Files
pytorch/torch/csrc/profiler/python/init.cpp

671 lines
25 KiB
C++

#include <torch/csrc/profiler/python/init.h>
#include <ATen/record_function.h>
#include <c10/core/impl/PyInterpreter.h>
#include <c10/util/overloaded.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/profiler/collection.h>
#include <torch/csrc/profiler/python/combined_traceback.h>
#include <torch/csrc/profiler/standalone/execution_trace_observer.h>
#include <torch/csrc/utils/pybind.h>
struct THPCapturedTraceback {
PyObject_HEAD
std::shared_ptr<torch::CapturedTraceback> data;
};
static int THPCapturedTraceback_traverse(
PyObject* self,
visitproc visit,
void* arg) {
return ((THPCapturedTraceback*)self)
->data->traversePython((int (*)(void*, void*))visit, arg);
}
static int THPCapturedTraceback_clear(PyObject* self) {
return ((THPCapturedTraceback*)self)->data->clearPython();
}
static void THPCapturedTraceback_dealloc(PyObject* self_) {
auto* self = (THPCapturedTraceback*)self_;
PyObject_GC_UnTrack(self);
self->data.~shared_ptr<torch::CapturedTraceback>();
// promptly trigger delayed frees since we have GIL
torch::freeDeadCapturedTracebackFrames();
PyObject_GC_Del(self);
}
PyTypeObject THPCapturedTracebackType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C._profiler.CapturedTraceback", /* tp_name */
sizeof(THPCapturedTraceback), /* tp_basicsize */
0, /* tp_itemsize */
THPCapturedTraceback_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
// NOLINTNEXTLINE(misc-redundant-expression)
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
nullptr, /* tp_doc */
(traverseproc)THPCapturedTraceback_traverse, /* tp_traverse */
(inquiry)THPCapturedTraceback_clear, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
nullptr, /* tp_methods */
nullptr, /* tp_members */
nullptr, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
nullptr, /* tp_new */
};
namespace pybind11::detail {
template <>
struct type_caster<std::shared_ptr<torch::CapturedTraceback>> {
public:
PYBIND11_TYPE_CASTER(
std::shared_ptr<torch::CapturedTraceback>,
_("torch._C._profiler.CapturedTraceback"));
bool load(handle src, bool) {
if (Py_TYPE(src.ptr()) == &THPCapturedTracebackType) {
value = reinterpret_cast<THPCapturedTraceback*>(src.ptr())->data;
return true;
}
return false;
}
static handle cast(
std::shared_ptr<torch::CapturedTraceback> src,
return_value_policy /* policy */,
handle /* parent */) {
auto* r = PyObject_GC_New(THPCapturedTraceback, &THPCapturedTracebackType);
new (&r->data) std::shared_ptr<torch::CapturedTraceback>(std::move(src));
return py::handle((PyObject*)r);
}
};
} // namespace pybind11::detail
namespace torch::profiler {
/* [NOTE: RecordFunctionFast]
* This is an alternate way to call record_function from python.
* The torch.profiler.record_function context manager is slow (~14us on
* benchmarks in Aug 2023), which is usually fine for module-level annotations
* in python, but slow for per-op annotations. Part of the reason it is slow is
* because the calls go through the dispatcher, in order to make the
* record_function calls work with torchscript.
*
* This implementation doesn't go through the dispatcher and so it won't work
* with any feature relying on the dispatcher (e.g. torchscript or
* torch.compile)
*
* An alternate solution would be to implement a python context manager that
* calls into C++ for the enter/exit function:
* @contextlib.contextmanager
* def record_function_fast(name):
* rf = torch._C._record_function_fast_enter(name)
* try:
* yield
* finally:
* torch._C._record_function_fast_exit(rf)
* The C++ implementation here is faster by ~0.2-0.4us per context manager.
