Files
pytorch/torch/csrc/jit/passes/graph_fuser.cpp
Wanchao Liang 871c9dcb1d move batchnorm and layernorm fusion to decompose (#20337)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20337
ghimport-source-id: 2196f84f2ef384c1f25587b2fb4bd9dd2f63c2b4

Differential Revision: D15448596

Pulled By: wanchaol

fbshipit-source-id: b66e608f1b72471fc0775aaa4e09f9fa1070fc3c
2019-05-22 18:01:27 -07:00

1316 lines
50 KiB
C++

#include <torch/csrc/jit/passes/graph_fuser.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/autodiff.h>
#include <torch/csrc/jit/custom_operator.h>
#include <torch/csrc/jit/fuser/interface.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/alias_analysis.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/symbolic_variable.h>
#include <queue>
#include <unordered_map>
namespace torch {
namespace jit {
namespace {
// What is a simple mappable operator? It:
// - Has a single tensor output
// - Output and all tensor inputs have the same shape
// - Output and all tensor inputs have the same scalar type
// or all tensor inputs have the same scalar type and
// output is identified in PropagateInputShapes
// - Output and all tensor inputs should be on the same device
// - Produces contiguous outputs
// Some of these restrictions may be relaxable, but you should
// carefully read the code first, as we rely on these assumptions.
bool isSimpleMap(Node* node) {
static OperatorSet simple_mappable{{
"aten::_cast_Float(Tensor self, bool non_blocking) -> Tensor",
"aten::abs(Tensor self) -> Tensor",
"aten::acos(Tensor self) -> Tensor",
"aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::asin(Tensor self) -> Tensor",
"aten::atan(Tensor self) -> Tensor",
"aten::atan2(Tensor self, Tensor other) -> Tensor",
"aten::ceil(Tensor self) -> Tensor",
"aten::clamp(Tensor self, Scalar? min, Scalar? max) -> Tensor",
"aten::cos(Tensor self) -> Tensor",
"aten::cosh(Tensor self) -> Tensor",
"aten::div(Tensor self, Tensor other) -> Tensor",
"aten::exp(Tensor self) -> Tensor",
"aten::expm1(Tensor self) -> Tensor",
"aten::erf(Tensor self) -> Tensor",
"aten::erfc(Tensor self) -> Tensor",
"aten::floor(Tensor self) -> Tensor",
"aten::fmod(Tensor self, Tensor other) -> Tensor",
"aten::frac(Tensor self) -> Tensor",
"aten::lgamma(Tensor self) -> Tensor",
"aten::log(Tensor self) -> Tensor",
"aten::log10(Tensor self) -> Tensor",
"aten::log1p(Tensor self) -> Tensor",
"aten::log2(Tensor self) -> Tensor",
"aten::lerp(Tensor self, Tensor end, Scalar weight) -> Tensor",
"aten::lerp(Tensor self, Tensor end, Tensor weight) -> Tensor",
"aten::max(Tensor self, Tensor other) -> Tensor",
"aten::min(Tensor self, Tensor other) -> Tensor",
"aten::mul(Tensor self, Tensor other) -> Tensor",
"aten::neg(Tensor self) -> Tensor",
"aten::pow(Tensor self, Tensor exponent) -> Tensor",
"aten::pow(Tensor self, Scalar exponent) -> Tensor",
"aten::pow(Scalar self, Tensor exponent) -> Tensor",
"aten::rand_like(Tensor self) -> Tensor",
"aten::reciprocal(Tensor self) -> Tensor",
"aten::relu(Tensor self) -> Tensor",
"aten::threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor",
"aten::remainder(Tensor self, Tensor other) -> Tensor",
"aten::round(Tensor self) -> Tensor",
"aten::rsqrt(Tensor self) -> Tensor",
"aten::sigmoid(Tensor self) -> Tensor",
"aten::sin(Tensor self) -> Tensor",
"aten::sinh(Tensor self) -> Tensor",
"aten::sqrt(Tensor self) -> Tensor",
"aten::sub(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::tan(Tensor self) -> Tensor",
"aten::tanh(Tensor self) -> Tensor",
"aten::trunc(Tensor self) -> Tensor",
"aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor",
"aten::mul(Tensor self, Scalar other) -> Tensor",
"aten::div(Tensor self, Scalar other) -> Tensor",
"aten::eq(Tensor self, Tensor other) -> Tensor",
"aten::eq(Tensor self, Scalar other) -> Tensor",
"aten::ne(Tensor self, Tensor other) -> Tensor",
"aten::ne(Tensor self, Scalar other) -> Tensor",
"aten::ge(Tensor self, Tensor other) -> Tensor",
"aten::ge(Tensor self, Scalar other) -> Tensor",
"aten::gt(Tensor self, Tensor other) -> Tensor",
"aten::gt(Tensor self, Scalar other) -> Tensor",
"aten::le(Tensor self, Tensor other) -> Tensor",
"aten::le(Tensor self, Scalar other) -> Tensor",
"aten::lt(Tensor self, Tensor other) -> Tensor",
"aten::lt(Tensor self, Scalar other) -> Tensor",
"aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor",
"aten::where(Tensor condition, Tensor self, Tensor other) -> Tensor",
"aten::type_as(Tensor self, Tensor other) -> Tensor",
}};
if (!simple_mappable.find(node)) {
return false;
}
for (Value* input : node->inputs()) {
if (input->type()->isSubtypeOf(TensorType::get()) ||
input->type()->isSubtypeOf(FloatType::get())) {
continue;
}
if (input->node()->kind() != prim::Constant) {
return false;
}
}
return true;
}
Value* broadcastSizes(at::ArrayRef<Value*> sizes) {
AT_ASSERT(!sizes.empty());
Graph* graph = sizes[0]->owningGraph();
Node* broadcast_n =
graph->insertNode(graph->create(prim::BroadcastSizes, sizes));
broadcast_n->output()->setType(ListType::ofInts());
return broadcast_n->output();
}
struct GraphFuser {
using FusionCallback = std::function<bool(Node*)>;
Block* block_;
std::unique_ptr<AliasDb> aliasDb_;
std::shared_ptr<Graph> graph_;
FusionCallback callback_ = [&](Node* n) { return isFusableDefault(n); };
Symbol kind_ = prim::FusionGroup;
GraphFuser(Block* block, std::shared_ptr<Graph> graph)
: block_(block), graph_(std::move(graph)) {}
// Custom passes require kind to specified
GraphFuser(
Block* block,
std::shared_ptr<Graph> graph,
FusionCallback callback,
Symbol kind)
: block_(block),
graph_(std::move(graph)),
callback_(callback),
kind_(kind) {}
value_list tensorInputs(Node* node) {
return filter(node->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(TensorType::get());
});
}
bool containsGradSumToSize(Node* fusion_group) {
auto nodes = getSubgraph(fusion_group).nodes();
return std::any_of(nodes.begin(), nodes.end(), [](Node* n) {
return n->kind() == aten::_grad_sum_to_size;
});
}
bool isFusable(Node* node) {
return callback_(node);
}
bool isFusableDevice(Value *v) {
auto tensor_type = v->type()->cast<DimensionedTensorType>();
if (!tensor_type) {
return true;
}
if (tensor_type->device().is_cpu()) {
return canFuseOnCPU();
} else if (tensor_type->device().is_cuda()) {
return canFuseOnGPU();
}
throw std::runtime_error("Unknown device");
}
// Default fusability check - used when the user doesn't pass in
// a callback.
