Files
pytorch/torch/_inductor/autotune_process.py
2025-01-19 01:22:47 +00:00

946 lines
32 KiB
Python

# mypy: allow-untyped-defs
from __future__ import annotations
import contextlib
import ctypes
import dataclasses
import functools
import logging
import os
import queue
import time
import warnings
from collections.abc import Iterable, Sequence
from concurrent.futures import ThreadPoolExecutor
from ctypes import byref, c_size_t, c_void_p, CDLL
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
import torch
import torch._inductor.async_compile # noqa: F401 required to warm up AsyncCompile pools
from torch import multiprocessing
from torch._dynamo.device_interface import get_interface_for_device
from torch._dynamo.testing import rand_strided
from torch._inductor import ir
from torch._inductor.codecache import (
CppCodeCache,
CUDACodeCache,
DLLWrapper,
get_hash,
PyCodeCache,
)
from torch._inductor.utils import get_gpu_type, is_gpu
from torch.utils._ordered_set import OrderedSet
if TYPE_CHECKING:
from multiprocessing.process import BaseProcess
from multiprocessing.queues import Queue
from types import ModuleType
from torch._inductor.select_algorithm import TritonTemplateCaller
from .codegen.common import WorkspaceArg
from . import config
from .codegen.common import WorkspaceZeroMode
from .runtime.benchmarking import benchmarker
from .virtualized import V
CUDA_VISIBLE_DEVICES = "CUDA_VISIBLE_DEVICES"
EXIT_HANDLER_REGISTERED = False
log = logging.getLogger(__name__)
# Used to synchronize between parent and child processes
class Ping:
pass
class Pong:
pass
class NonzeroWorkspaceNotSupportedError(Exception):
pass
@contextlib.contextmanager
def set_cuda_visible_device(device: Optional[int]):
"""
Context manager to set the CUDA_VISIBLE_DEVICES environment variable to the
specified single device. If device is None, don't manipulate the environment.
"""
if device is None:
yield
return
current = os.environ.get(CUDA_VISIBLE_DEVICES)
os.environ[CUDA_VISIBLE_DEVICES] = str(device)
try:
yield
finally:
if current is None:
del os.environ[CUDA_VISIBLE_DEVICES]
else:
os.environ[CUDA_VISIBLE_DEVICES] = current
@dataclasses.dataclass
class TuningProcess:
"""
Abstraction for launching a helper process to benchmark kernels. Spawns
the parent process and uses multiprocessing queues to send benchmark
requests and return results.
"""
device: Optional[int] = None
process: Optional[BaseProcess] = None
request_queue: Optional[Queue[Any]] = None
response_queue: Optional[Queue[Any]] = None
@staticmethod
def process_main(
request_queue: Queue[Any],
response_queue: Queue[Any],
) -> None:
"""
Entry point for the child process.
"""
log.debug(
"Entering TuningProcess child. Visible devices = %s",
os.environ.get(CUDA_VISIBLE_DEVICES),
)
try:
TuningProcess.workloop(request_queue, response_queue)
except Exception:
log.exception("Exception in TuningProcess")
@staticmethod
def workloop(request_queue: Queue[Any], response_queue: Queue[Any]) -> None:
"""
Work loop for the benchmarking subprocess.
"""
while True:
obj = request_queue.get()
if obj is None:
break # None is a sentinel for the child to terminate
elif isinstance(obj, Ping):
response_queue.put(Pong())
elif isinstance(obj, BenchmarkRequest):
response_queue.put(obj.benchmark())
else:
raise RuntimeError(f"Invalid request type {type(obj)}")
def valid(self) -> bool:
"""
True if the sub-process has been initialized.
"""
return (
self.process is not None
and self.request_queue is not None
and self.response_queue is not None
)
def clear(self) -> None:
"""
Reset to an uninitialized state.
"""
self.process = self.request_queue = self.response_queue = None
def initialize(self) -> None:
"""
Create child process, request/response queues, and do the warm up.
Set the environment to make only the provided GPU device visible
to the process.
"""
if self.valid():
return
# cuda runtime does not work with "fork", use "spawn" to start processes.
ctx = multiprocessing.get_context("spawn")
self.request_queue = ctx.Queue()
self.response_queue = ctx.Queue()
self.process = ctx.Process(
target=self.process_main,
args=(
self.request_queue,
self.response_queue,
),
)
assert self.process is not None
with set_cuda_visible_device(self.device):
self.process.start()
def put(self, obj: Any) -> None:
"""
Push a work item to the child process.
