mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Enables B027 and applies fixes by adding abstract method decorators. Autofix generated by ruff master. Pull Request resolved: https://github.com/pytorch/pytorch/pull/100715 Approved by: https://github.com/ezyang
526 lines
16 KiB
Python
526 lines
16 KiB
Python
from abc import ABC, abstractmethod
|
|
import queue
|
|
import threading
|
|
import collections
|
|
|
|
from dataclasses import dataclass
|
|
import os
|
|
import dataclasses
|
|
import io
|
|
import pickle
|
|
from typing import List, Union, Dict, cast
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.futures import Future
|
|
from pathlib import Path
|
|
|
|
from .metadata import (
|
|
Metadata,
|
|
MetadataIndex,
|
|
)
|
|
from .storage import (
|
|
StorageReader,
|
|
StorageWriter,
|
|
WriteResult,
|
|
)
|
|
|
|
from .planner import (
|
|
LoadItemType,
|
|
LoadPlanner,
|
|
LoadPlan,
|
|
SavePlan,
|
|
SavePlanner,
|
|
ReadItem,
|
|
WriteItem,
|
|
WriteItemType,
|
|
)
|
|
|
|
from torch.distributed._shard._utils import narrow_tensor_by_index
|
|
|
|
__all__ = [
|
|
"FileSystemWriter",
|
|
"SlicedBufferedReader",
|
|
"FileSystemReader",
|
|
]
|
|
|
|
|
|
@dataclass
|
|
class _StorageInfo:
|
|
"""
|
|
This is the per entry storage info
|
|
"""
|
|
|
|
relative_path: str
|
|
offset: int
|
|
length: int
|
|
|
|
|
|
@dataclass
|
|
class _StoragePrefix:
|
|
prefix: str
|
|
|
|
|
|
DEFAULT_SUFFIX = ".distcp"
|
|
|
|
|
|
def _trim(tensor: torch.Tensor) -> torch.Tensor:
|
|
tensor = tensor.detach().cpu()
|
|
if tensor._typed_storage()._size() != tensor.numel():
|
|
tensor = tensor.clone()
|
|
return tensor
|
|
|
|
|
|
def _result_from_write_item(
|
|
item: WriteItem, size_in_bytes, storage_data
|
|
) -> WriteResult:
|
|
return WriteResult(
|
|
index=item.index, size_in_bytes=size_in_bytes, storage_data=storage_data
|
|
)
|
|
|
|
|
|
class _TensorLoader(ABC):
|
|
@abstractmethod
|
|
def add(self, size, obj):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def start_loading(self):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def values(self):
|
|
pass
|
|
|
|
|
|
class _SerialCpuLoader(_TensorLoader):
|
|
def __init__(self, resolve_fun):
|
|
self.resolve_fun = resolve_fun
|
|
self.items = []
|
|
|
|
def add(self, size, obj):
|
|
self.items.append((size, obj))
|
|
|
|
def start_loading(self):
|
|
pass
|
|
|
|
def values(self):
|
|
for _, obj in self.items:
|
|
tensor = self.resolve_fun(obj).detach()
|
|
tensor = tensor.cpu()
|
|
if tensor.storage().size() != tensor.numel():
|
|
tensor = tensor.clone()
|
|
yield (
|
|
tensor,
|
|
obj,
|
|
)
|
|
|
|
|
|
class _OverlappingCpuLoader(_TensorLoader):
|
|
def __init__(self, resolve_fun, stream=None, inflight_threshhold=1_000_000):
|
|
self.resolve_fun = resolve_fun
|
|
self.items = []
|
|
self.inflight_threshhold = inflight_threshhold
|
|
self.in_flight_data = 0
|
|
self.current_items: collections.deque = collections.deque()
|
|
self.idx = 0
|
|
self.started = False
|
|
self.stream = stream or torch.cuda.current_stream()
|
|
if self.stream != torch.cuda.current_stream():
|
|
self.stream.wait_stream(torch.cuda.current_stream())
|
|
|
|
@property
|
|
def _done(self):
|
|
return self.idx >= len(self.items)
|
|
|
|
def _drain(self):
|
|
drained = []
|
|
if self.in_flight_data >= self.inflight_threshhold:
|
|
self.stream.synchronize()
|
|
while self.in_flight_data >= self.inflight_threshhold:
|
|
val = self.current_items.popleft()
|
|
self.in_flight_data -= val[0].numel() * val[0].element_size()
|
|
drained.append(val)
|
|
return drained
|
|
|
|
def _refill(self):
|
|
with torch.cuda.stream(self.stream):
|
|
while (
|
|
not self._done
|
|
and self.in_flight_data < self.inflight_threshhold
|
|
):
|
|
_, obj = self.items[self.idx]
|
|
self.idx += 1
|
|
tensor = self.resolve_fun(obj).detach()
|
|
if tensor.is_cuda:
|
|
tensor = tensor.to(device="cpu", non_blocking=True)
|
|
elif tensor.device == torch.device("cpu"):
|
|