bool isFusableDefault(Node* node) {
bool fusableDevice = true;
for (const auto& output : node->outputs()) {
if (output->uses().size() > 0) {
fusableDevice &= isFusableDevice(output);
}
}
return fusableDevice && isFusableMap(node);
}
bool isFusableMap(Node* node) {
// We don't want to bother with cross-block node movements, as they
// are not necessarily correct.
if (node->owningBlock() != block_)
return false;
if (node->kind() == aten::_grad_sum_to_size) {
// We only fuse _grad_sum_to_size if
// - we will fuse its input next (checked here)
// - we can commute the _grad_sum_to_size with everything
// along the computation graph until we reach the outputs,
// but this is checked later
return isFusable(node->inputs()[0]->node());
}
return node->kind() == prim::FusionGroup || isSimpleMap(node);
}
bool isFusableCatNode(Node* node) {
if (node->kind() != aten::cat)
return false;
if (!node->is_constant(attr::dim))
return false;
auto tensors_node = node->namedInput(attr::tensors)->node();
if ((tensors_node->inputs().size() + node->outputs().size()) >
fusion_kernel_args_limit) {
return false;
}
if (tensors_node->kind() != prim::ListConstruct)
return false;
// NB: Note that technically other uses of the list aren't a big problem for
// us. It would be enough to place the prim::FusedConcat before the
// prim::ListConstruct, and allUsersAreThisConsumerOrOccurAfterIt would
// still be satisfied. However, I don't expect this to be necessary any time
// soon, and so we're simply assuming that we don't have to deal with it.
if (tensors_node->output()->uses().size() > 1)
return false;
return true;
}
bool calculatesSize(Node* node) {
return node->matches("aten::size(Tensor self) -> int[]");
}
bool allUsersAreThisConsumerOrCalcSizes(Node* consumer, Value* producer) {
auto defining_node = producer->node();
for (auto o : defining_node->outputs()) {
for (auto u : o->uses()) {
if (u.user != consumer && !calculatesSize(u.user))
return false;
}
}
return true;
}
Graph& getSubgraph(Node* n) {
AT_ASSERT(n->kind() == kind_);
return *n->g(attr::Subgraph);
}
void mergeFusionGroups(Node* consumer_group, Node* producer_group) {
// Now we have two fusion groups!
// Revert the fusion - place all inner nodes of producer back in the outer
// graph.
std::vector<Node*> temporary_nodes;
auto producer_subgraph = &getSubgraph(producer_group);
// Initialize a map of inner graph values to outer graph values
std::unordered_map<Value*, Value*> inner_to_outer;
auto inner_inputs = producer_subgraph->inputs();
auto outer_inputs = producer_group->inputs();
for (size_t i = 0; i < inner_inputs.size(); ++i) {
inner_to_outer[inner_inputs[i]] = outer_inputs[i];
}
// Clone all nodes
for (auto inner : producer_subgraph->nodes()) {
Node* outer = block_->owningGraph()->createClone(
inner, [&](Value* k) -> Value* { return inner_to_outer.at(k); });
outer->insertBefore(producer_group);
temporary_nodes.emplace_back(outer);
auto inner_outputs = inner->outputs();
auto outer_outputs = outer->outputs();
for (size_t i = 0; i < inner_outputs.size(); ++i)
inner_to_outer[inner_outputs[i]] = outer_outputs[i];
}
// Replace uses of producer_group outputs and destroy the producer
auto subgraph_outputs = producer_subgraph->outputs();
for (size_t i = 0; i < subgraph_outputs.size(); ++i) {
auto outer_output = inner_to_outer.at(subgraph_outputs[i]);
producer_group->outputs()[i]->replaceAllUsesWith(outer_output);
}
producer_group->destroy();
producer_group =
nullptr; // Just to get a clear error in case someone uses it
// Inline the temporary nodes into the first group
auto consumer_subgraph = &getSubgraph(consumer_group);
for (auto it = temporary_nodes.rbegin(); it != temporary_nodes.rend();
++it) {
Node* node = *it;
Node* merged = mergeNodeIntoGroup(consumer_group, node);
// If any of the outputs are still used then we need to add them
auto outputs = node->outputs();
for (size_t i = 0; i < outputs.size(); ++i) {
auto output = outputs[i];
if (output->uses().size() == 0)
continue;
consumer_subgraph->registerOutput(merged->outputs()[i]);
auto new_output = consumer_group->addOutput();
output->replaceAllUsesWith(new_output);
new_output->setType(output->type());
}
node->destroy();
}
}
// insert a producer node into a consuming fusion group.