"""
# In case of a prior crash, ensure the subprocess is running
self.initialize()
assert self.request_queue is not None
self.request_queue.put(obj)
def get(
self, result_timeout=120.0, graceful_timeout=3.0, terminate_timeout=1.0
) -> Any:
"""
Get a response from the child process. Raises queue.Empty on timeout
or if the process dies.
This method is (so far) only used by TuningProcessPool, where torch._inductor.config entries are being used
to populate the timeouts:
Arguments:
@param result_timeout: Timeout in seconds, defaults to 120.0 or to
config.max_autotune_subproc_result_timeout_seconds when called by TuningProcessPool
@param graceful_timeout: Timeout in seconds to allow graceful shutdown (SIGTERM is sent after this time).
Defaults to 3.0 or to config.max_autotune_subproc_graceful_timeout_seconds
@param terminate_timeout: Timeout in seconds after SIGTERM, until we send SIGKILL if the process
remains alive. Defaults to 1.0 or to
config.max_autotune_subproc_terminate_timeout_seconds.
Returns:
A response from the child process (Any type)
"""
assert self.process is not None
assert self.response_queue is not None
while True:
try:
remaining_timeout = result_timeout
res = None
while remaining_timeout is not None and remaining_timeout >= 1.0:
remaining_timeout -= 0.5
try:
res = self.response_queue.get(timeout=0.5)
break
except queue.Empty:
if not self.process.is_alive():
raise # is being caught a few lines below
if res is None:
res = self.response_queue.get(timeout=remaining_timeout)
return res
except queue.Empty:
status = self.process.exitcode
if status is None:
self.kill(
graceful_timeout=graceful_timeout,
terminate_timeout=terminate_timeout,
)
else:
# child process crashed
self.clear()
raise
def terminate(self) -> None:
"""
Signal the child process to terminate.
"""
if self.valid():
assert self.process is not None
assert self.request_queue is not None
self.request_queue.put(None)
def wait(self) -> None:
"""
Wait for the child process to exit.
"""
if self.process is not None:
self.process.join()
self.clear()
def kill(self, graceful_timeout=5.0, terminate_timeout=1.0) -> None:
# Tries to kill the process, using a graceful_timeout in which the process
# is allowed to exit gracefully. If the process is still alive,
# it will be terminated. If that is not sufficient to end it
# within terminate_timeout seconds, it will be killed.
if self.process is not None:
self.terminate()
self.process.join(timeout=graceful_timeout)
if self.process.is_alive():
log.warning(
"Sending SIGTERM to process with PID %d",
self.process.pid,
)
self.process.terminate()
self.process.join(timeout=terminate_timeout)
if self.process.is_alive():
log.error(
"Sending SIGKILL to process with PID %d",
self.process.pid,
)
self.process.kill() # This should definitely end the process
self.clear()
@dataclasses.dataclass
class TuningProcessPool:
"""
Maintains a pool of TuningProcesses to benchmark kernels in parallel
across devices. By default, we create one TuningProcess per device and
set the sub-process environment to make only that device visible.
"""
processes: Optional[queue.Queue[TuningProcess]] = None
executor: Optional[ThreadPoolExecutor] = None
def initialize(self) -> None:
"""
Start the child processes.
"""
assert (self.processes is None) == (self.executor is None)
if self.processes is not None:
return
devices = self.get_device_list()
log.debug("Sub-process autotune device list: %s", devices)
# Launch the child processes and push a msg to "warm up"
self.processes = queue.Queue()
for device in devices:
p = TuningProcess(device=device)
p.initialize()
p.put(Ping())
self.processes.put(p)
# Wait for the initialization to finish
for p in self.processes.queue:
assert isinstance(p.get(result_timeout=None), Pong)
# Use a thread pool to manage distributing work to the subprocesses.
# Threads block on an available process, so it makes sense to match
# the number of threads with the number of devices.
self.executor = ThreadPoolExecutor(max_workers=len(devices))
# Register the exit handler for the parent process so it will terminate
# the child processes.
global EXIT_HANDLER_REGISTERED
if not EXIT_HANDLER_REGISTERED:
EXIT_HANDLER_REGISTERED = True
import atexit
atexit.register(self.terminate)
def get_device_list(self) -> Sequence[Optional[int]]:
"""
Gather the list of devices to be used in the pool.
