mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-24 15:44:58 +08:00
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings. I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :) Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519 Approved by: https://github.com/ezyang
568 lines
20 KiB
Python
568 lines
20 KiB
Python
import math
|
|
import warnings
|
|
|
|
from torch import Tensor
|
|
import torch
|
|
from typing import Optional as _Optional
|
|
|
|
# These no_grad_* functions are necessary as wrappers around the parts of these
|
|
# functions that use `with torch.no_grad()`. The JIT doesn't support context
|
|
# managers, so these need to be implemented as builtins. Using these wrappers
|
|
# lets us keep those builtins small and re-usable.
|
|
def _no_grad_uniform_(tensor, a, b):
|
|
with torch.no_grad():
|
|
return tensor.uniform_(a, b)
|
|
|
|
|
|
def _no_grad_normal_(tensor, mean, std):
|
|
with torch.no_grad():
|
|
return tensor.normal_(mean, std)
|
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b, generator=None):
|
|
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
|
def norm_cdf(x):
|
|
# Computes standard normal cumulative distribution function
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
|
"The distribution of values may be incorrect.",
|
|
stacklevel=2)
|
|
|
|
with torch.no_grad():
|
|
# Values are generated by using a truncated uniform distribution and
|
|
# then using the inverse CDF for the normal distribution.
|
|
# Get upper and lower cdf values
|
|
l = norm_cdf((a - mean) / std)
|
|
u = norm_cdf((b - mean) / std)
|
|
|
|
# Uniformly fill tensor with values from [l, u], then translate to
|
|
# [2l-1, 2u-1].
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1, generator=generator)
|
|
|
|
# Use inverse cdf transform for normal distribution to get truncated
|
|
# standard normal
|
|
tensor.erfinv_()
|
|
|
|
# Transform to proper mean, std
|
|
tensor.mul_(std * math.sqrt(2.))
|
|
tensor.add_(mean)
|
|
|
|
# Clamp to ensure it's in the proper range
|
|
tensor.clamp_(min=a, max=b)
|
|
return tensor
|
|
|
|
|
|
def _no_grad_fill_(tensor, val):
|
|
with torch.no_grad():
|
|
return tensor.fill_(val)
|
|
|
|
|
|
def _no_grad_zero_(tensor):
|
|
with torch.no_grad():
|
|
return tensor.zero_()
|
|
|
|
|
|
def calculate_gain(nonlinearity, param=None):
|
|
r"""Return the recommended gain value for the given nonlinearity function.
|
|
The values are as follows:
|
|
|
|
================= ====================================================
|
|
nonlinearity gain
|
|
================= ====================================================
|
|
Linear / Identity :math:`1`
|
|
Conv{1,2,3}D :math:`1`
|
|
Sigmoid :math:`1`
|
|
Tanh :math:`\frac{5}{3}`
|
|
ReLU :math:`\sqrt{2}`
|
|
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
|
|
SELU :math:`\frac{3}{4}`
|
|
================= ====================================================
|
|
|
|
.. warning::
|
|
In order to implement `Self-Normalizing Neural Networks`_ ,
|
|
you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``.
|
|
This gives the initial weights a variance of ``1 / N``,
|
|
which is necessary to induce a stable fixed point in the forward pass.
|
|
In contrast, the default gain for ``SELU`` sacrifices the normalization
|
|
effect for more stable gradient flow in rectangular layers.