// DOES NOT WORK if n is a consumer of an output of the fusion group
// returns the node _inside_ the group that represents the node
Node* mergeNodeIntoGroup(Node* group, Node* n) {
AT_ASSERT(n->kind() != kind_);
auto& subgraph = getSubgraph(group);
// map from nodes in the surrounding graph to parameters in the fusion
// group's subgraph that correspond to them
std::unordered_map<Value*, Value*> inputs_map;
size_t i = 0;
size_t tensor_insert_idx = 0;
AT_ASSERT(group->inputs().size() == subgraph.inputs().size());
for (auto input : group->inputs()) {
inputs_map[input] = subgraph.inputs()[i++];
if (input->type()->isSubtypeOf(TensorType::get()))
tensor_insert_idx = i;
}
// add n's inputs to the fusion group's input list if we don't already have
// them
// we insert tensors first because the fuser assumes that to be the case
// (as a legacy from tensors only)
WithInsertPoint guard(*subgraph.nodes().begin());
for (auto input : n->inputs()) {
if (inputs_map.count(input) == 0) {
if (input->type()->isSubtypeOf(TensorType::get())) {
auto in_group = subgraph.insertInput(tensor_insert_idx);
in_group->setType(input->type());
inputs_map[input] = in_group;
group->insertInput(tensor_insert_idx, input);
tensor_insert_idx++;
} else if (
(input->type()->isSubtypeOf(FloatType::get()) &&
input->node()->kind() != prim::Constant) ||
(n->kind() == aten::_grad_sum_to_size &&
input->type()->isSubtypeOf(ListType::ofInts()))) {
auto in_group = subgraph.addInput();
in_group->setType(input->type());
inputs_map[input] = in_group;
group->addInput(input);
} else {
// We don't support passing in scalars as arguments to fused kernels,
// so we generally don't allow fusing tensor-scalar operations unless
// the scalar is constant. In those cases we inline the constants
// directly in the body of the fused group.
AT_ASSERT(input->node()->kind() == prim::Constant);
Node* in_const =
subgraph.createClone(input->node(), [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
});
subgraph.insertNode(in_const);
inputs_map[input] = in_const->output();
}
}
}
// copy n into the graph, remapping its inputs to internal nodes
Node* in_graph = subgraph.createClone(
n, [&](Value* k) -> Value* { return inputs_map[k]; });
// if n's outputs are already inputs to the fusion group,
// we need to remove them because n is now inside the fusion group.
//
// i.e.,
// x = f(w); group(x, y, z) becomes group(w, y, z).
// x, y, z = f(w); group(x, y, z) becomes group(w).
//
// remapping nodes that used the input to the newly-merged node
// n is not an input when the fusion group is empty
auto inputs = group->inputs();
for (size_t i = 0; i < n->outputs().size(); ++i) {
auto it = std::find(inputs.begin(), inputs.end(), n->outputs()[i]);
if (it != inputs.end()) {
size_t p = it - inputs.begin();
group->removeInput(p);
subgraph.inputs()[p]->replaceAllUsesWith(in_graph->outputs()[i]);
subgraph.eraseInput(p);
}
}
return subgraph.insertNode(in_graph);
}
// turn consumer node n into a fusion group with just n inside
// to prepare for fusion and replace uses of n with the new group
Node* createSingletonFusionGroup(Node* n) {
auto group = block_->owningGraph()->createWithSubgraph(kind_);
// propogate position information for the new node so we can always
// have a valid mapping
group->insertBefore(n);
Node* mergedNode = mergeNodeIntoGroup(group, n);
getSubgraph(group).registerOutput(mergedNode->output());
auto sel = group->addOutput();
sel->copyMetadata(n->output());
n->replaceAllUsesWith(group);
n->destroy();
return group;
}
at::optional<Node*> tryFuse(Node* consumer, Value* producer) {
// this handles cases where producer can be moved _into_ the fusion group of
// consumer.
// TODO: extend to fusion of consumer into _producer's_ fusion blob
// if the consumer allInputsAreThisProducer(consumer,producer)
// we can move the consumer up into the producer.
// but this requires better handling of merging fusion groups so it is not
// done now
bool shouldFuse = isFusable(producer->node()) &&
// Rearrange nodes such that all uses of producer are after the
// consumer. Fusion will rewrite those later uses to use the version of
// producer generated by the fused blob. In this case, producer becomes
// an output of the fusion group.
aliasDb_->moveBeforeTopologicallyValid(producer->node(), consumer);
if (!shouldFuse) {
return at::nullopt;
}
if ((consumer->inputs().size() + consumer->outputs().size() +
producer->node()->inputs().size() +
producer->node()->outputs().size()) > fusion_kernel_args_limit) {
return at::nullopt;
}
if (producer->node()->kind() == aten::_grad_sum_to_size &&
consumer->kind() == kind_) {
// check that we will be able to move the _grad_sum_to_size to be fused
// to the end of the fusion group in the fusion compiler
// the difficulty here is that the producer is not part of the fusion
// group yet
for (auto& u : producer->uses()) {
if (u.user == consumer) {
auto subgraph = &getSubgraph(consumer);
if (!trackSingleGradSumToSizeToOutputs(
subgraph->inputs().at(u.offset), nullptr)) {
return at::nullopt;
}
}
}
}
auto group = consumer;
if (consumer->kind() != kind_) {
group = createSingletonFusionGroup(consumer);
}
if (producer->node()->kind() == kind_) {
mergeFusionGroups(group, producer->node());
return group;
}
AT_ASSERT(producer->node()->outputs().size() == 1);
Node* merged = mergeNodeIntoGroup(group, producer->node());
// remaining uses of this producer can occur because we allow
// fusion in cases where uses remain after the consumer
// if these exist, re-route them to the version of producer
// created in FusionGroup
if (producer->uses().size() != 0) {
getSubgraph(group).registerOutput(merged->output());
Value* new_producer = group->addOutput();
new_producer->copyMetadata(producer);
producer->replaceAllUsesWith(new_producer);
}
producer->node()->destroy();
return group;
}
bool canFuseChunk(Node* consumer, Value* producer) {
if (consumer->kind() != prim::FusionGroup) {
return false;
}
// Does the chunk have constant chunks/dim?
auto* chunk = producer->node();
if (chunk->kind() != prim::ConstantChunk)
return false;
// And all uses of the chunk are in this consumer
for (auto s : chunk->outputs()) {
for (auto u : s->uses()) {
if (u.user != consumer) {
return false;
}
}
}
// And isn't a no-op chunk (chunks == 1). Have CSE clean this up.