"""
if not config.autotune_multi_device:
# Don't use multiple devices
return [None]
gpu_type = get_gpu_type()
device_interface = get_interface_for_device(gpu_type)
count = device_interface.device_count()
# If the user specified the visible devices in the env, use those.
if CUDA_VISIBLE_DEVICES in os.environ:
devices = [int(d) for d in os.environ[CUDA_VISIBLE_DEVICES].split(",")]
assert len(devices) <= count
return devices
return list(range(count))
def terminate(self) -> None:
"""
Signal all child processes to terminate.
"""
if self.executor is not None:
self.executor.shutdown()
self.executor = None
if self.processes is not None:
for p in self.processes.queue:
p.terminate()
for p in self.processes.queue:
p.wait()
self.processes = None
def target(self, choice: TritonTemplateCaller) -> float:
"""
Entry point for the thread-pool helper threads: Wait for an open TuningProcess,
remove it from the queue, execute the benchmark in that subprocess, and return
the TuningProcess to the queue.
"""
assert choice.bmreq is not None
assert self.processes is not None
process = self.processes.get()
process.put(choice.bmreq)
try:
return process.get(
config.max_autotune_subproc_result_timeout_seconds,
config.max_autotune_subproc_graceful_timeout_seconds,
config.max_autotune_subproc_terminate_timeout_seconds,
)
except queue.Empty:
warnings.warn(
f"Failed to benchmark choice '{choice}'. It will be ignored. "
"Please debug the root cause in case the choice can bring perf gains."
)
# set to INF so this choice will be ignored
return float("inf")
finally:
self.processes.put(process)
def benchmark(
self,
choices: list[TritonTemplateCaller],
) -> dict[TritonTemplateCaller, float]:
"""
Benchmark each choice in a separate process.
"""
assert self.processes is not None, "Tuning process pool is not initialized"
assert self.executor is not None
results = {}
# Use a ThreadExecutorPool to spread the work across the subprocesses and
# to grab subprocesses as soon as they're free.
for choice, result in zip(choices, self.executor.map(self.target, choices)):
results[choice] = result
return results
tuning_pool = TuningProcessPool()
LayoutOrBuffer = Union[ir.Layout, ir.Buffer]
@dataclasses.dataclass
class TensorMeta:
device: torch.device
dtype: torch.dtype
sizes: torch._prims_common.ShapeType
strides: torch._prims_common.StrideType
offset: int
name: Optional[str] = None
@classmethod
def from_irnodes(
cls, irnodes: Union[LayoutOrBuffer, Sequence[LayoutOrBuffer]]
) -> Union[TensorMeta, list[TensorMeta]]:
if isinstance(irnodes, Sequence):
result: list[Any] = [cls.from_irnodes(x) for x in irnodes]
assert all(isinstance(x, TensorMeta) for x in result)
return result
node = irnodes
if isinstance(node, ir.Layout):
node = ir.Buffer(name="fake", layout=node)
dtype = node.get_dtype()
assert dtype is not None
device = node.get_device()
assert device is not None
return TensorMeta(
device=device,
dtype=dtype,
sizes=V.graph.sizevars.size_hints(
node.get_size(),
fallback=config.unbacked_symint_fallback,
),
strides=V.graph.sizevars.size_hints(
node.get_stride(),
fallback=config.unbacked_symint_fallback,
),
offset=V.graph.sizevars.size_hint(
node.get_layout().offset,
fallback=config.unbacked_symint_fallback,
),
name=node.get_name(),
)
def to_tensor(self) -> torch.Tensor:
return rand_strided(
self.sizes,
self.strides,
device=self.device,
dtype=self.dtype,
extra_size=self.offset,
)
@dataclasses.dataclass
class BenchmarkRequest:
"""
Only handle triton template benchmark for now. The extern kernel benchmark
can be done inside the same process since they usually don't cause crash.
Important: Instances of this class and subclasses have to be serializable
across process boundaries. Do not put CUDA Tensors in here!