if tensor.storage().size() != tensor.numel():
|
|
# this forces the tensor to be both contiguous and with minimal storage
|
|
tensor = tensor.clone()
|
|
|
|
self.current_items.append(
|
|
(
|
|
tensor,
|
|
obj,
|
|
)
|
|
)
|
|
self.in_flight_data += tensor.numel() * tensor.element_size()
|
|
|
|
def _finish(self):
|
|
assert self._done
|
|
if len(self.current_items) > 0:
|
|
self.stream.synchronize()
|
|
return self.current_items
|
|
|
|
def add(self, size, obj):
|
|
if self.started:
|
|
raise RuntimeError("cannot add items after loading started")
|
|
self.items.append((size, obj))
|
|
|
|
def start_loading(self):
|
|
if self.started:
|
|
return
|
|
self.started = True
|
|
self.items.sort(key=lambda x: x[0])
|
|
self._refill()
|
|
|
|
def values(self):
|
|
self.start_loading()
|
|
while not self._done:
|
|
drained = self._drain()
|
|
self._refill()
|
|
yield from drained
|
|
|
|
yield from self._finish()
|
|
|
|
|
|
def _item_size(item: WriteItem) -> int:
|
|
size = 1
|
|
assert item.tensor_data is not None
|
|
# can't use math.prod as PT needs to support older python
|
|
for s in item.tensor_data.size:
|
|
size *= s
|
|
|
|
dtype = item.tensor_data.properties.dtype
|
|
return size * torch._utils._element_size(dtype)
|
|
|
|
|
|
def _split_by_size_and_type(
|
|
bins, items: List[WriteItem]
|
|
) -> List[List[WriteItem]]:
|
|
if bins == 1:
|
|
return [items]
|
|
|
|
bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO]
|
|
tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO]
|
|
|
|
buckets: List[List[WriteItem]] = [[] for _ in range(bins)]
|
|
bucket_sizes = [0 for _ in range(bins)]
|
|
|
|
tensor_w.sort(key=_item_size, reverse=True)
|
|
|
|
for i, wi in enumerate(bytes_w):
|
|
buckets[i % bins].append(wi)
|
|
|
|
for wi in tensor_w:
|
|
# TODO replace with headq
|
|
idx = min(enumerate(bucket_sizes), key=lambda x: x[1])[0]
|
|
buckets[idx].append(wi)
|
|
bucket_sizes[idx] += _item_size(wi)
|
|
|
|
return buckets
|
|
|
|
|
|
def _write_item(stream, data, write_item, storage_key):
|
|
offset = stream.tell()
|
|
|
|
if write_item.type == WriteItemType.BYTE_IO:
|
|
assert isinstance(data, io.BytesIO)
|
|
stream.write(data.getbuffer())
|
|
else:
|
|
assert isinstance(data, torch.Tensor)
|
|
assert data.device == torch.device("cpu")
|
|
torch.save(data, stream)
|
|
length = stream.tell() - offset
|
|
|
|
return _result_from_write_item(
|
|
write_item, length, _StorageInfo(storage_key, offset, length)
|
|
)
|
|
|
|
|
|
def _write_files_from_queue(
|
|
file_queue: queue.Queue,
|
|
result_queue: queue.Queue,
|
|
planner: SavePlanner,
|
|
inflight_threshhold: int,
|
|
use_fsync: bool,
|
|
):
|
|
try:
|
|
while True:
|
|
file_name, storage_key, write_items = file_queue.get_nowait()
|
|
loader: _TensorLoader
|
|
|
|
if torch.cuda.is_available() and inflight_threshhold > 0:
|
|
loader = _OverlappingCpuLoader(
|
|
lambda x: planner.resolve_data(x),
|
|
inflight_threshhold=inflight_threshhold,
|
|
)
|
|
else:
|
|
loader = _SerialCpuLoader(
|
|
lambda x: planner.resolve_data(x),
|
|
)
|
|
|
|
tensor_w = [
|
|
wi for wi in write_items if wi.type != WriteItemType.BYTE_IO
|
|
]
|
|
for write_item in tensor_w:
|
|
loader.add(_item_size(write_item), write_item)
|
|
loader.start_loading()
|
|
|
|
bytes_w = [
|
|
wi for wi in write_items if wi.type == WriteItemType.BYTE_IO
|
|
]
|
|
write_results = []
|
|
|
|
with open(file_name, "wb") as stream:
|
|
for write_item in bytes_w:
|
|
data = planner.resolve_data(write_item)
|
|
write_results.append(
|
|
_write_item(stream, data, write_item, storage_key)
|
|
)
|
|
|
|
for tensor, write_item in loader.values():
|
|
assert not tensor.is_cuda
|
|
write_results.append(
|
|
_write_item(stream, tensor, write_item, storage_key)
|
|
)
|
|
|
|
if use_fsync:
|
|
os.fsync(stream.fileno())
|
|
result_queue.put(write_results)
|
|
except queue.Empty:
|
|
pass
|
|
|
|
|
|
class FileSystemWriter(StorageWriter):
|
|
"""
|
|
Basic implementation of StorageWriter using file IO.
