a": 1, "b": 2}, {"a": 0, "b": 0}, [1, 2]),
|
|
# Mismatched (flat) structures
|
|
([1], (0,), None),
|
|
([1], (0,), None),
|
|
((1,), [0], None),
|
|
((1, 2, 3), (0, 0), None),
|
|
({"a": 1, "b": 2}, {"a": 0}, None),
|
|
({"a": 1, "b": 2}, {"a": 0, "c": 0}, None),
|
|
({"a": 1, "b": 2}, {"a": 0, "b": 0, "c": 0}, None),
|
|
# Same (nested) structures
|
|
((1, [2, 3]), (0, [0, 0]), [1, 2, 3]),
|
|
((1, [(2, 3), 4]), (0, [(0, 0), 0]), [1, 2, 3, 4]),
|
|
# Mismatched (nested) structures
|
|
((1, [2, 3]), (0, (0, 0)), None),
|
|
((1, [2, 3]), (0, [0, 0, 0]), None),
|
|
# Broadcasting single value
|
|
(1, (0, 0, 0), [1, 1, 1]),
|
|
(1, [0, 0, 0], [1, 1, 1]),
|
|
(1, {"a": 0, "b": 0}, [1, 1]),
|
|
(1, (0, [0, [0]], 0), [1, 1, 1, 1]),
|
|
(1, (0, [0, [0, [], [[[0]]]]], 0), [1, 1, 1, 1, 1]),
|
|
# Broadcast multiple things
|
|
((1, 2), ([0, 0, 0], [0, 0]), [1, 1, 1, 2, 2]),
|
|
((1, 2), ([0, [0, 0], 0], [0, 0]), [1, 1, 1, 1, 2, 2]),
|
|
(([1, 2, 3], 4), ([0, [0, 0], 0], [0, 0]), [1, 2, 2, 3, 4, 4]),
|
|
]
|
|
for pytree, to_pytree, expected in cases:
|
|
_, to_spec = pytree_impl.tree_flatten(to_pytree)
|
|
result = pytree_impl._broadcast_to_and_flatten(pytree, to_spec)
|
|
self.assertEqual(result, expected, msg=str([pytree, to_spec, expected]))
|
|
|
|
@parametrize(
|
|
"pytree_impl",
|
|
[
|
|
subtest(py_pytree, name="py"),
|
|
subtest(cxx_pytree, name="cxx"),
|
|
],
|
|
)
|
|
def test_pytree_serialize_bad_input(self, pytree_impl):
|
|
with self.assertRaises(TypeError):
|
|
pytree_impl.treespec_dumps("random_blurb")
|
|
|
|
|
|
class TestPythonPytree(TestCase):
|
|
def test_deprecated_register_pytree_node(self):
|
|
class DummyType:
|
|
def __init__(self, x, y):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
with self.assertWarnsRegex(
|
|
UserWarning, "torch.utils._pytree._register_pytree_node"
|
|
):
|
|
py_pytree._register_pytree_node(
|
|
DummyType,
|
|
lambda dummy: ([dummy.x, dummy.y], None),
|
|
lambda xs, _: DummyType(*xs),
|
|
)
|
|
|
|
with self.assertWarnsRegex(UserWarning, "already registered"):
|
|
py_pytree._register_pytree_node(
|
|
DummyType,
|
|
lambda dummy: ([dummy.x, dummy.y], None),
|
|
lambda xs, _: DummyType(*xs),
|
|
)
|
|
|
|
def test_treespec_equality(self):
|
|
self.assertTrue(
|
|
py_pytree.LeafSpec() == py_pytree.LeafSpec(),
|
|
)
|
|
self.assertTrue(
|
|
py_pytree.TreeSpec(list, None, []) == py_pytree.TreeSpec(list, None, []),
|
|
)
|
|
self.assertTrue(
|
|
py_pytree.TreeSpec(list, None, [py_pytree.LeafSpec()])
|
|
== py_pytree.TreeSpec(list, None, [py_pytree.LeafSpec()]),
|
|
)
|
|
self.assertFalse(
|
|
py_pytree.TreeSpec(tuple, None, []) == py_pytree.TreeSpec(list, None, []),
|
|
)
|
|
self.assertTrue(
|
|
py_pytree.TreeSpec(tuple, None, []) != py_pytree.TreeSpec(list, None, []),
|
|
)
|
|
|
|
@unittest.skipIf(TEST_WITH_TORCHDYNAMO, "Dynamo test in test_treespec_repr_dynamo.")