// We could fuse this but it's better to just delete the node.
if (chunk->i(attr::chunks) == 1) {
return false;
}
return true;
}
c10::optional<Node*> findFusedChunk(Node* group, Value* input) {
AT_ASSERT(group->kind() == prim::FusionGroup);
auto it = std::find(group->inputs().begin(), group->inputs().end(), input);
if (it == group->inputs().end()) {
return c10::nullopt;
}
size_t input_index = it - group->inputs().begin();
auto& subgraph = getSubgraph(group);
auto* subgraph_input = subgraph.inputs().at(input_index);
// If subgraph_input is an input to prim::ConstantChunk, it will have 1 use
auto* node = subgraph_input->uses().at(0).user;
if (node->kind() == prim::ConstantChunk) {
AT_ASSERT(subgraph_input->uses().size() == 1);
return node;
}
return c10::nullopt;
}
void fuseChunkByReusingExistingFusedChunk(
Node* group,
Node* chunk,
Node* existingFusedChunk) {
if (chunk->outputs().size() != existingFusedChunk->outputs().size()) {
return;
}
auto& subgraph = getSubgraph(group);
for (size_t i = 0; i < chunk->outputs().size(); ++i) {
// Find the input to the FusionGroup (group)
auto* replacement_val = existingFusedChunk->outputs().at(i);
auto* val = chunk->outputs().at(i);
auto it = std::find(group->inputs().begin(), group->inputs().end(), val);
auto input_index = it - group->inputs().begin();
// Rewrite the graph to use replacement_val
auto group_input = subgraph.inputs().at(input_index);
group_input->replaceAllUsesWith(replacement_val);
// Remove the input, it's no longer needed
group->removeInput(input_index);
subgraph.eraseInput(input_index);
}
chunk->destroy();
}
// There are two invariants for prim::ConstantChunk:
// (1) the tensor input to prim::ConstantChunk must be an input to the fusion
// group (2) no two ConstantChunks in the same FusionGroup can share a tensor
// input.
graph_node_list::iterator fuseChunk(Node* consumer, Value* producer) {
auto* chunk = producer->node();
AT_ASSERT(consumer->kind() == prim::FusionGroup);
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
// if producer's input is already an input to a prim::ConstantChunk node,
// we cannot add a new prim::ConstantChunk node because of invariant (2).
auto* chunked_tensor = producer->node()->input();
if (auto existingFusedChunk = findFusedChunk(consumer, chunked_tensor)) {
fuseChunkByReusingExistingFusedChunk(
consumer, chunk, *existingFusedChunk);
return consumer->reverseIterator();
}
// Move prim::ConstantChunk into the FusionGroup
mergeNodeIntoGroup(consumer, chunk);
chunk->destroy();
return consumer->reverseIterator();
}
value_list sortReverseTopological(ArrayRef<Value*> inputs) {
value_list result;
for (auto i : inputs) {
if (i->node()->owningBlock() == block_) {
result.push_back(i);
}
}
// Sort in reverse topological order
std::sort(result.begin(), result.end(), [&](Value* a, Value* b) {
return a->node()->isAfter(b->node());
});
return result;
}
graph_node_list::iterator scanNodeForChunks(Node* consumer) {
if (consumer->kind() == prim::FusionGroup) {
auto inputs = sortReverseTopological(consumer->inputs());
for (auto producer : inputs) {
if (!canFuseChunk(consumer, producer)) {
continue;
}
return fuseChunk(consumer, producer);
}
}
return ++consumer->reverseIterator();
}
void insertExplicitBroadcast(Node* node) {
WithInsertPoint insert_guard{node};
auto tensors = tensorInputs(node);
auto new_tensors =
SymbolicVariable::broadcast_tensors(fmap<SymbolicVariable>(tensors));
// Replace tensors inputs with broadcasted values
auto new_tensors_it = new_tensors.begin();
for (size_t i = 0; i < node->inputs().size(); ++i) {
if (node->inputs()[i]->type()->isSubtypeOf(TensorType::get())) {
AT_ASSERT(new_tensors_it != new_tensors.end());
node->replaceInput(i, *(new_tensors_it++));
}
}
}
Node* promoteChunkToBroadcastingChunk(Node* chunk) {
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
size_t nchunks = chunk->i(attr::chunks);
Node* bchunk =
chunk->owningGraph()->create(prim::BroadcastingChunk, nchunks);
bchunk->addInput(chunk->input());
for (size_t i = 0; i < nchunks; ++i) {
auto* old_output = chunk->outputs().at(i);
auto* new_output = bchunk->outputs().at(i);
new_output->copyMetadata(old_output);
old_output->replaceAllUsesWith(new_output);
}
bchunk->copyAttributes(*chunk);
bchunk->insertAfter(chunk);
chunk->destroy();
return bchunk;
}
// in places where op can be fused into a consumer but chunk is in the way
// distribute chunk to op's operands:
// replace a,b = chunk(op(x,y,z)) with:
// x', y', z' = broadcast_tensors([x, y, z])
// x0,x1 = chunk(x') (x0 has a's type, x1 has b's type)
// y0,y1 = chunk(y') (y0 has a's type, y1 has b's type)
// z0,z1 = chunk(z') (z0 has a's type, z1 has b's type)
// a = op(x0,y0,z0) (a,b have their same size but are now contiguous)
// b = op(x1,y1,x1)
//
// The graph fuser uses an intermediate prim::BroadcastingChunk node to
// represent this behavior concisely. BroadcastingChunk(x, y, z) broadcasts
// all of its inputs and then chunks each input, in order, the same way.