*/
namespace {
struct RecordFunctionFast {
PyObject_HEAD
PyObject* name;
PyObject* input_values;
PyObject* keyword_values;
std::unique_ptr<at::RecordFunction> guard;
};
PyObject* RecordFunctionFast_new(
PyTypeObject* subtype,
PyObject* args,
PyObject* kwargs) {
RecordFunctionFast* self = (RecordFunctionFast*)subtype->tp_alloc(subtype, 0);
if (self != nullptr) {
self->name = nullptr;
self->input_values = nullptr;
self->keyword_values = nullptr;
self->guard.reset();
}
return (PyObject*)self;
}
int RecordFunctionFast_init(
PyObject* selfGeneric,
PyObject* args,
PyObject* kwargs) {
auto self = (RecordFunctionFast*)selfGeneric;
// NOLINTNEXTLINE(*-c-arrays*)
constexpr const char* kwlist[] = {
"name", "input_values", "keyword_values", nullptr};
PyObject* name = nullptr;
PyObject* input_values = nullptr;
PyObject* keyword_values = nullptr;
if (!PyArg_ParseTupleAndKeywords(
args,
kwargs,
"O|OO", // name is required PyObject, args and kwargs are optional
// PyObjects
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<char**>(kwlist),
&name,
&input_values,
&keyword_values)) {
return -1;
}
if (name) {
TORCH_CHECK(
THPUtils_checkString(name),
"The name passed to RecordFunctionFast must be a string");
Py_INCREF(name);
self->name = name;
}
if (input_values) {
TORCH_CHECK(
PyList_Check(input_values) || PyTuple_Check(input_values),
"input_values must be a list or tuple");
Py_INCREF(input_values);
self->input_values = input_values;
}
if (keyword_values) {
TORCH_CHECK(PyDict_Check(keyword_values), "keyword_values must be dict");
Py_INCREF(keyword_values);
self->keyword_values = keyword_values;
}
return 0;
}
void RecordFunctionFast_dealloc(PyObject* selfGeneric) {
auto self = (RecordFunctionFast*)selfGeneric;
Py_CLEAR(self->name);
Py_CLEAR(self->input_values);
Py_CLEAR(self->keyword_values);
if (self->guard) {
self->guard.reset();
}
Py_TYPE(self)->tp_free(self);
}
PyObject* RecordFunctionFast_enter(PyObject* selfGeneric, PyObject* unused) {
HANDLE_TH_ERRORS
if (torch::profiler::impl::ProfilerStateBase::get() != nullptr) {
auto self = (RecordFunctionFast*)selfGeneric;
TORCH_INTERNAL_ASSERT(
!self->guard,
"Trying to enter a new record_function_fast context but the guard is unexpectedly already set");
self->guard =
std::make_unique<at::RecordFunction>(at::RecordScope::FUNCTION);
std::vector<at::IValue> args;
std::unordered_map<std::string, at::IValue> kwargs;
bool profiler_need_input = torch::autograd::profiler::profilerEnabled() &&
torch::autograd::profiler::getProfilerConfig().report_input_shapes;
// parse through args if they exist
if (self->input_values != nullptr && profiler_need_input) {
THPObjectPtr input_fast(
PySequence_Fast(self->input_values, "input must be a sequence"));
PyObject** input_items = PySequence_Fast_ITEMS(input_fast.get());
for (int i = 0; i < PySequence_Fast_GET_SIZE(input_fast.get()); i++) {
PyObject* item = input_items[i];
auto match = torch::jit::tryToInferType(item);
if (match.success()) {
args.push_back(torch::jit::toIValue(item, match.type()));
}
}
}
// parse through kwargs if they exist
if (self->keyword_values != nullptr && profiler_need_input) {
Py_ssize_t pos = 0;
PyObject *key = nullptr, *value = nullptr;
while (PyDict_Next(self->keyword_values, &pos, &key, &value)) {
// Get the string representation of the key and value
std::string key_str = THPUtils_unpackString(key);
at::IValue ivalue;
if (THPUtils_checkString(value)) {
ivalue = at::IValue(THPUtils_unpackString(value));
} else {
auto match = torch::jit::tryToInferPrimitiveType(value);
if (match.success()) {
ivalue = torch::jit::toIValue(value, match.type());