|
|
|
|
Args:
|
|
nonlinearity: the non-linear function (`nn.functional` name)
|
|
param: optional parameter for the non-linear function
|
|
|
|
Examples:
|
|
>>> gain = nn.init.calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2
|
|
|
|
.. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
|
|
"""
|
|
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
|
|
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
|
return 1
|
|
elif nonlinearity == 'tanh':
|
|
return 5.0 / 3
|
|
elif nonlinearity == 'relu':
|
|
return math.sqrt(2.0)
|
|
elif nonlinearity == 'leaky_relu':
|
|
if param is None:
|
|
negative_slope = 0.01
|
|
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
|
|
# True/False are instances of int, hence check above
|
|
negative_slope = param
|
|
else:
|
|
raise ValueError(f"negative_slope {param} not a valid number")
|
|
return math.sqrt(2.0 / (1 + negative_slope ** 2))
|
|
elif nonlinearity == 'selu':
|
|
return 3.0 / 4 # Value found empirically (https://github.com/pytorch/pytorch/pull/50664)
|
|
else:
|
|
raise ValueError(f"Unsupported nonlinearity {nonlinearity}")
|
|
|
|
|
|
def uniform_(tensor: Tensor, a: float = 0., b: float = 1.) -> Tensor:
|
|
r"""Fills the input Tensor with values drawn from the uniform
|
|
distribution :math:`\mathcal{U}(a, b)`.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
a: the lower bound of the uniform distribution
|
|
b: the upper bound of the uniform distribution
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.uniform_(w)
|
|
"""
|
|
if torch.overrides.has_torch_function_variadic(tensor):
|
|
return torch.overrides.handle_torch_function(uniform_, (tensor,), tensor=tensor, a=a, b=b)
|
|
return _no_grad_uniform_(tensor, a, b)
|
|
|
|
|
|
def normal_(tensor: Tensor, mean: float = 0., std: float = 1.) -> Tensor:
|
|
r"""Fills the input Tensor with values drawn from the normal
|
|
distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
mean: the mean of the normal distribution
|
|
std: the standard deviation of the normal distribution
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.normal_(w)
|
|
"""
|
|
if torch.overrides.has_torch_function_variadic(tensor):
|
|
return torch.overrides.handle_torch_function(normal_, (tensor,), tensor=tensor, mean=mean, std=std)
|
|
return _no_grad_normal_(tensor, mean, std)
|
|
|
|
def trunc_normal_(
|
|
tensor: Tensor,
|
|
mean: float = 0.,
|
|
std: float = 1.,
|
|
a: float = -2.,
|
|
b: float = 2.,
|
|
generator: _Optional[torch.Generator] = None
|
|
) -> Tensor:
|
|
r"""Fills the input Tensor with values drawn from a truncated
|
|
normal distribution. The values are effectively drawn from the
|
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
|
with values outside :math:`[a, b]` redrawn until they are within
|
|
the bounds. The method used for generating the random values works
|
|
best when :math:`a \leq \text{mean} \leq b`.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
mean: the mean of the normal distribution
|
|
std: the standard deviation of the normal distribution
|
|
a: the minimum cutoff value
|
|
b: the maximum cutoff value
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.trunc_normal_(w)
|
|
"""
|
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b, generator=generator)
|
|
|
|
|
|
def constant_(tensor: Tensor, val: float) -> Tensor:
|
|
r"""Fills the input Tensor with the value :math:`\text{val}`.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
val: the value to fill the tensor with
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.constant_(w, 0.3)
|
|
"""
|
|
if torch.overrides.has_torch_function_variadic(tensor):
|
|
return torch.overrides.handle_torch_function(constant_, (tensor,), tensor=tensor, val=val)
|
|
return _no_grad_fill_(tensor, val)
|
|
|
|
|
|
def ones_(tensor: Tensor) -> Tensor:
|
|
r"""Fills the input Tensor with the scalar value `1`.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.ones_(w)
|
|
"""
|
|
return _no_grad_fill_(tensor, 1.)
|
|
|
|
|
|
def zeros_(tensor: Tensor) -> Tensor:
|
|
r"""Fills the input Tensor with the scalar value `0`.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.zeros_(w)
|
|
"""
|
|
return _no_grad_zero_(tensor)
|
|
|
|
|
|
def eye_(tensor):
|
|
r"""Fills the 2-dimensional input `Tensor` with the identity
|
|
matrix. Preserves the identity of the inputs in `Linear` layers, where as
|
|
many inputs are preserved as possible.