// The above graph is equivalent to:
// x0, x1, y0, y1, z0, z1 = BroadcastingChunk(x, y, z)
// a = op(x0,y0,z0)
// b = op(x1,y1,x1)
//
// NB: The explicit broadcast is important for correctness.
// Let's say we have:
// %z = aten::mul(%x, %y)
// %z.1, %z.2 = aten::chunk(%z, ...)
// ... = prim::FusionGroup(%z.1, %z.2, ...)
// It's possible that %x and %y do not have the same size as %z and
// need to be expanded first so that they can be chunked like %z
//
// NB: Chunk motion only occurs with fusable consumers, which implies
// that there is always some other operation, e.g., a+b, that happens
// after the chunk, and will be put into the fusion group. This is
// important, because distributing the chunk changes the contiguity
// of a and b, and so the results would be invalid, except that we know
// that simple_mappable operations will restore contiguity before
// we exit the fusion group.
//
// NB: The intermediate BroadcastingChunk is important for moving chunks past
// more than one operation: the graph fuser is not able to easily move
// operations around broadcast_tensors + chunk nodes. Let f, g, h be fusible
// ops
// x = f(v, w)
// z = g(x, y)
// a, b = chunk(z)
// c = h(a, b)
// becomes (with the broadcast_tensors + chunk approach):
// x = f(v, w)
// x', y' = broadcast_tensors([x, y])
// ax, bx = chunk(x')
// ay, by = chunk(y')
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// The broadcast_tensors node makes it harder to move f into the resulting
// FusionGroup of g, g, and h. Keeping the broadcasting and chunk behavior
// together results in:
// x = f(v, w)
// ax, bx, ay, by = BroadcastingChunk(x, y)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// making it easier to move f after the BroadcastingChunk:
// ay, by, av, bv, aw, bw = BroadcastingChunk(y, v, w)
// ax = f(av, aw)
// by = f(bv, bw)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
bool tryToMoveChunk(Node* consumer, Value* producer) {
// is the output from a chunk/bchunk node?
auto* chunk = producer->node();
if (chunk->kind() != prim::ConstantChunk &&
chunk->kind() != prim::BroadcastingChunk)
return false;
// try to find a producer to move after the chunk/bchunk. The producer must
// be fusible into the consumer.
auto it = std::find_if(
chunk->inputs().begin(),
chunk->inputs().end(),
[&](Value* producer_for_chunk) {
return isFusableMap(producer_for_chunk->node()) &&
allUsersAreThisConsumerOrCalcSizes(chunk, producer_for_chunk);
});
if (it == chunk->inputs().end()) {
return false;
}
Value* producer_for_chunk = *it;
size_t producer_index = it - chunk->inputs().begin();
// all uses of the chunk must be in in this consumer
for (auto s : chunk->outputs()) {
for (auto u : s->uses()) {
if (u.user != consumer)
return false;
}
}
// multiple return operators
Node* producer_for_chunk_node = producer_for_chunk->node();
AT_ASSERT(producer_for_chunk_node->outputs().size() == 1);
// Convert chunk to bchunk, if it isn't one already. The bchunk represents a
// broadcast and one or more chunk operations.
auto* bchunk = chunk;
if (chunk->kind() == prim::ConstantChunk) {
bchunk = promoteChunkToBroadcastingChunk(chunk);
}
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
std::vector<Value*> producer_chunk_outputs;
for (size_t i = 0; i < nchunks; i++) {
producer_chunk_outputs.push_back(
bchunk->output(nchunks * producer_index + i));
}
// Add each of op's operands to the bchunk node.
// chunked_inputs[input_nr][chunk_output_idx]
// = Node* for chunk_output_idx'th output of the chunk(inputs[input_nr])
std::vector<std::vector<Value*>> chunked_inputs;
for (auto input : producer_for_chunk_node->inputs()) {
// XXX: we only work with pointwise ops in here, so we know it is valid to
// push the concat only through tensor arguments (and all other args can
// be safely ignored).
if (!input->type()->isSubtypeOf(TensorType::get()))
continue;
// if 'input' is already an input to the bchunk, reuse it.
auto bchunk_inputs = bchunk->inputs();
auto it = std::find(bchunk_inputs.begin(), bchunk_inputs.end(), input);
if (it != bchunk_inputs.end()) {
chunked_inputs.emplace_back();
auto input_index = std::distance(bchunk_inputs.begin(), it);
for (size_t chunk = 0; chunk < nchunks; ++chunk) {
chunked_inputs.back().push_back(
bchunk->outputs().at(nchunks * input_index + chunk));
}
continue;
}
// NB: I decided not to use cloneFrom here, because if we make cloneFrom
// copy selects one day, it is definitely not what you want here (selects
// have different types).
// TODO: Perhaps we should use cloneFrom now, as it seems unlikely
// to copy select nodes now that we have refactored to have a Value
// distinct from Node.
bchunk->addInput(input);
chunked_inputs.emplace_back(); // alas, to not be C++17
for (auto chunk_sel : producer_chunk_outputs) {
Value* input_chunk_sel = bchunk->addOutput();
input_chunk_sel->setType(chunk_sel->type());
chunked_inputs.back().push_back(input_chunk_sel);
}
}
// apply the op to each chunk of the chunked operands,
// and then rewrite the graph to use them!
for (auto chunk_sel : producer_chunk_outputs) {
auto original_inputs = producer_for_chunk_node->inputs();
Node* chunked_op =
block_->owningGraph()->create(producer_for_chunk_node->kind());
chunked_op->copyAttributes(*producer_for_chunk_node);
chunked_op->output()->setType(chunk_sel->type());
auto chunked_inputs_it = chunked_inputs.begin();
for (Value* original_input : original_inputs) {
if (original_input->type()->isSubtypeOf(TensorType::get())) {
AT_ASSERT(chunked_inputs_it != chunked_inputs.end());
chunked_op->addInput(
chunked_inputs_it->at(chunk_sel->offset() % nchunks));
++chunked_inputs_it;
} else {
chunked_op->addInput(original_input);
}
}
bchunk->owningGraph()->insertNode(chunked_op);
chunk_sel->replaceAllUsesWith(chunked_op->output());
}
bchunk->removeInput(producer_index);
for (size_t i = 0; i < nchunks; i++) {
bchunk->eraseOutput(nchunks * producer_index);
}
// The output of producer_for_chunk_node could have been used in some
// aten::size operators, so we need to clean those up as well (we simply
// broadcast all its tensor inputs).