} else {
TORCH_WARN("Unable to infer type of value for keyword: ", key_str);
ivalue = at::IValue("NULL");
}
}
kwargs[key_str] = ivalue;
}
}
self->guard->before(THPUtils_unpackString(self->name), &args, &kwargs);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* RecordFunctionFast_exit(PyObject* selfGeneric, PyObject* unused) {
HANDLE_TH_ERRORS
if (torch::profiler::impl::ProfilerStateBase::get() != nullptr) {
auto self = (RecordFunctionFast*)selfGeneric;
TORCH_INTERNAL_ASSERT(
self->guard,
"Trying to exit an active record_function_fast context but no guard is set");
self->guard.reset();
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
} // namespace
void initPythonBindings(PyObject* module) {
auto rootModule = py::handle(module).cast<py::module>();
auto m = rootModule.def_submodule("_profiler");
using namespace torch::profiler::impl;
py::enum_<at::RecordScope>(m, "RecordScope")
.value("FUNCTION", at::RecordScope::FUNCTION)
.value("BACKWARD_FUNCTION", at::RecordScope::BACKWARD_FUNCTION)
.value("TORCHSCRIPT_FUNCTION", at::RecordScope::TORCHSCRIPT_FUNCTION)
.value("KERNEL_FUNCTION_DTYPE", at::RecordScope::KERNEL_FUNCTION_DTYPE)
.value("CUSTOM_CLASS", at::RecordScope::CUSTOM_CLASS)
.value("BUILD_FEATURE", at::RecordScope::BUILD_FEATURE)
.value("LITE_INTERPRETER", at::RecordScope::LITE_INTERPRETER)
.value("USER_SCOPE", at::RecordScope::USER_SCOPE)
.value("STATIC_RUNTIME_OP", at::RecordScope::STATIC_RUNTIME_OP)
.value("STATIC_RUNTIME_MODEL", at::RecordScope::STATIC_RUNTIME_MODEL);
py::enum_<ProfilerState>(m, "ProfilerState")
.value("Disabled", ProfilerState::Disabled)
.value("CPU", ProfilerState::CPU)
.value("CUDA", ProfilerState::CUDA)
.value("NVTX", ProfilerState::NVTX)
.value("ITT", ProfilerState::ITT)
.value("PRIVATEUSE1", ProfilerState::PRIVATEUSE1)
.value("KINETO", ProfilerState::KINETO)
.value("KINETO_GPU_FALLBACK", ProfilerState::KINETO_GPU_FALLBACK)
.value(
"KINETO_PRIVATEUSE1_FALLBACK",
ProfilerState::KINETO_PRIVATEUSE1_FALLBACK);
py::enum_<ActiveProfilerType>(m, "ActiveProfilerType")
.value("NONE", ActiveProfilerType::NONE)
.value("LEGACY", ActiveProfilerType::LEGACY)
.value("KINETO", ActiveProfilerType::KINETO)
.value("NVTX", ActiveProfilerType::NVTX)
.value("ITT", ActiveProfilerType::ITT)
.value("PRIVATEUSE1", ActiveProfilerType::PRIVATEUSE1);
py::enum_<ActivityType>(m, "ProfilerActivity")
.value("CPU", ActivityType::CPU)
.value("XPU", ActivityType::XPU)
.value("MTIA", ActivityType::MTIA)
.value("CUDA", ActivityType::CUDA)
.value("PrivateUse1", ActivityType::PrivateUse1);
py::class_<ExperimentalConfig>(m, "_ExperimentalConfig")
.def(
py::init<
std::vector<std::string> /* profiler_metrics */,
bool /* profiler_measure_per_kernel */,
bool /* verbose */,
std::vector<std::string> /* performance_events */,
bool /* enable_cuda_sync_events */
>(),
"An experimental config for Kineto features. Please note that"
"backward compatibility is not guaranteed.\n"
" profiler_metrics : a list of CUPTI profiler metrics used\n"
" to measure GPU performance events.\n"
" If this list contains values Kineto runs in CUPTI profiler mode\n"
" profiler_measure_per_kernel (bool) : whether to profile metrics per kernel\n"
" or for the entire measurement duration.\n"
" verbose (bool) : whether the trace file has `Call stack` field or not.\n"
" performance_events : a list of profiler events to be used for measurement.\n"
" enable_cuda_sync_events : for CUDA profiling mode, enable adding CUDA synchronization events\n"
" that expose CUDA device, stream and event synchronization activities. This feature is new\n"
