Files
pytorch/torch/_inductor/cudagraph_utils.py
2025-01-19 01:22:47 +00:00

336 lines
11 KiB
Python

# mypy: allow-untyped-defs
from __future__ import annotations
import dataclasses
from enum import Enum
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
import torch
from torch._dynamo.utils import counters
from torch._inductor.utils import InputType
from torch.utils._ordered_set import OrderedSet
if TYPE_CHECKING:
from collections.abc import Sequence
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
static_inputs_log = torch._logging.getArtifactLogger(
__name__, "cudagraph_static_inputs"
)
OutputType = list[Optional[Union[int, torch.Tensor]]]
ModelType = Callable[[list[InputType]], OutputType]
@dataclasses.dataclass(frozen=True)
class FunctionID:
"Unique counter of a function wrapped in cudagraphify_impl"
id: int
@dataclasses.dataclass(frozen=True)
class PlaceholderInfo:
"""
A serializable version of torch.fx.Node that contains information
pertinent to placeholder stack traces. We use these in logging and error messages
related to cudagraphs, and will cache these results.
"""
name: str
stack_trace: Optional[str]
# This field is recursive, but never cyclic (since a node never uses itself)
users: list[PlaceholderInfo]
mutating_use_stack_trace: Optional[str]
@dataclasses.dataclass(frozen=True)
class WrappedFunction:
"""
Represents a function that you want to record for CUDA graph replay,
with a little more metadata so we can identify if we have an applicable
CUDA graph in our CUDA graph tree for it.
"""
model: Callable[..., Any]
static_input_idxs: Sequence[int]
id: FunctionID
constants: tuple[torch.Tensor, ...]
placeholders: Sequence[PlaceholderInfo]
mutated_input_idxs: Sequence[int]
def get_mutating_use_stack_trace_from_node(
placeholder_node: torch.fx.Node,
) -> Optional[str]:
# reinplaced uses might have a single, non-copy_ use
if len(placeholder_node.users) == 1:
return next(iter(placeholder_node.users)).meta.get("stack_trace", None)
for use in placeholder_node.users:
if use.target == torch.ops.aten.copy_.default:
if stack_trace := use.meta.get("stack_trace", None):
return stack_trace
return None
def get_mutating_use_stack_trace(placeholder_info: PlaceholderInfo) -> Optional[str]:
return placeholder_info.mutating_use_stack_trace
def to_placeholder_info(placeholder_node: torch.fx.Node) -> PlaceholderInfo:
name = placeholder_node.name
stack_trace = placeholder_node.meta.get("stack_trace", None)
users = []
mutating_use_stack_trace = None
# Only recurse to users once, since we only care about user's stack traces
if placeholder_node.op == "placeholder":
users = [to_placeholder_info(i) for i in placeholder_node.users]
mutating_use_stack_trace = get_mutating_use_stack_trace_from_node(
placeholder_node
)
return PlaceholderInfo(name, stack_trace, users, mutating_use_stack_trace)
def get_placeholder_info(graph: torch.fx.Graph) -> list[PlaceholderInfo]:
return [
to_placeholder_info(node) for node in graph.nodes if node.op == "placeholder"
]
def format_default_skip_message(reason: str) -> str:
return f"skipping cudagraphs due to {reason}"
def get_mutation_stack_trace(
placeholders: Sequence[PlaceholderInfo], mutation_indices: Sequence[int]
) -> str:
stack_trace: Optional[str] = ""
for idx in mutation_indices:
placeholder = placeholders[idx]
if stack_trace := get_mutating_use_stack_trace(placeholder):
break
msg = format_default_skip_message(
f"mutated inputs ({len(mutation_indices)} instances)"
)
if stack_trace:
return f"{msg}. Found from : \n {stack_trace}"
return msg
def check_for_mutation(
func: WrappedFunction,
inputs: list[InputType],
is_cuda_graph_recorded_tensor: Callable[[torch.Tensor], bool],
) -> Optional[str]:
# doesnt work for non-trees because the warmup run would apply mutation twice
if torch._inductor.config.triton.cudagraph_trees:
# checking if mutation is only on parameters/static inputs
mutation_indices: Sequence[int] = [
idx
for idx in func.mutated_input_idxs
if not (
idx in func.static_input_idxs
or is_cuda_graph_recorded_tensor(inputs[idx]) # type: ignore[arg-type]
)
]
else:
mutation_indices = func.mutated_input_idxs
static_inputs_log.debug(
"check mutation static input indices: %s", func.static_input_idxs
)
static_inputs_log.debug("check mutation mutation indices: %s", mutation_indices)
return (
get_mutation_stack_trace(func.placeholders, mutation_indices)
if mutation_indices
else None
)
def _get_use_stack_trace(node) -> Optional[str]:
for use in node.users:
if stack_trace := use.meta.get("stack_trace", None):
return stack_trace
return None
def check_multiple_devices_or_any_cpu_nodes(
device_node_mapping: dict[torch.device, torch.fx.Node]
) -> Optional[str]:
if cpu_node := device_node_mapping.get(torch.device("cpu")):
msg = f"cpu device ({cpu_node.name})"
if stack_trace := _get_use_stack_trace(cpu_node):