"""
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, list[TensorMeta]],
output_tensor_meta: Union[TensorMeta, list[TensorMeta]],
extra_args: Iterable[Any],
) -> None:
# the kernel name defined in the module
self.kernel_name = kernel_name
if isinstance(input_tensor_meta, TensorMeta):
input_tensor_meta = [input_tensor_meta]
self.input_tensor_meta = input_tensor_meta
if isinstance(output_tensor_meta, (tuple, list)):
if len(output_tensor_meta) > 1:
# Each output with same meta for Grouped GEMM
assert all(
getattr(output_tensor_meta[0], attr) == getattr(x, attr)
for x in output_tensor_meta
for attr in ["device", "dtype", "sizes", "strides", "offset"]
)
output_tensor_meta = output_tensor_meta[0]
self.output_tensor_meta = output_tensor_meta
self.extra_args = extra_args
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
raise NotImplementedError
def cleanup_run_fn(self) -> None:
pass
def do_bench(
self,
fn,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
raise NotImplementedError
def benchmark(
self,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
debug = log.isEnabledFor(logging.DEBUG)
if debug:
start_ts = time.time()
# create args and out tensor
if output_tensor is None:
assert len(input_tensors) == 0
input_tensors = tuple(x.to_tensor() for x in self.input_tensor_meta)
output_tensor = self.output_tensor_meta.to_tensor()
if debug:
create_tensor_elapse = time.time() - start_ts # type: ignore[possibly-undefined]
start_ts = time.time()
try:
fn = self.make_run_fn(*input_tensors, output_tensor=output_tensor)
except NonzeroWorkspaceNotSupportedError:
# Skipping all ops with nonzero workspace requirements
log.info("Skipping op due to nonzero workspace requirement")
return float("inf")
if debug:
load_elapse = time.time() - start_ts # type: ignore[possibly-undefined]
start_ts = time.time()
out = self.do_bench(fn, *input_tensors, output_tensor)
if debug:
bench_elapse = time.time() - start_ts # type: ignore[possibly-undefined]
log.debug(
"InChildProcess %s: load %f, create tensor %f, bench %f",
str(self),
load_elapse, # type: ignore[possibly-undefined]
create_tensor_elapse, # type: ignore[possibly-undefined]
bench_elapse,
)
self.cleanup_run_fn()
return out
class TestBenchmarkRequest(BenchmarkRequest):
"""
Supports unit testing. Defined in this file so that the TuningProcess
sub-process knows how to unpickle these objects.
"""
def __init__(self, value: Optional[float] = None) -> None:
self.value = value
def benchmark(
self, *input_tensors: torch.Tensor, output_tensor: Optional[torch.Tensor] = None
) -> float:
if self.value is None:
raise Exception("Failed to run") # noqa: TRY002
return self.value
class GPUDeviceBenchmarkMixin:
def do_bench(
self,
fn,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
device_idx_set = OrderedSet(
tensor.device.index
for tensor in [*input_tensors, output_tensor]
if isinstance(tensor, torch.Tensor)
and is_gpu(tensor.device.type)
and tensor.device.index is not None
)
assert len(device_idx_set) <= 1, f"Can not mix devices {device_idx_set}"
device_type = next(
(
tensor.device.type
for tensor in input_tensors
if is_gpu(tensor.device.type)
),
"cuda",
)
device_interface = get_interface_for_device(device_type)
if len(device_idx_set) == 1:
device_idx = next(iter(device_idx_set))
else:
device_idx = device_interface.current_device()
with device_interface.device(device_idx): # type: ignore[attr-defined]
out = benchmarker.benchmark_gpu(fn)
device_interface.synchronize() # shake out any CUDA errors
return out
class CPUDeviceBenchmarkMixin:
def do_bench(
self,
fn,
*input_tensors: torch.Tensor,
output_tensor: Optional[torch.Tensor] = None,
) -> float:
return benchmarker.benchmark_cpu(fn)
class TritonBenchmarkRequest(BenchmarkRequest):
# Important: Instances of this class have to be serializable
# across process boundaries. Do not put CUDA Tensors in here!
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, list[TensorMeta]],
output_tensor_meta: Union[TensorMeta, list[TensorMeta]],
extra_args: Iterable[Any],
module_path: str, # the path of the module defining the triton kernel
module_cache_key: str,
grid: list[int],
num_stages: int,
num_warps: int,
matrix_instr_nonkdim: int = 0, # only used for hip to choose the shape of mfma instruction.