auto size_calc_uses = producer_for_chunk_node->output()->uses();
if (!size_calc_uses.empty()) {
auto tensor_inputs = filter(
producer_for_chunk_node->inputs(),
[](Value* v) { return v->type()->isSubtypeOf(TensorType::get()); });
auto tensor_sizes = fmap(tensor_inputs, [](Value* v) {
return v->owningGraph()->insert(aten::size, {v});
});
AT_ASSERT(!tensor_sizes.empty());
Value* output_size = tensor_sizes.size() == 1
? tensor_sizes[0]
: broadcastSizes(tensor_sizes);
for (Use u : size_calc_uses) {
u.user->output()->replaceAllUsesWith(output_size);
u.user->destroy();
}
}
producer_for_chunk_node->destroy();
return true;
}
// returns where to continue scanning, and whether any fusion was made
std::pair<graph_node_list::iterator, bool> scanNode(Node* consumer) {
if (isFusable(consumer)) {
// handle inputs in reverse topological order as well...
// otherwise in f(a,a+b) it will appear a is used twice if we consider
// the f-a fusion before the f-(a+b) fusion first.
auto inputs = sortReverseTopological(consumer->inputs());
for (auto producer : inputs) {
if (tryToMoveChunk(consumer, producer)) {
// the chunk before this consumer was re-arranged to allow fusion,
// we scan this consumer again to perform the fusion
return std::make_pair(consumer->reverseIterator(), true);
}
auto fusion_group = tryFuse(consumer, producer);
if (fusion_group) {
// after fusion, consumer moves into a FusionGroup, so inputs is no
// longer valid so we rescan the new FusionGroup for more fusions...
return std::make_pair(fusion_group.value()->reverseIterator(), true);
}
}
}
return std::make_pair(++consumer->reverseIterator(), false);
}
void replaceIntermediateBroadcastingChunks() {
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
auto* node = *it;
++it; // We might delete node, so increment the iterator now.
if (node->kind() != prim::BroadcastingChunk) {
continue;
}
auto* bchunk = node;
insertExplicitBroadcast(bchunk);
auto* graph = block_->owningGraph();
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
// Split the bchunk into bchunks.inputs().size() number of chunk nodes.
for (size_t input_offset = 0; input_offset < bchunk->inputs().size();
input_offset++) {
auto* input = bchunk->inputs().at(input_offset);
Node* new_chunk =
graph->insertNode(graph->create(prim::ConstantChunk, input, 0));
new_chunk->copyAttributes(*bchunk);
for (size_t output_offset = 0; output_offset < nchunks;
output_offset++) {
auto new_output = new_chunk->addOutput();
auto old_output =
bchunk->outputs().at(input_offset * nchunks + output_offset);
new_output->copyMetadata(old_output);
old_output->replaceAllUsesWith(new_output);
}
}
bchunk->destroy();
}
}
bool usedOnlyInSize(Value* v) {
const auto& uses = v->uses();
return std::all_of(uses.begin(), uses.end(), [](const Use& u) {
return u.user->matches("aten::size(Tensor self) -> int[]");
});
}
// Builds up expressions that compute shapes of all intermediates (and
// outputs) of the fusion group, based on the sizes of inputs. You should run
// DCE to remove those that you end up not using.
std::unordered_map<Value*, Value*> buildShapeExpressions(Node* fusion_group) {
WithInsertPoint insert_guard{fusion_group->next()};
std::unordered_map<Value*, Value*> shape_of;
Graph* graph = fusion_group->owningGraph();
auto subgraph = fusion_group->g(attr::Subgraph);
auto inputs = fusion_group->inputs();
auto sinputs = subgraph->inputs();
AT_ASSERT(inputs.size() == sinputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i]->type()->isSubtypeOf(TensorType::get())) {
shape_of[sinputs[i]] = graph->insert(aten::size, {inputs[i]});
}
}
// When we have a guarantee that an output won't be removed, because it's
// used in expressions that don't involve size checks, we can use its size
// instead of computing a long chain of broadcasts, starting from the
// beginning of the kernel.
auto outputs = fusion_group->outputs();
auto soutputs = subgraph->outputs();
AT_ASSERT(outputs.size() == soutputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
if (usedOnlyInSize(outputs[i]))
continue;
shape_of[soutputs[i]] = graph->insert(aten::size, {outputs[i]});
}
for (Node* n : subgraph->nodes()) {
// XXX: Use of shape_of.emplace is crucial to the output shape
// optimization!
if (n->kind() == prim::FusedConcat) {
// This is a bit more involved, because we have to account for the case
// when inputs have different shapes, but fortunately those tensors are
// always outputs, and so we can simply avoid replacing their queries,
// because it won't help us.
continue;
}
if (n->kind() == prim::Constant) {
continue;
}
if (n->kind() == prim::ConstantChunk) {
Node* sizes_node = graph->insertNode(
graph->create(prim::ChunkSizes, shape_of.at(n->input()), 2));
sizes_node->i_(attr::dim, n->i(attr::dim));
sizes_node->i_(attr::chunks, n->i(attr::chunks));
Value* regular_size = sizes_node->outputs().at(0);
Value* last_size = sizes_node->outputs().at(1);
regular_size->setType(ListType::ofInts());
last_size->setType(ListType::ofInts());
auto outputs = n->outputs();
for (Value* o : outputs.slice(0, outputs.size() - 1)) {
shape_of.emplace(o, regular_size);
}
shape_of.emplace(outputs.at(outputs.size() - 1), last_size);
continue;
}
auto tensor_inputs = filter(n->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(TensorType::get());
});
auto shapes =
fmap(tensor_inputs, [&](Value* v) { return shape_of.at(v); });
AT_ASSERT(!shapes.empty());
shape_of.emplace(
n->output(), shapes.size() == 1 ? shapes[0] : broadcastSizes(shapes));
}
return shape_of;
}
void removeOutputsUsedOnlyInSize(Node* fusion_group) {
if (fusion_group->kind() != prim::FusionGroup)
return;
auto subgraph = fusion_group->g(attr::Subgraph);
auto shape_of = buildShapeExpressions(fusion_group);
auto outputs = fusion_group->outputs().vec();
auto soutputs = subgraph->outputs().vec();
// XXX: Iterating in this order is not only good for performance reasons!