|
|
|
|
Args:
|
|
tensor: a 2-dimensional `torch.Tensor`
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.eye_(w)
|
|
"""
|
|
if tensor.ndimension() != 2:
|
|
raise ValueError("Only tensors with 2 dimensions are supported")
|
|
|
|
with torch.no_grad():
|
|
torch.eye(*tensor.shape, out=tensor, requires_grad=tensor.requires_grad)
|
|
return tensor
|
|
|
|
|
|
def dirac_(tensor, groups=1):
|
|
r"""Fills the {3, 4, 5}-dimensional input `Tensor` with the Dirac
|
|
delta function. Preserves the identity of the inputs in `Convolutional`
|
|
layers, where as many input channels are preserved as possible. In case
|
|
of groups>1, each group of channels preserves identity
|
|
|
|
Args:
|
|
tensor: a {3, 4, 5}-dimensional `torch.Tensor`
|
|
groups (int, optional): number of groups in the conv layer (default: 1)
|
|
Examples:
|
|
>>> w = torch.empty(3, 16, 5, 5)
|
|
>>> nn.init.dirac_(w)
|
|
>>> w = torch.empty(3, 24, 5, 5)
|
|
>>> nn.init.dirac_(w, 3)
|
|
"""
|
|
dimensions = tensor.ndimension()
|
|
if dimensions not in [3, 4, 5]:
|
|
raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported")
|
|
|
|
sizes = tensor.size()
|
|
|
|
if sizes[0] % groups != 0:
|
|
raise ValueError('dim 0 must be divisible by groups')
|
|
|
|
out_chans_per_grp = sizes[0] // groups
|
|
min_dim = min(out_chans_per_grp, sizes[1])
|
|
|
|
with torch.no_grad():
|
|
tensor.zero_()
|
|
|
|
for g in range(groups):
|
|
for d in range(min_dim):
|
|
if dimensions == 3: # Temporal convolution
|
|
tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1
|
|
elif dimensions == 4: # Spatial convolution
|
|
tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,
|
|
tensor.size(3) // 2] = 1
|
|
else: # Volumetric convolution
|
|
tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2,
|
|
tensor.size(3) // 2, tensor.size(4) // 2] = 1
|
|
return tensor
|
|
|
|
|
|
def _calculate_fan_in_and_fan_out(tensor):
|
|
dimensions = tensor.dim()
|
|
if dimensions < 2:
|
|
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
|
|
|
|
num_input_fmaps = tensor.size(1)
|
|
num_output_fmaps = tensor.size(0)
|
|
receptive_field_size = 1
|
|
if tensor.dim() > 2:
|
|
# math.prod is not always available, accumulate the product manually
|
|
# we could use functools.reduce but that is not supported by TorchScript
|
|
for s in tensor.shape[2:]:
|
|
receptive_field_size *= s
|
|
fan_in = num_input_fmaps * receptive_field_size
|
|
fan_out = num_output_fmaps * receptive_field_size
|
|
|
|
return fan_in, fan_out
|
|
|
|
|
|
def xavier_uniform_(tensor: Tensor, gain: float = 1.) -> Tensor:
|
|
r"""Fills the input `Tensor` with values according to the method
|
|
described in `Understanding the difficulty of training deep feedforward
|
|
neural networks` - Glorot, X. & Bengio, Y. (2010), using a uniform
|
|
distribution. The resulting tensor will have values sampled from
|
|
:math:`\mathcal{U}(-a, a)` where
|
|
|
|
.. math::
|
|
a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}
|
|
|
|
Also known as Glorot initialization.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
gain: an optional scaling factor
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
|
|
"""
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
|
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
|
a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
|
|
|
|
return _no_grad_uniform_(tensor, -a, a)
|
|
|
|
|
|
def xavier_normal_(tensor: Tensor, gain: float = 1.) -> Tensor:
|
|
r"""Fills the input `Tensor` with values according to the method
|
|
described in `Understanding the difficulty of training deep feedforward
|
|
neural networks` - Glorot, X. & Bengio, Y. (2010), using a normal
|
|
distribution. The resulting tensor will have values sampled from
|
|
:math:`\mathcal{N}(0, \text{std}^2)` where
|
|
|
|
.. math::
|
|
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}}
|
|
|
|
Also known as Glorot initialization.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
gain: an optional scaling factor