|
|
|
|
This implementation makes the following assumptions and simplifications:
|
|
|
|
* The checkpoint path is an empty or non-existing directory.
|
|
* File creation is atomic
|
|
|
|
The checkpoint consist of one file per write request plus
|
|
a `.metadata` file with the serialized metadata.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: Union[str, os.PathLike],
|
|
single_file_per_rank: bool = True,
|
|
sync_files: bool = True,
|
|
thread_count: int = 1,
|
|
per_thread_copy_ahead: int = 10_000_000,
|
|
) -> None:
|
|
"""
|
|
Initialize the writer pointing to `path`
|
|
|
|
Args:
|
|
path: directory where the checkpoint will be written to.
|
|
single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True.
|
|
sync_files : force files to be synced to permanent storage. Default to True.
|
|
thread_count: Number of IO threads to use to write. Default to 1.
|
|
per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb.
|
|
|
|
N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure.
|
|
"""
|
|
super().__init__()
|
|
self.path = Path(path)
|
|
self.single_file_per_rank = single_file_per_rank
|
|
self.sync_files = sync_files
|
|
self.thread_count = thread_count
|
|
self.per_thread_copy_ahead = per_thread_copy_ahead
|
|
|
|
def set_up_storage_writer(self, is_coordinator: bool) -> None:
|
|
pass
|
|
|
|
def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
|
|
self.path.mkdir(parents=True, exist_ok=True)
|
|
return plan
|
|
|
|
def prepare_global_plan(
|
|
self, global_plan: List[SavePlan]
|
|
) -> List[SavePlan]:
|
|
new_plans = [
|
|
dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_"))
|
|
for i, plan in enumerate(global_plan)
|
|
]
|
|
return new_plans
|
|
|
|
def write_data(
|
|
self,
|
|
plan: SavePlan,
|
|
planner: SavePlanner,
|
|
) -> Future[List[WriteResult]]:
|
|
storage_plan: _StoragePrefix = plan.storage_data
|
|
file_count = 0
|
|
|
|
def gen_file():
|
|
nonlocal file_count
|
|
file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}"
|
|
file_count += 1
|
|
return file_name
|
|
|
|
file_queue: queue.Queue = queue.Queue()
|
|
if self.single_file_per_rank:
|
|
for bucket in _split_by_size_and_type(
|
|
self.thread_count, plan.items
|
|
):
|
|
file_name = gen_file()
|
|
file_queue.put((self.path / file_name, file_name, bucket))
|
|
else:
|
|
for item in plan.items:
|
|
file_name = gen_file()
|
|
file_queue.put((self.path / file_name, file_name, [item]))
|
|
|
|
result_queue: queue.Queue = queue.Queue()
|
|
|
|
threads = []
|
|
for _ in range(1, self.thread_count):
|
|
t = threading.Thread(
|
|
target=_write_files_from_queue,
|
|
args=(
|
|
file_queue,
|
|
result_queue,
|
|
planner,
|
|
self.per_thread_copy_ahead,
|
|
self.sync_files,
|
|
),
|
|
)
|
|
t.start()
|
|
threads.append(t)
|
|
|
|
_write_files_from_queue(
|
|
file_queue=file_queue,
|
|
result_queue=result_queue,
|
|
planner=planner,
|
|
inflight_threshhold=self.per_thread_copy_ahead,
|
|
use_fsync=self.sync_files,
|
|
)
|
|
|
|
for t in threads:
|
|
t.join()
|
|
|
|
res = []
|
|
try:
|
|
while True:
|
|
res += result_queue.get_nowait()
|
|
except queue.Empty:
|
|
pass
|
|
|
|
fut: Future[List[WriteResult]] = Future()
|
|
fut.set_result(res)
|
|
return fut
|
|
|
|
def finish(
|
|
self, metadata: Metadata, results: List[List[WriteResult]]