// It is also crucial for correctness (i has to reflect the current true
// index of outputs[i])!
for (int64_t i = static_cast<int64_t>(outputs.size()) - 1; i >= 0; --i) {
auto output = outputs[i];
auto soutput = soutputs[i];
if (usedOnlyInSize(output) && shape_of.count(soutput) > 0) {
auto uses = output->uses();
for (Use u : uses) {
AT_ASSERT(u.user->matches("aten::size(Tensor self) -> int[]"));
u.user->output()->replaceAllUsesWith(shape_of.at(soutput));
u.user->destroy();
}
fusion_group->eraseOutput(i);
subgraph->eraseOutput(i);
}
}
}
void refreshAliasDb() {
aliasDb_ = torch::make_unique<AliasDb>(graph_);
}
bool canFuseWithConcat(Value* producer, Node* before_check) {
if (!isFusable(producer->node())) {
return false;
}
// NB: it is important that this check happens after isFusable, which checks
// that the blocks match, and it's not a special node like prim::Param
if (!aliasDb_->couldMoveBeforeTopologically(
producer->node(), before_check)) {
return false;
}
// If the number of kernel args could exceed the limit, skip.
if ((before_check->inputs().size() + before_check->outputs().size() +
producer->node()->inputs().size() +
producer->node()->outputs().size()) > fusion_kernel_args_limit) {
return false;
}
// Fusion groups can be merged with concat's group if and only if
// - the value they produce isn't already coming from a concat and
// - the fusion group does not contain GradSumToSize
if (producer->node()->kind() == prim::FusionGroup) {
auto subgraph = producer->node()->g(attr::Subgraph);
auto* node = subgraph->outputs().at(producer->offset())->node();
return node->kind() != prim::FusedConcat &&
!containsGradSumToSize(producer->node());
}
return true;
}
Node* createFusedConcat(Node* node) {
AT_ASSERT(node->kind() == aten::cat);
Graph* graph = node->owningGraph();
Node* list_construct = node->namedInput(attr::tensors)->node();
int64_t dim = node->get<int64_t>(attr::dim).value();
Node* fused_cat = graph->create(prim::FusedConcat, list_construct->inputs())
->i_(attr::dim, dim);
fused_cat->insertBefore(list_construct);
fused_cat->output()->copyMetadata(node->output());
// NB: this deletes the fused_cat node from the original graph
return createSingletonFusionGroup(fused_cat);
}
void fuseConcats() {
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();
++it) {
Node* cat = *it;
if (!isFusableCatNode(cat)) {
continue;
}
Node* list_construct = cat->namedInput(attr::tensors)->node();
Node* fused_cat = createFusedConcat(cat);
Value* fused_cat_out = fused_cat->output();
auto sorted_inputs = sortReverseTopological(fused_cat->inputs());
size_t input_idx = 0;
bool any_fused = false;
while (input_idx < sorted_inputs.size()) {
Value* input = sorted_inputs[input_idx++];
if (!canFuseWithConcat(input, fused_cat)) {
continue;
}
any_fused = true;
auto maybe_group = tryFuse(fused_cat, input);
AT_ASSERT(maybe_group && maybe_group == fused_cat);
// We could have destroyed multiple inputs when performing this fusion,
// so we have to recompute the list and iterate over it again.
sorted_inputs = sortReverseTopological(fused_cat->inputs());
input_idx = 0;
}
if (any_fused) {
cat->output()->replaceAllUsesWith(fused_cat_out);
it.destroyCurrent();
if (list_construct->output()->uses().empty()) {
list_construct->destroy();
}
} else {
fused_cat->destroy();
}
}
}
void optimizeFusedGraphs() {
for (Node* node : block_->nodes()) {
if (node->kind() != prim::FusionGroup) {
continue;
}
auto subgraph = node->g(attr::Subgraph);
EliminateDeadCode(subgraph);
EliminateCommonSubexpression(subgraph);
ConstantPooling(subgraph);
}
}
void run() {
// Run the pass until no changes are made.
// This is neccessary, because the algorithm can miss out on certain fusion
// opportunities if ran only once. Consider this graph:
//
// %1 = f(...)
// %2 = g(%1)
// %3 = h(%1)
// %4 = l(%3)
// return (%4, %2)
//
// where f, g, h, l are simple map ops.
// The first iteration will fuse %4 and %3, and see that %1 is an input, but
// can't be fused, because it has a different use before the fusion group
// in our topological ordering. Then, %2 will be considered, and fused with
// %1. If we do another iteration, the algorithm will consider the fusion of
// these two groups and fix the situation.
bool any_changed = true;
while (any_changed) {
any_changed = false;
refreshAliasDb();
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
bool changed;
std::tie(it, changed) = scanNode(*it);
any_changed |= changed;
}
}
refreshAliasDb();
fuseConcats();
optimizeFusedGraphs();
// The graph fuser can add intermediate prim::BroadcastingChunk nodes.
// Replace them with broadcasts + chunks.
replaceIntermediateBroadcastingChunks();
// Fuse starting chunks into the group.
