Files
pytorch/.github/scripts/generate_linux_ci_workflows.py
Eli Uriegas cce156ac94 .github: Make on_pull_request a conditional block (#58363)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58363

Previous implemntation relied on us directly writing the yaml instead of
just having a conditional block, this allows us better readability for
pull request triggers

Signed-off-by: Eli Uriegas <seemethere101@gmail.com>

Test Plan: Imported from OSS

Reviewed By: walterddr

Differential Revision: D28465271

Pulled By: seemethere

fbshipit-source-id: fd556bb6bac4954fcddb4a2b0383e996f292a794
2021-05-17 12:08:58 -07:00

162 lines
6.9 KiB
Python
Executable File

#!/usr/bin/env python3
from pathlib import Path
import jinja2
DOCKER_REGISTRY = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
GITHUB_DIR = Path(__file__).parent.parent
CPU_TEST_RUNNER = "linux.2xlarge"
CUDA_TEST_RUNNER = "linux.8xlarge.nvidia.gpu"
class PyTorchLinuxWorkflow:
def __init__(
self,
build_environment: str,
docker_image_base: str,
on_pull_request: bool = False,
enable_doc_jobs: bool = False,
):
self.build_environment = build_environment
self.docker_image_base = docker_image_base
self.test_runner_type = CPU_TEST_RUNNER
self.on_pull_request = on_pull_request
self.enable_doc_jobs = enable_doc_jobs
if "cuda" in build_environment:
self.test_runner_type = CUDA_TEST_RUNNER
def generate_workflow_file(
self, workflow_template: jinja2.Template, jinja_env: jinja2.Environment
) -> Path:
output_file_path = GITHUB_DIR.joinpath(
f"workflows/{self.build_environment}.yml"
)
with open(output_file_path, "w") as output_file:
output_file.writelines(["# @generated DO NOT EDIT MANUALLY\n"])
output_file.write(
workflow_template.render(
build_environment=self.build_environment,
docker_image_base=self.docker_image_base,
test_runner_type=self.test_runner_type,
enable_doc_jobs=self.enable_doc_jobs,
on_pull_request=self.on_pull_request,
)
)
output_file.write('\n')
return output_file_path
WORKFLOWS = [
PyTorchLinuxWorkflow(
build_environment="pytorch-linux-xenial-py3.6-gcc5.4",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
on_pull_request=True,
enable_doc_jobs=True,
),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-paralleltbb-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-parallelnative-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-pure_torch-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-asan",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang7-onnx",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang7-onnx",
# ),
PyTorchLinuxWorkflow(
build_environment="pytorch-linux-xenial-cuda10.2-cudnn7-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-cuda11.1-cudnn8-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-libtorch-linux-xenial-cuda11.1-cudnn8-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-py3.6-clang9-noarch",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-xla-linux-bionic-py3.6-clang9",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-vulkan-linux-bionic-py3.6-clang9",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-py3.8-gcc9-coverage",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.8-gcc9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-rocm3.9-py3.6",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-rocm3.9-py3.6",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-x86_32",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-x86_64",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v7a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v8a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-custom-dynamic",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-custom-static",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-code-analysis",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
]
if __name__ == "__main__":
jinja_env = jinja2.Environment(
variable_start_string="!{{",
loader=jinja2.FileSystemLoader(str(GITHUB_DIR.joinpath("templates"))),
)
workflow_template = jinja_env.get_template("linux_ci_workflow.yml.in")
for workflow in WORKFLOWS:
print(
workflow.generate_workflow_file(
workflow_template=workflow_template,
jinja_env=jinja_env
)
)