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.xavier_normal_(w)
|
|
"""
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
|
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
|
|
|
|
return _no_grad_normal_(tensor, 0., std)
|
|
|
|
|
|
def _calculate_correct_fan(tensor, mode):
|
|
mode = mode.lower()
|
|
valid_modes = ['fan_in', 'fan_out']
|
|
if mode not in valid_modes:
|
|
raise ValueError(f"Mode {mode} not supported, please use one of {valid_modes}")
|
|
|
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
|
return fan_in if mode == 'fan_in' else fan_out
|
|
|
|
|
|
def kaiming_uniform_(
|
|
tensor: Tensor, a: float = 0, mode: str = 'fan_in', nonlinearity: str = 'leaky_relu'
|
|
):
|
|
r"""Fills the input `Tensor` with values according to the method
|
|
described in `Delving deep into rectifiers: Surpassing human-level
|
|
performance on ImageNet classification` - He, K. et al. (2015), using a
|
|
uniform distribution. The resulting tensor will have values sampled from
|
|
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where
|
|
|
|
.. math::
|
|
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}
|
|
|
|
Also known as He initialization.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
a: the negative slope of the rectifier used after this layer (only
|
|
used with ``'leaky_relu'``)
|
|
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
|
|
preserves the magnitude of the variance of the weights in the
|
|
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
|
|
backwards pass.
|
|
nonlinearity: the non-linear function (`nn.functional` name),
|
|
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
|
|
"""
|
|
if torch.overrides.has_torch_function_variadic(tensor):
|
|
return torch.overrides.handle_torch_function(
|
|
kaiming_uniform_,
|
|
(tensor,),
|
|
tensor=tensor,
|
|
a=a,
|
|
mode=mode,
|
|
nonlinearity=nonlinearity)
|
|
|
|
if 0 in tensor.shape:
|
|
warnings.warn("Initializing zero-element tensors is a no-op")
|
|
return tensor
|
|
fan = _calculate_correct_fan(tensor, mode)
|
|
gain = calculate_gain(nonlinearity, a)
|
|
std = gain / math.sqrt(fan)
|
|
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
|
|
with torch.no_grad():
|
|
return tensor.uniform_(-bound, bound)
|
|
|
|
|
|
def kaiming_normal_(
|
|
tensor: Tensor, a: float = 0, mode: str = 'fan_in', nonlinearity: str = 'leaky_relu'
|
|
):
|
|
r"""Fills the input `Tensor` with values according to the method
|
|
described in `Delving deep into rectifiers: Surpassing human-level
|
|
performance on ImageNet classification` - He, K. et al. (2015), using a
|
|
normal distribution. The resulting tensor will have values sampled from
|
|
:math:`\mathcal{N}(0, \text{std}^2)` where
|
|
|
|
.. math::
|
|
\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}
|
|
|
|
Also known as He initialization.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
a: the negative slope of the rectifier used after this layer (only
|
|
used with ``'leaky_relu'``)
|
|
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
|
|
preserves the magnitude of the variance of the weights in the
|
|
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
|
|
backwards pass.
|
|
nonlinearity: the non-linear function (`nn.functional` name),
|
|
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
|
|
"""
|
|
if 0 in tensor.shape:
|
|
warnings.warn("Initializing zero-element tensors is a no-op")
|
|
return tensor
|
|
fan = _calculate_correct_fan(tensor, mode)
|
|
gain = calculate_gain(nonlinearity, a)
|
|
std = gain / math.sqrt(fan)
|
|
with torch.no_grad():
|
|
return tensor.normal_(0, std)
|
|
|
|
|
|
def orthogonal_(tensor, gain=1):
|
|
r"""Fills the input `Tensor` with a (semi) orthogonal matrix, as
|
|
described in `Exact solutions to the nonlinear dynamics of learning in deep
|
|
linear neural networks` - Saxe, A. et al. (2013). The input tensor must have
|
|
at least 2 dimensions, and for tensors with more than 2 dimensions the
|
|
trailing dimensions are flattened.