|
|
def test_treespec_repr(self):
|
|
# Check that it looks sane
|
|
pytree = (0, [0, 0, [0]])
|
|
_, spec = py_pytree.tree_flatten(pytree)
|
|
self.assertEqual(
|
|
repr(spec),
|
|
(
|
|
"TreeSpec(tuple, None, [*,\n"
|
|
" TreeSpec(list, None, [*,\n"
|
|
" *,\n"
|
|
" TreeSpec(list, None, [*])])])"
|
|
),
|
|
)
|
|
|
|
@unittest.skipIf(not TEST_WITH_TORCHDYNAMO, "Eager test in test_treespec_repr.")
|
|
def test_treespec_repr_dynamo(self):
|
|
# Check that it looks sane
|
|
pytree = (0, [0, 0, [0]])
|
|
_, spec = py_pytree.tree_flatten(pytree)
|
|
self.assertExpectedInline(
|
|
repr(spec),
|
|
"""\
|
|
TreeSpec(tuple, None, [*,
|
|
TreeSpec(list, None, [*,
|
|
*,
|
|
TreeSpec(list, None, [*])])])""",
|
|
)
|
|
|
|
@parametrize(
|
|
"spec",
|
|
[
|
|
py_pytree.TreeSpec(list, None, []),
|
|
py_pytree.TreeSpec(tuple, None, []),
|
|
py_pytree.TreeSpec(dict, [], []),
|
|
py_pytree.TreeSpec(list, None, [py_pytree.LeafSpec()]),
|
|
py_pytree.TreeSpec(
|
|
list, None, [py_pytree.LeafSpec(), py_pytree.LeafSpec()]
|
|
),
|
|
py_pytree.TreeSpec(
|
|
tuple,
|
|
None,
|
|
[py_pytree.LeafSpec(), py_pytree.LeafSpec(), py_pytree.LeafSpec()],
|
|
),
|
|
py_pytree.TreeSpec(
|
|
dict,
|
|
["a", "b", "c"],
|
|
[py_pytree.LeafSpec(), py_pytree.LeafSpec(), py_pytree.LeafSpec()],
|
|
),
|
|
py_pytree.TreeSpec(
|
|
OrderedDict,
|
|
["a", "b", "c"],
|
|
[
|
|
py_pytree.TreeSpec(
|
|
tuple, None, [py_pytree.LeafSpec(), py_pytree.LeafSpec()]
|
|
),
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.TreeSpec(
|
|
dict,
|
|
["a", "b", "c"],
|
|
[
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.LeafSpec(),
|
|
],
|
|
),
|
|
],
|
|
),
|
|
py_pytree.TreeSpec(
|
|
list,
|
|
None,
|
|
[
|
|
py_pytree.TreeSpec(
|
|
tuple,
|
|
None,
|
|
[
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.TreeSpec(
|
|
list,
|
|
None,
|
|
[
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.LeafSpec(),
|
|
],
|
|
),
|
|
],
|
|
),
|
|
],
|
|
),
|
|
],
|
|
)
|
|
def test_pytree_serialize(self, spec):
|
|
serialized_spec = py_pytree.treespec_dumps(spec)
|
|
self.assertTrue(isinstance(serialized_spec, str))
|
|
self.assertTrue(spec == py_pytree.treespec_loads(serialized_spec))
|
|
|
|
def test_pytree_serialize_namedtuple(self):
|
|
Point = namedtuple("Point", ["x", "y"])
|
|
spec = py_pytree.TreeSpec(
|
|
namedtuple, Point, [py_pytree.LeafSpec(), py_pytree.LeafSpec()]
|
|
)
|
|
|
|
roundtrip_spec = py_pytree.treespec_loads(py_pytree.treespec_dumps(spec))