workspace_arg: Optional[WorkspaceArg] = None,
) -> None:
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
self.module_path = module_path
self.module_cache_key = module_cache_key
self.grid = grid
self.num_stages = num_stages
self.num_warps = num_warps
self.matrix_instr_nonkdim = matrix_instr_nonkdim
self.workspace_arg = workspace_arg
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
mod = PyCodeCache.load_by_key_path(self.module_cache_key, self.module_path)
log.debug(
"benchmark module key: %s, path: %s",
self.module_cache_key,
self.module_path,
)
run_method = getattr(mod, self.kernel_name).run
extra_args = list(self.extra_args)
run_method.__self__.with_bandwidth_info = False
# Newer version of triton add warmup argument to JITFunction.run.
# This code handles backward-compatibility.
warmup_arg = {}
import inspect
if "warmup" in inspect.signature(run_method).parameters:
warmup_arg["warmup"] = False
if output_tensor.device.type == "cpu":
stream = 0
else:
device_type = output_tensor.device.type
device_interface = get_interface_for_device(device_type)
stream = device_interface.get_raw_stream(
self.output_tensor_meta.device.index
)
if self.workspace_arg is not None:
# Create a function that handles both workspace creation and kernel execution
workspace_arg = self.workspace_arg
def run_with_workspace():
# Create workspace tensor
workspace_size = workspace_arg.count
workspace_tensor = torch.empty_strided(
(workspace_size,),
(1,),
dtype=torch.uint8,
device=output_tensor.device,
)
# Handle zero initialization if needed
if workspace_arg.zero_mode == WorkspaceZeroMode.ZERO_ON_CALL:
workspace_tensor.zero_()
# Run the kernel with workspace
run_method(
*input_tensors,
output_tensor,
*extra_args,
workspace_tensor,
grid=self.grid,
**warmup_arg,
stream=stream,
benchmark_run=True,
)
return run_with_workspace
if isinstance(
getattr(mod, self.kernel_name),
torch._inductor.runtime.triton_heuristics.DebugAutotuner,
):
return functools.partial(
run_method,
*input_tensors,
output_tensor,
*extra_args,
grid=self.grid,
**warmup_arg,
stream=stream,
)
else:
return functools.partial(
run_method,
*input_tensors,
output_tensor,
*extra_args,
grid=self.grid,
**warmup_arg,
stream=stream,
benchmark_run=True,
)
def precompile(self):
mod = PyCodeCache.load_by_key_path(self.module_cache_key, self.module_path)
getattr(mod, self.kernel_name).precompile()
def __str__(self) -> str:
return f"{self.kernel_name=}, {self.module_path=}, {self.module_cache_key=}"
class TritonGPUBenchmarkRequest(GPUDeviceBenchmarkMixin, TritonBenchmarkRequest):
pass
class TritonCPUBenchmarkRequest(CPUDeviceBenchmarkMixin, TritonBenchmarkRequest):
pass
class CUDABenchmarkRequest(GPUDeviceBenchmarkMixin, BenchmarkRequest):
# Important: Instances of this class have to be serializable
# across process boundaries. Do not put CUDA Tensors in here!
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, list[TensorMeta]],
output_tensor_meta: Union[TensorMeta, list[TensorMeta]],
extra_args: Iterable[Any],
source_code: str,
) -> None:
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
self.source_code = source_code
self.workspace_size: int = 0
self.workspace: Optional[torch.Tensor] = None
self.DLL: Optional[DLLWrapper] = None
self._workspace_size_updated = False
self.hash_key: str = ""
self.source_file: str = ""
self.hash_key, self.source_file = CUDACodeCache.write(self.source_code, "so")
def precompile(self):
# Prepopulate CUDACodeCache
# may happen in separate Threadpool
log.debug("Precompiling %s", self)
CUDACodeCache.compile(self.source_code, "so")
log.debug("Done precompiling %s", self)
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
self.ensure_dll_loaded()
self.update_workspace_size()
args = [
c_void_p(tensor.data_ptr())
for tensor in list(input_tensors) + [output_tensor]
]
log.debug(
"make_run_fn: self.kernel_name=%s, self.source_file=%s, self.hash_key=%s, self.DLL=%s, args=%s, self.extra_args=%s",
self.kernel_name,
self.source_file,
self.hash_key,
self.DLL,
args,
self.extra_args,
)
stream_ptr = c_void_p(torch.cuda.current_stream().cuda_stream)
run_method = getattr(self.DLL, self.kernel_name)
workspace_ptr = c_void_p(0)
if self.workspace_size > 0:
self.workspace = torch.zeros(
(self.workspace_size + 7) // 8,
dtype=torch.float64,
device=output_tensor.device,
)
workspace_ptr = c_void_p(self.workspace.data_ptr())