" and currently disabled by default.\n",
py::arg("profiler_metrics") = std::vector<std::string>(),
py::arg("profiler_measure_per_kernel") = false,
py::arg("verbose") = false,
py::arg("performance_events") = std::vector<std::string>(),
py::arg("enable_cuda_sync_events") = false)
.def(py::pickle(
[](const ExperimentalConfig& p) { // __getstate__
py::list py_metrics;
for (const auto& metric : p.profiler_metrics) {
py::bytes mbytes(metric);
py_metrics.append(mbytes);
}
py::list py_perf_events;
for (const auto& event : p.performance_events) {
py::bytes mbytes(event);
py_perf_events.append(mbytes);
}
/* Return a tuple that fully encodes the state of the config */
return py::make_tuple(
py_metrics,
p.profiler_measure_per_kernel,
p.verbose,
p.enable_cuda_sync_events,
p.performance_events);
},
[](const py::tuple& t) { // __setstate__
if (t.size() >= 4) {
throw std::runtime_error("Expected atleast 4 values in state");
}
py::list py_metrics = t[0].cast<py::list>();
std::vector<std::string> metrics{py_metrics.size()};
for (const auto& py_metric : py_metrics) {
metrics.push_back(py::str(py_metric));
}
std::vector<std::string> performance_events;
if (t.size() == 5) {
py::list py_perf_events = t[4].cast<py::list>();
performance_events.resize(py_perf_events.size());
for (const auto& py_perf_event : py_perf_events) {
performance_events.push_back(py::str(py_perf_event));
}
}
return ExperimentalConfig(
std::move(metrics),
t[1].cast<bool>(),
t[2].cast<bool>(),
std::move(performance_events),
t[3].cast<bool>());
}));
py::class_<ProfilerConfig>(m, "ProfilerConfig")
.def(py::init<
ProfilerState,
bool, /* report_input_shapes */
bool, /* profile_memory */
bool, /* with_stack */
bool, /* with_flops */
bool, /* with_modules */
ExperimentalConfig /* experimental_config */
>());
py::enum_<EventType>(m, "_EventType")
.value("TorchOp", EventType::TorchOp)
.value("Backend", EventType::Backend)
.value("Vulkan", EventType::Vulkan)
.value("Allocation", EventType::Allocation)
.value("PyCall", EventType::PyCall)
.value("PyCCall", EventType::PyCCall)
.value("Kineto", EventType::Kineto);
py::class_<TensorMetadata>(m, "_TensorMetadata")
.def_property_readonly("impl_ptr", &TensorMetadata::impl)
.def_readonly("storage_data_ptr", &TensorMetadata::data_)
.def_readonly("id", &TensorMetadata::id_)
.def_readonly("allocation_id", &TensorMetadata::allocation_id_)
.def_property_readonly(
"layout",
[](const TensorMetadata& metadata) {
PyObject* layout_obj =
torch::autograd::utils::wrap(metadata.layout_);
return py::reinterpret_borrow<py::object>(layout_obj);
})
.def_readonly("device", &TensorMetadata::device_)
.def_property_readonly(
"dtype",
[](const TensorMetadata& metadata) {
return py::reinterpret_borrow<py::object>(
torch::autograd::utils::wrap(metadata.dtype_));
})
.def_readonly("dim", &TensorMetadata::size_dim_)
.def_readonly("sizes", &TensorMetadata::sizes_)
.def_readonly("strides", &TensorMetadata::strides_);
using torch_op_t = ExtraFields<EventType::TorchOp>;
py::class_<torch_op_t>(m, "_ExtraFields_TorchOp")
.def_readonly("name", &torch_op_t::name_)
.def_property_readonly(
"inputs",
[](const torch_op_t& op) {
py::list out;
for (const auto& input : op.inputs_) {
std::visit(
c10::overloaded(
[&](const c10::IValue& v) {
out.append(torch::jit::toPyObject(v));
},
[&](const std::nullopt_t&) { out.append(py::none()); },
[&](const auto& v) { out.append(py::cast(v)); }),
input);
}
return out;
})
.def_readonly("scope", &torch_op_t::scope_)
.def_readonly("sequence_number", &torch_op_t::sequence_number_)
.def_readonly("allow_tf32_cublas", &torch_op_t::allow_tf32_cublas_);