|
|
# The context in the namedtuple is different now because we recreated
|
|
# the namedtuple type.
|
|
self.assertEqual(spec.context._fields, roundtrip_spec.context._fields)
|
|
|
|
@unittest.expectedFailure
|
|
def test_pytree_custom_type_serialize_bad(self):
|
|
class DummyType:
|
|
def __init__(self, x, y):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
py_pytree.register_pytree_node(
|
|
DummyType,
|
|
lambda dummy: ([dummy.x, dummy.y], None),
|
|
lambda xs, _: DummyType(*xs),
|
|
)
|
|
|
|
spec = py_pytree.TreeSpec(
|
|
DummyType, None, [py_pytree.LeafSpec(), py_pytree.LeafSpec()]
|
|
)
|
|
with self.assertRaisesRegex(
|
|
NotImplementedError, "No registered serialization name"
|
|
):
|
|
roundtrip_spec = py_pytree.treespec_dumps(spec)
|
|
|
|
def test_pytree_custom_type_serialize(self):
|
|
class DummyType:
|
|
def __init__(self, x, y):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
py_pytree.register_pytree_node(
|
|
DummyType,
|
|
lambda dummy: ([dummy.x, dummy.y], None),
|
|
lambda xs, _: DummyType(*xs),
|
|
serialized_type_name="test_pytree_custom_type_serialize.DummyType",
|
|
to_dumpable_context=lambda context: "moo",
|
|
from_dumpable_context=lambda dumpable_context: None,
|
|
)
|
|
spec = py_pytree.TreeSpec(
|
|
DummyType, None, [py_pytree.LeafSpec(), py_pytree.LeafSpec()]
|
|
)
|
|
serialized_spec = py_pytree.treespec_dumps(spec, 1)
|
|
self.assertTrue("moo" in serialized_spec)
|
|
roundtrip_spec = py_pytree.treespec_loads(serialized_spec)
|
|
self.assertEqual(roundtrip_spec, spec)
|
|
|
|
def test_pytree_serialize_register_bad(self):
|
|
class DummyType:
|
|
def __init__(self, x, y):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Both to_dumpable_context and from_dumpable_context"
|
|
):
|
|
py_pytree.register_pytree_node(
|
|
DummyType,
|
|
lambda dummy: ([dummy.x, dummy.y], None),
|
|
lambda xs, _: DummyType(*xs),
|
|
serialized_type_name="test_pytree_serialize_register_bad.DummyType",
|
|
to_dumpable_context=lambda context: "moo",
|
|
)
|
|
|
|
def test_pytree_context_serialize_bad(self):
|
|
class DummyType:
|
|
def __init__(self, x, y):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
py_pytree.register_pytree_node(
|
|
DummyType,
|
|
lambda dummy: ([dummy.x, dummy.y], None),
|
|
lambda xs, _: DummyType(*xs),
|
|
serialized_type_name="test_pytree_serialize_serialize_bad.DummyType",
|
|
to_dumpable_context=lambda context: DummyType,
|
|
from_dumpable_context=lambda dumpable_context: None,
|
|
)
|
|
|
|
spec = py_pytree.TreeSpec(
|
|
DummyType, None, [py_pytree.LeafSpec(), py_pytree.LeafSpec()]
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
TypeError, "Object of type type is not JSON serializable"
|
|
):
|
|
py_pytree.treespec_dumps(spec)
|
|
|
|
def test_pytree_serialize_bad_protocol(self):
|
|
import json
|
|
|
|
Point = namedtuple("Point", ["x", "y"])
|
|
spec = py_pytree.TreeSpec(
|
|
namedtuple, Point, [py_pytree.LeafSpec(), py_pytree.LeafSpec()]
|
|
)
|
|
|
|
with self.assertRaisesRegex(ValueError, "Unknown protocol"):
|
|
py_pytree.treespec_dumps(spec, -1)
|
|
|
|
serialized_spec = py_pytree.treespec_dumps(spec)
|
|
protocol, data = json.loads(serialized_spec)
|
|
bad_protocol_serialized_spec = json.dumps((-1, data))
|
|
|
|
with self.assertRaisesRegex(ValueError, "Unknown protocol"):
|
|
py_pytree.treespec_loads(bad_protocol_serialized_spec)
|
|
|
|
def test_saved_serialized(self):
|
|
complicated_spec = py_pytree.TreeSpec(
|
|
OrderedDict,
|
|
[1, 2, 3],
|
|
[
|
|
py_pytree.TreeSpec(
|
|
tuple, None, [py_pytree.LeafSpec(), py_pytree.LeafSpec()]
|
|
),
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.TreeSpec(
|
|
dict,
|
|
[4, 5, 6],
|
|
[
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.LeafSpec(),
|
|
py_pytree.LeafSpec(),
|
|
],
|
|
),
|
|
],
|
|
)
|
|
|
|
serialized_spec = py_pytree.treespec_dumps(complicated_spec)
|
|
saved_spec = (
|
|
'[1, {"type": "collections.OrderedDict", "context": "[1, 2, 3]", '
|
|
'"children_spec": [{"type": "builtins.tuple", "context": "null", '
|
|
'"children_spec": [{"type": null, "context": null, '
|
|
'"children_spec": []}, {"type": null, "context": null, '
|
|
'"children_spec": []}]}, {"type": null, "context": null, '
|
|
'"children_spec": []}, {"type": "builtins.dict", "context": '
|
|
'"[4, 5, 6]", "children_spec": [{"type": null, "context": null, '
|
|
'"children_spec": []}, {"type": null, "context": null, "children_spec": '
|
|
'[]}, {"type": null, "context": null, "children_spec": []}]}]}]'
|
|
)
|
|
self.assertEqual(serialized_spec, saved_spec)
|
|
self.assertEqual(complicated_spec, py_pytree.treespec_loads(saved_spec))
|
|
|
|
|
|
class TestCxxPytree(TestCase):
|
|
def test_treespec_equality(self):
|
|
self.assertTrue(cxx_pytree.LeafSpec() == cxx_pytree.LeafSpec())
|
|
|
|
@unittest.skipIf(TEST_WITH_TORCHDYNAMO, "Dynamo test in test_treespec_repr_dynamo.")