# Generate partial function.
return functools.partial(
run_method,
*args,
*self.extra_args,
None, # null workspace size ptr
workspace_ptr, # set workspace ptr,
stream_ptr,
)
def update_workspace_size(self) -> None:
if self._workspace_size_updated:
return
self.ensure_dll_loaded()
unique_input_count = len(
{meta.name for meta in self.input_tensor_meta} # noqa: set_linter
)
args = [c_void_p(None) for _ in range(unique_input_count + 1)]
stream_ptr = c_void_p(torch.cuda.current_stream().cuda_stream)
run_method = getattr(self.DLL, self.kernel_name)
# Retrieve workspace_size and initialize workspace.
c_workspace_size = c_size_t()
run_method(
*args, # input ptrs and output ptrs
*self.extra_args,
byref(
c_workspace_size
), # set workspace size ptr to retrieve workspace size
None, # null workspace ptr
stream_ptr,
)
torch.cuda.synchronize() # shake out any CUDA errors
self.workspace_size = c_workspace_size.value
log.debug(
"update_workspace_size called: new workspace size=%d, self.kernel_name=%s, self.source_file=%s, self.hash_key=%s, self.DLL=%s, args=%s, self.extra_args=%s", # noqa: B950
self.workspace_size,
self.kernel_name,
self.source_file,
self.hash_key,
self.DLL,
args,
self.extra_args,
)
self._workspace_size_updated = True
def ensure_dll_loaded(self):
if self.DLL is None:
self.DLL, self.hash_key, self.source_file = CUDACodeCache.load(
self.source_code, "so"
)
def cleanup_run_fn(self) -> None:
if self.DLL is not None:
self.DLL.close()
self.workspace = None
def __str__(self) -> str:
return f"{self.kernel_name=}, {self.source_file=}, {self.hash_key=}"
class CppBenchmarkRequest(CPUDeviceBenchmarkMixin, BenchmarkRequest):
# Important: Instances of this class have to be serializable
# across process boundaries. Do not put Tensors in here!
def __init__(
self,
kernel_name: str,
input_tensor_meta: Union[TensorMeta, list[TensorMeta]],
output_tensor_meta: Union[TensorMeta, list[TensorMeta]],
extra_args: Iterable[Any],
source_code: str,
) -> None:
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
self.source_code = source_code
self.hash_key = get_hash(source_code)
self.DLL: Optional[Union[CDLL, ModuleType]] = None
def precompile(self):
# Prepopulate CppCodeCache
# may happen in separate Threadpool
log.debug("Precompiling %s", self)
CppCodeCache.load(self.source_code, device_type="cpu")
log.debug("Done precompiling %s", self)
def make_run_fn(
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
) -> Callable[[], None]:
# TODO(jgong5): use CppPythonBindingsCodeCache for better binding perf
self.DLL = CppCodeCache.load(self.source_code, device_type="cpu")
args = [tensor.data_ptr() for tensor in list(input_tensors) + [output_tensor]]
log.debug(
"make_run_fn: self.kernel_name=%s, self.DLL=%s, args=%s, self.extra_args=%s",
self.kernel_name,
self.DLL,
args,
self.extra_args,
)
run_method = getattr(self.DLL, self.kernel_name)
# Assume only size with type ctypes.c_ulonglong in extra_args
assert all(isinstance(arg, ctypes.c_ulonglong) for arg in self.extra_args)
run_method.argtypes = [ctypes.c_ulonglong] * (
len(args) + len(list(self.extra_args))
)
# Generate partial function.
return functools.partial(
run_method,
*args,
*self.extra_args,
)
def cleanup_run_fn(self) -> None:
if self.DLL is not None:
"""
Check close attr due to it crash on Windows.
"""
if hasattr(self.DLL, "close"):
self.DLL.close()
def __str__(self) -> str:
return f"{self.kernel_name=}"
def benchmark_in_sub_process(
choices: list[TritonTemplateCaller],
) -> dict[TritonTemplateCaller, float]:
"""
Do benchmarking in a subprocess and return the perf number (latency).
"""
return tuning_pool.benchmark(choices)