|
|
) -> None:
|
|
storage_md = dict()
|
|
for wr_list in results:
|
|
storage_md.update({wr.index: wr.storage_data for wr in wr_list})
|
|
metadata.storage_data = storage_md
|
|
with (self.path / ".metadata.tmp").open("wb") as metadata_file:
|
|
pickle.dump(metadata, metadata_file)
|
|
os.fsync(metadata_file.fileno())
|
|
|
|
(self.path / ".metadata.tmp").rename(self.path / ".metadata")
|
|
|
|
|
|
class SlicedBufferedReader(io.BufferedReader):
|
|
# TODO override read to handle (-1) correctly
|
|
def __init__(self, base_stream: io.RawIOBase, offset: int, len: int):
|
|
super().__init__(base_stream)
|
|
self.offset = offset
|
|
self.len = len
|
|
self.seek(0)
|
|
|
|
def seek(self, __offset: int, __whence: int = os.SEEK_SET) -> int:
|
|
if __whence == os.SEEK_SET:
|
|
__offset = self.offset + __offset
|
|
elif __whence == os.SEEK_END:
|
|
__whence = os.SEEK_SET
|
|
__offset = (self.offset + self.len) - __offset
|
|
return super().seek(__offset, __whence)
|
|
|
|
def tell(self) -> int:
|
|
return super().tell() - self.offset
|
|
|
|
|
|
class FileSystemReader(StorageReader):
|
|
def __init__(self, path: Union[str, os.PathLike]) -> None:
|
|
super().__init__()
|
|
self.path = Path(path)
|
|
self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()
|
|
|
|
def _slice_file(self, file, sinfo: _StorageInfo):
|
|
return SlicedBufferedReader(
|
|
io.FileIO(file.fileno(), closefd=False), sinfo.offset, sinfo.length
|
|
)
|
|
|
|
def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]:
|
|
# group requests by file
|
|
per_file: Dict[str, List[ReadItem]] = dict()
|
|
for read_item in plan.items:
|
|
item_md = self.storage_data[read_item.storage_index]
|
|
path = item_md.relative_path
|
|
per_file.setdefault(path, []).append(read_item)
|
|
|
|
for relative_path, reqs in per_file.items():
|
|
with (self.path / relative_path).open("rb") as file:
|
|
# TODO sort by offset and cache the reading
|
|
for req in reqs:
|
|
item_md = self.storage_data[req.storage_index]
|
|
file_slice = self._slice_file(file, item_md)
|
|
if req.type == LoadItemType.BYTE_IO:
|
|
bytes = io.BytesIO(file_slice.read(item_md.length))
|
|
bytes.seek(0)
|
|
planner.load_bytes(req, bytes)
|
|
else:
|
|
tensor = cast(
|
|
Tensor, torch.load(file_slice, map_location="cpu")
|
|
)
|
|
tensor = narrow_tensor_by_index(
|
|
tensor, req.storage_offsets, req.lengths
|
|
)
|
|
target_tensor = planner.resolve_tensor(req).detach()
|
|
|
|
assert (
|
|
target_tensor.size() == tensor.size()
|
|
), f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
|
|
target_tensor.copy_(tensor)
|
|
planner.commit_tensor(req, target_tensor)
|
|
|
|
fut: Future = Future()
|
|
fut.set_result(None)
|
|
return fut
|
|
|
|
# Implementing the abstract function in StorageReader
|
|
def read_metadata(self) -> Metadata:
|
|
with (self.path / ".metadata").open("rb") as metadata_file:
|
|
return pickle.load(metadata_file)
|
|
|
|
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
|
|
self.storage_data = metadata.storage_data
|
|
assert self.storage_data is not None
|
|
|
|
def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
|
|
return plan
|
|
|
|
def prepare_global_plan(
|
|
self, global_plan: List[LoadPlan]
|
|
) -> List[LoadPlan]:
|
|
return global_plan
|