|
|
def test_treespec_repr(self):
|
|
# Check that it looks sane
|
|
pytree = (0, [0, 0, [0]])
|
|
_, spec = cxx_pytree.tree_flatten(pytree)
|
|
self.assertEqual(
|
|
repr(spec),
|
|
("PyTreeSpec((*, [*, *, [*]]), NoneIsLeaf)"),
|
|
)
|
|
|
|
@unittest.skipIf(not TEST_WITH_TORCHDYNAMO, "Eager test in test_treespec_repr.")
|
|
def test_treespec_repr_dynamo(self):
|
|
# Check that it looks sane
|
|
pytree = (0, [0, 0, [0]])
|
|
_, spec = cxx_pytree.tree_flatten(pytree)
|
|
self.assertExpectedInline(
|
|
repr(spec),
|
|
"PyTreeSpec((*, [*, *, [*]]), NoneIsLeaf)",
|
|
)
|
|
|
|
@parametrize(
|
|
"spec",
|
|
[
|
|
cxx_pytree.tree_structure([]),
|
|
cxx_pytree.tree_structure(()),
|
|
cxx_pytree.tree_structure({}),
|
|
cxx_pytree.tree_structure([0]),
|
|
cxx_pytree.tree_structure([0, 1]),
|
|
cxx_pytree.tree_structure((0, 1, 2)),
|
|
cxx_pytree.tree_structure({"a": 0, "b": 1, "c": 2}),
|
|
cxx_pytree.tree_structure(
|
|
OrderedDict([("a", (0, 1)), ("b", 2), ("c", {"a": 3, "b": 4, "c": 5})])
|
|
),
|
|
cxx_pytree.tree_structure([(0, 1, [2, 3])]),
|
|
],
|
|
)
|
|
def test_pytree_serialize(self, spec):
|
|
serialized_spec = cxx_pytree.treespec_dumps(spec)
|
|
self.assertTrue(isinstance(serialized_spec, str))
|
|
self.assertTrue(spec == cxx_pytree.treespec_loads(serialized_spec))
|
|
|
|
def test_pytree_serialize_namedtuple(self):
|
|
spec = cxx_pytree.tree_structure(GlobalPoint(0, 1))
|
|
|
|
roundtrip_spec = cxx_pytree.treespec_loads(cxx_pytree.treespec_dumps(spec))
|
|
self.assertEqual(roundtrip_spec.type._fields, spec.type._fields)
|
|
|
|
LocalPoint = namedtuple("LocalPoint", ["x", "y"])
|
|
spec = cxx_pytree.tree_structure(LocalPoint(0, 1))
|
|
|
|
roundtrip_spec = cxx_pytree.treespec_loads(cxx_pytree.treespec_dumps(spec))
|
|
self.assertEqual(roundtrip_spec.type._fields, spec.type._fields)
|
|
|
|
def test_pytree_custom_type_serialize(self):
|
|
cxx_pytree.register_pytree_node(
|
|
GlobalDummyType,
|
|
lambda dummy: ([dummy.x, dummy.y], None),
|
|
lambda xs, _: GlobalDummyType(*xs),
|
|
serialized_type_name="GlobalDummyType",
|
|
)
|
|
spec = cxx_pytree.tree_structure(GlobalDummyType(0, 1))
|
|
serialized_spec = cxx_pytree.treespec_dumps(spec)
|
|
roundtrip_spec = cxx_pytree.treespec_loads(serialized_spec)
|
|
self.assertEqual(roundtrip_spec, spec)
|
|
|
|
class LocalDummyType:
|
|
def __init__(self, x, y):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
cxx_pytree.register_pytree_node(
|
|
LocalDummyType,
|
|
lambda dummy: ([dummy.x, dummy.y], None),
|
|
lambda xs, _: LocalDummyType(*xs),
|
|
serialized_type_name="LocalDummyType",
|
|
)
|
|
spec = cxx_pytree.tree_structure(LocalDummyType(0, 1))
|
|
serialized_spec = cxx_pytree.treespec_dumps(spec)
|
|
roundtrip_spec = cxx_pytree.treespec_loads(serialized_spec)
|
|
self.assertEqual(roundtrip_spec, spec)
|
|
|
|
|
|
instantiate_parametrized_tests(TestGenericPytree)
|
|
instantiate_parametrized_tests(TestPythonPytree)
|
|
instantiate_parametrized_tests(TestCxxPytree)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|