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ExtraFields<EventType::Backend>>(m, "_ExtraFields_Backend");
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ExtraFields<EventType::Vulkan>>(m, "_ExtraFields_Vulkan");
using allocation_t = ExtraFields<EventType::Allocation>;
py::class_<allocation_t>(m, "_ExtraFields_Allocation")
.def_property_readonly(
"ptr",
[](const allocation_t& a) {
return reinterpret_cast<intptr_t>(a.ptr_);
})
.def_readonly("id", &allocation_t::id_)
.def_readonly("allocation_id", &allocation_t::allocation_id_)
.def_readonly("alloc_size", &allocation_t::alloc_size_)
.def_readonly("total_allocated", &allocation_t::total_allocated_)
.def_readonly("total_reserved", &allocation_t::total_reserved_)
.def_property_readonly("device", &allocation_t::device);
py::class_<PyFrameState>(m, "_PyFrameState")
.def_readonly("line_number", &PyFrameState::line_no_)
.def_property_readonly(
"file_name", [](const PyFrameState& s) { return s.filename_.str(); })
.def_property_readonly("function_name", [](const PyFrameState& s) {
return s.funcname_.str();
});
py::class_<NNModuleInfo>(m, "_NNModuleInfo")
.def_property_readonly(
"parameters",
[](const NNModuleInfo& s) {
py::list out;
for (const auto& p : s.parameters_) {
out.append(
py::make_tuple(p.name_, p.metadata_, p.grad_metadata_));
}
return out;
})
.def_property_readonly(
"cls_name", [](const NNModuleInfo& s) { return s.cls_name_.str(); })
.def_readonly("self_ptr", &NNModuleInfo::self_)
.def_readonly("cls_ptr", &NNModuleInfo::cls_);
py::class_<OptimizerInfo>(m, "_OptimizerInfo")
.def_readonly("self_ptr", &OptimizerInfo::self_)
.def_property_readonly("parameters", [](const OptimizerInfo& s) {
py::list out;
for (const auto& p : s.parameters_) {
out.append(py::make_tuple(p.metadata_, p.grad_metadata_, p.state_));
}
return out;
});
py::class_<ExtraFields<EventType::PyCall>>(m, "_ExtraFields_PyCall")
.def_readonly("callsite", &ExtraFields<EventType::PyCall>::callsite_)
.def_readonly("caller", &ExtraFields<EventType::PyCall>::caller_)
.def_readonly("module", &ExtraFields<EventType::PyCall>::module_)
.def_readonly("optimizer", &ExtraFields<EventType::PyCall>::optimizer_);
py::class_<ExtraFields<EventType::PyCCall>>(m, "_ExtraFields_PyCCall")
.def_readonly("caller", &ExtraFields<EventType::PyCall>::caller_);
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ExtraFields<EventType::OutOfMemory>>(
m, "_ExtraFields_OutOfMemory");
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ExtraFields<EventType::Kineto>>(m, "_ExtraFields_Kineto");
py::class_<Result, std::shared_ptr<Result>>(m, "_ProfilerEvent")
.def_property_readonly("name", &Result::name)
.def_property_readonly("tag", &Result::tag)
.def_readonly("extra_fields", &Result::extra_fields_)
.def_property_readonly(
"typed",
[](const Result& r) {
return py::make_tuple(
r.tag(),
py::cast(r.extra_fields_, py::return_value_policy::reference));
})
.def_property_readonly(
"id",
[](const Result& r) {
return reinterpret_cast<intptr_t>(r.shared_from_this().get());
})
.def_property_readonly(
"parent", [](const Result& r) { return r.parent_.lock(); })
.def_readonly("children", &Result::children_)
.def_readonly("start_time_ns", &Result::start_time_ns_)
.def_readonly("start_tid", &Result::start_tid_)
.def_property_readonly("correlation_id", &Result::correlationID)
.def_property_readonly("end_time_ns", &Result::endTimeNS)
.def_property_readonly("duration_time_ns", [](const Result& r) {
return r.endTimeNS() - r.start_time_ns_;
});
// PyTorch profiler execution trace internal interface.