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
it = scanNodeForChunks(*it);
}
// Remove outputs that have been added only because we need their size
for (Node* n : block_->nodes()) {
removeOutputsUsedOnlyInSize(n);
}
for (Node* node : block_->nodes()) {
for (Block* sub_block : node->blocks()) {
GraphFuser(sub_block, graph_).run();
}
}
}
};
void PeepholeOptimizeShapeExpressions(Block* block) {
auto nodes = block->nodes();
for (auto it = nodes.begin(); it != nodes.end(); ++it) {
Node* node = *it;
for (Block* subblock : node->blocks()) {
PeepholeOptimizeShapeExpressions(subblock);
}
if (node->kind() == prim::BroadcastSizes) {
// Remove no-op broadcasts.
if (node->inputs().size() == 1) {
node->output()->replaceAllUsesWith(node->input());
it.destroyCurrent();
continue;
}
// Deduplicate inputs, but use their unique() values to ensure
// this process only depends on the graph.
std::map<size_t, Value*> unique_to_value;
for (Value* input : node->inputs()) {
unique_to_value.emplace(input->unique(), input);
}
if (unique_to_value.size() != node->inputs().size()) {
std::vector<Value*> inputs;
inputs.reserve(unique_to_value.size());
for (auto& entry : unique_to_value) {
inputs.push_back(entry.second);
}
if (inputs.size() == 1) {
node->output()->replaceAllUsesWith(inputs[0]);
} else {
WithInsertPoint insert_guard{node};
node->output()->replaceAllUsesWith(broadcastSizes(inputs));
}
it.destroyCurrent();
--it; // Revisit the node with deduplicated inputs
continue;
}
// Remove compose simple chains of broadcasts into a single node.
const auto& uses = node->output()->uses();
if (uses.size() == 1 && uses[0].user->kind() == prim::BroadcastSizes) {
Node* user = uses[0].user;
user->removeInput(uses[0].offset);
// NB: we don't care about deduplication in here, as we will visit user
// later.
for (Value* i : node->inputs()) {
user->addInput(i);
}
it.destroyCurrent();
}
}
}
}
} // anonymous namespace
// This takes a _grad_sum_to_size output and tracks it to the return
// statements that depend on it, checking that it only hits nodes
// that commute with _grad_sum_to_size on its path.
// If a non-nullptr vector pointer outputGradSumToSizes is passed, the sizes
// will be recorded as target sizes for the outputs as applicable.
// In the graph_fuser pass we only need to check that we can go to the
// outputs while in the fuser's compiler we want to record the sizes.
// Note: This will only record a new sum_to_size if there is not one
// already. As we want the last grad_sum_to_size, you need to call
// it in reverse order when recording and removing outputs.
bool trackSingleGradSumToSizeToOutputs(
Value* gradSumToSizeOutput,
std::vector<int64_t>* outputGradSumToSizes) {
static OperatorSet commutes_with_SumToSize{{
"aten::mul(Tensor self, Tensor other) -> Tensor",
"aten::div(Tensor self, Tensor other) -> Tensor",
// for div we might check whether we're the first argument
"aten::mul(Tensor self, Scalar other) -> Tensor",
"aten::div(Tensor self, Scalar other) -> Tensor",
"aten::neg(Tensor self) -> Tensor",
"aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
"aten::where(Tensor condition, Tensor self, Tensor other) -> Tensor",
// add this used to be prim::AutogradAdd
}};
std::queue<Use> uses_to_process{};
auto add_to_uses = [&](const use_list& uses) {
for (auto u : uses) {
uses_to_process.push(u);
}
};
add_to_uses(gradSumToSizeOutput->uses());
while (!uses_to_process.empty()) {
auto user = uses_to_process.front().user;
auto offset = uses_to_process.front().offset;
uses_to_process.pop();
if (user->matches("aten::type_as(Tensor self, Tensor other) -> Tensor")) {
// sometimes, a mask or similar is cast to the same type as the gradient,
// i.e. we see other. Then we don't need to do anything, as the shape is
// not used, only the type..
// But we might also see it as self, when the gradient is cast, then we
// want to track it.
if (offset == 0) {
add_to_uses(user->output()->uses());
}
} else if (commutes_with_SumToSize.find(user)) {
add_to_uses(user->output()->uses());
} else if (user->kind() == prim::Return) {
// During compilation and only if we don't already have a
// _grad_sum_to_size for this output we record the size to sum the output
// to. We only do this if we didn't see anything yet because we want later
// (in the graph) nodes to take precedence over earlier ones and we
// iterate backwards. The implicit assumption is that if we have several
// _grad_sumtosizes "in parallel" (from auto-diff added AutogradAdd as the
// backward of using an input in multiple places) they are the same. This
// is because AutogradAdd does not broadcast.
if (outputGradSumToSizes && (*outputGradSumToSizes)[offset] == -1) {
// note: we make the assumption that the sizes are inputs to the
// fusion group (rather than something calculated).
(*outputGradSumToSizes)[offset] =
gradSumToSizeOutput->node()->inputs()[1]->offset();
}
} else if (user->kind() == aten::_grad_sum_to_size) {
// do nothing
// this case only happens in the graph_fuser step because in the
// compile step because we iterate backwards and delete
// all _grad_sum_to_size nodes we see
} else {
// we find something we do not support. Note that this notably includes
// prim::FusedConcat, which we do not know how to deal with in conjunction
// with _grad_sum_to_size
return false;
}
}
return true;
}
void FuseGraph(std::shared_ptr<Graph>& graph) {
GraphFuser(graph->block(), graph).run();
// After FuseGraph some common subexpressions may come back
EliminateCommonSubexpression(graph);
// We might have emitted a fair amount of useless shape propagating code, so
// remove it
EliminateDeadCode(graph);
// Improve the quality of shape propagation code that was left
PeepholeOptimizeShapeExpressions(graph->block());
}
void CustomFuseGraph(
std::shared_ptr<Graph>& graph,
std::function<bool(Node*)> fn,
Symbol kind) {
GraphFuser(
graph->block(),
graph,
[=](Node* n) { return fn(n) || n->kind() == kind; },
kind)
.run();
}
} // namespace jit
} // namespace torch