return format_default_skip_message(f"{msg}. Found from : \n {stack_trace}")
return format_default_skip_message(msg)
if (
len(device_node_mapping) == 1
and next(iter(device_node_mapping.keys())).type == "cuda"
):
return None
keys_repr = (repr(key) for key in device_node_mapping.keys())
return format_default_skip_message(f"multiple devices: {', '.join(keys_repr)}")
def check_lowering_disable_cudagraph(
device_node_mapping: dict[torch.device, torch.fx.Node]
):
return check_multiple_devices_or_any_cpu_nodes(device_node_mapping)
def log_cudagraph_skip_and_bump_counter(msg):
perf_hint_log.warning(msg)
counters["inductor"]["cudagraph_skips"] += 1
@dataclasses.dataclass
class BoxedDeviceIndex:
value: Optional[int]
def set(self, device_idx: Optional[int]):
assert device_idx is None or isinstance(device_idx, int)
self.value = device_idx
def check_for_mutation_ignore_cuda_graph_managed_tensor(
gm: torch.fx.GraphModule, compiled_graph, static_input_idxs: Sequence[int]
) -> Optional[str]:
default_msg = format_default_skip_message("mutated inputs")
# doesnt work for non-trees because the warmup run would apply mutation twice
if torch._inductor.config.triton.cudagraph_trees:
unique_idxs = OrderedSet(static_input_idxs)
# checking if mutation is only on parameters/static inputs
mutation_indices = [
idx for idx in compiled_graph.mutated_input_idxs if idx not in unique_idxs
]
has_mutation = len(mutation_indices) != 0
if not has_mutation:
return None
placeholders = get_placeholder_info(gm.graph)
return get_mutation_stack_trace(placeholders, mutation_indices)
else:
has_mutation = len(compiled_graph.mutated_inputs) != 0
return None if not has_mutation else default_msg
def get_placeholder_stack_trace(placeholder: PlaceholderInfo) -> Optional[str]:
"""
Gets the first non-empty stack trace of a placeholder or its users.
"""
if placeholder.stack_trace:
return placeholder.stack_trace
for user in placeholder.users:
if user.stack_trace:
return user.stack_trace
return None
class CheckInvariantStatus(Enum):
# Check invariant succeeded
SUCCESS = 1
# Previously managed data pointers are not stable
CudagraphManagedIdxMismatch = 2
# Static tensor input addresses are not stable
StaticInputIdxMismatch = 3
# Expected dead indices before graph are live
ExpectedDeadIndicesBeforeGraphMismatch = 4
def __str__(self) -> str:
if self.name == "CudagraphManagedIdxMismatch":
return "cudagraph managed tensor data pointer changed"
elif self.name == "StaticInputIdxMismatch":
return "static input data pointer changed"
elif self.name == "ExpectedDeadIndicesBeforeGraphMismatch":
return "expected dead indices before graph are live"
else:
return f"{self.name}: {self.value}"
def log_data_ptr_mismatch(
placeholders: Sequence[PlaceholderInfo],
inputs: list[InputType],
recorded_data_ptr: Sequence[Optional[int]],
target_idxs: Sequence[int],
mismatch: CheckInvariantStatus,
) -> str:
"""
Logs the mismatch between input data pointers and recorded data pointers.
This checks only idxs in target_idxs.
"""
assert len(inputs) == len(recorded_data_ptr) and len(inputs) == len(
placeholders
), "length mismatch between inputs, recorded_data_ptr, and placeholders"
t_tensors = [inputs[i] for i in target_idxs]
t_data_ptrs = [recorded_data_ptr[i] for i in target_idxs]
error_msg = f"{mismatch}.\n"
for i, (tensor, data_ptr) in enumerate(zip(t_tensors, t_data_ptrs)):
assert isinstance(tensor, torch.Tensor)
index = target_idxs[i]
if tensor.data_ptr() != data_ptr:
placeholder = placeholders[index]
error_msg = (
f"{error_msg}input name: {placeholder.name}. "
f"data pointer changed from {data_ptr} to {tensor.data_ptr()}. "
f"input stack trace: {get_placeholder_stack_trace(placeholder)}\n"
)
return error_msg
def maybe_warning_due_to_dynamic_shape(
fn_cache: dict[tuple[int, ...], Callable[..., Any]],
new_int_key: Any,
) -> bool:
num_cudagraphs = len(fn_cache.keys()) + 1
def warn_msg():
return (
"CUDAGraph supports dynamic shapes by recording a new graph for each "
"distinct input size. Recording too many CUDAGraphs may lead to "
f"extra overhead. We have observed {num_cudagraphs} distinct sizes. "
"Please consider the following options for better performance: "
"a) padding inputs to a few fixed number of shapes; or b) set "
"torch._inductor.config.triton.cudagraph_skip_dynamic_graphs=True. "
"Set torch._inductor.config.triton.cudagraph_dynamic_shape_warn_limit=None "
"to silence this warning."
)
if (
torch._inductor.config.triton.cudagraph_dynamic_shape_warn_limit
and num_cudagraphs
> torch._inductor.config.triton.cudagraph_dynamic_shape_warn_limit
):
perf_hint_log.warning(warn_msg())
return True
return False
@dataclasses.dataclass(frozen=True)
class CudagraphCachedInfo:
"""
Info needed to realign inputs
"""
placeholders: Sequence[PlaceholderInfo]
stack_traces: list[Optional[str]]
cudagraph_fail_reasons: list[str]