m.def(
"_add_execution_trace_observer",
&torch::profiler::impl::addExecutionTraceObserver,
py::arg("output_file_name"));
m.def(
"_remove_execution_trace_observer",
&torch::profiler::impl::removeExecutionTraceObserver);
m.def(
"_enable_execution_trace_observer",
&torch::profiler::impl::enableExecutionTraceObserver);
m.def(
"_disable_execution_trace_observer",
&torch::profiler::impl::disableExecutionTraceObserver);
m.def(
"_set_record_concrete_inputs_enabled_val",
&torch::profiler::impl::set_record_concrete_inputs_enabled_val);
m.def(
"_set_fwd_bwd_enabled_val",
&torch::profiler::impl::set_fwd_bwd_enabled_val);
m.def(
"_set_cuda_sync_enabled_val",
&torch::profiler::impl::set_cuda_sync_enabled_val);
TORCH_CHECK(PyType_Ready(&THPCapturedTracebackType) >= 0);
PyModule_AddObject(
m.ptr(), "CapturedTraceback", (PyObject*)&THPCapturedTracebackType);
m.def(
"gather_traceback",
CapturedTraceback::gather,
py::arg("python") = true,
py::arg("script") = true,
py::arg("cpp") = true);
m.def("symbolize_tracebacks", [](const py::list& tbs) {
std::vector<CapturedTraceback*> tb_ptrs;
tb_ptrs.reserve(tbs.size());
for (py::handle tb : tbs) {
tb_ptrs.emplace_back(((THPCapturedTraceback*)tb.ptr())->data.get());
}
return py_symbolize(tb_ptrs);
});
// directly convert address pointers to frames, used for testing symbolize
m.def(
"symbolize_addresses",
[](const std::vector<uint64_t>& frames, const std::string& mode_s) {
std::vector<std::tuple<std::string, int64_t, std::string>> frames_out;
torch::unwind::Mode mode = torch::unwind::Mode::addr2line;
if (mode_s == "fast") {
mode = torch::unwind::Mode::fast;
} else if (mode_s == "addr2line") {
mode = torch::unwind::Mode::addr2line;
} else if (mode_s == "dladdr") {
mode = torch::unwind::Mode::dladdr;
} else {
TORCH_CHECK(false, "unexpected mode ", mode_s);
}
std::vector<void*> frames_p;
frames_p.reserve(frames.size());
for (auto f : frames) {
frames_p.push_back((void*)f); // NOLINT
}
auto frame_objects = unwind::symbolize(frames_p, mode);
frames_out.reserve(frame_objects.size());
for (auto& frame : frame_objects) {
frames_out.emplace_back(frame.filename, frame.lineno, frame.funcname);
}
return frames_out;
});
installCapturedTracebackPython();
// NOLINTNEXTLINE(*-c-arrays*)
static PyMethodDef RecordFunctionFast_methods[] = {
{"__enter__", RecordFunctionFast_enter, METH_NOARGS, nullptr},
{"__exit__", RecordFunctionFast_exit, METH_VARARGS, nullptr},
{nullptr},
};
static PyTypeObject RecordFunctionFast_Type = { PyVarObject_HEAD_INIT(nullptr,
0)
};
RecordFunctionFast_Type.tp_name = "torch._C._profiler.RecordFunctionFast",
RecordFunctionFast_Type.tp_basicsize = sizeof(RecordFunctionFast);
RecordFunctionFast_Type.tp_dealloc = (destructor)RecordFunctionFast_dealloc;
RecordFunctionFast_Type.tp_flags = Py_TPFLAGS_DEFAULT;
RecordFunctionFast_Type.tp_methods = RecordFunctionFast_methods;
RecordFunctionFast_Type.tp_init = RecordFunctionFast_init;
RecordFunctionFast_Type.tp_new = RecordFunctionFast_new;
if (PyType_Ready(&RecordFunctionFast_Type) < 0) {
throw python_error();
}
Py_INCREF(&RecordFunctionFast_Type);
if (PyModule_AddObject(
m.ptr(),
"_RecordFunctionFast",
(PyObject*)&RecordFunctionFast_Type) != 0) {
Py_DECREF(&RecordFunctionFast_Type);
throw python_error();
}
}
} // namespace torch::profiler