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2`
|
|
gain: optional scaling factor
|
|
|
|
Examples:
|
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.orthogonal_(w)
|
|
"""
|
|
if tensor.ndimension() < 2:
|
|
raise ValueError("Only tensors with 2 or more dimensions are supported")
|
|
|
|
if tensor.numel() == 0:
|
|
# no-op
|
|
return tensor
|
|
rows = tensor.size(0)
|
|
cols = tensor.numel() // rows
|
|
flattened = tensor.new(rows, cols).normal_(0, 1)
|
|
|
|
if rows < cols:
|
|
flattened.t_()
|
|
|
|
# Compute the qr factorization
|
|
q, r = torch.linalg.qr(flattened)
|
|
# Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf
|
|
d = torch.diag(r, 0)
|
|
ph = d.sign()
|
|
q *= ph
|
|
|
|
if rows < cols:
|
|
q.t_()
|
|
|
|
with torch.no_grad():
|
|
tensor.view_as(q).copy_(q)
|
|
tensor.mul_(gain)
|
|
return tensor
|
|
|
|
|
|
def sparse_(tensor, sparsity, std=0.01):
|
|
r"""Fills the 2D input `Tensor` as a sparse matrix, where the
|
|
non-zero elements will be drawn from the normal distribution
|
|
:math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning via
|
|
Hessian-free optimization` - Martens, J. (2010).
|
|
|
|
Args:
|
|
tensor: an n-dimensional `torch.Tensor`
|
|
sparsity: The fraction of elements in each column to be set to zero
|
|
std: the standard deviation of the normal distribution used to generate
|
|
the non-zero values
|
|
|
|
Examples:
|
|
>>> w = torch.empty(3, 5)
|
|
>>> nn.init.sparse_(w, sparsity=0.1)
|
|
"""
|
|
if tensor.ndimension() != 2:
|
|
raise ValueError("Only tensors with 2 dimensions are supported")
|
|
|
|
rows, cols = tensor.shape
|
|
num_zeros = int(math.ceil(sparsity * rows))
|
|
|
|
with torch.no_grad():
|
|
tensor.normal_(0, std)
|
|
for col_idx in range(cols):
|
|
row_indices = torch.randperm(rows)
|
|
zero_indices = row_indices[:num_zeros]
|
|
tensor[zero_indices, col_idx] = 0
|
|
return tensor
|
|
|
|
|
|
# for backward compatibility
|
|
def _make_deprecate(meth):
|
|
new_name = meth.__name__
|
|
old_name = new_name[:-1]
|
|
|
|
def deprecated_init(*args, **kwargs):
|
|
warnings.warn(f"nn.init.{old_name} is now deprecated in favor of nn.init.{new_name}.", stacklevel=2)
|
|
return meth(*args, **kwargs)
|
|
|
|
deprecated_init.__doc__ = fr"""
|
|
{old_name}(...)
|
|
|
|
.. warning::
|
|
This method is now deprecated in favor of :func:`torch.nn.init.{new_name}`.
|
|
|
|
See :func:`~torch.nn.init.{new_name}` for details."""
|
|
deprecated_init.__name__ = old_name
|
|
return deprecated_init
|
|
|
|
|
|
uniform = _make_deprecate(uniform_)
|
|
normal = _make_deprecate(normal_)
|
|
constant = _make_deprecate(constant_)
|
|
eye = _make_deprecate(eye_)
|
|
dirac = _make_deprecate(dirac_)
|
|
xavier_uniform = _make_deprecate(xavier_uniform_)
|
|
xavier_normal = _make_deprecate(xavier_normal_)
|
|
kaiming_uniform = _make_deprecate(kaiming_uniform_)
|
|
kaiming_normal = _make_deprecate(kaiming_normal_)
|
|
orthogonal = _make_deprecate(orthogonal_)
|
|
sparse = _make_deprecate(sparse_)
|