Files
pytorch/torch/_weights_only_unpickler.py
wz337 8715fb8aff [DTensor][unpickler] Add DTensor related classes to allowed globals so we can still torch.load(DTensor) with weights_only=True (#139949)
Test uses `torch.load()` for DTensor state_dict:
```
python3 test/distributed/fsdp/test_fsdp_dtensor_state_dict.py -k TestFSDPWithDeviceMeshAndDTensor
```

In this PR, we add `DTensor` related class to allowed safe globals so we can still `torch.load()` a `DTensor` with `weights_only=True`. We also need this for backward compatibility, since `DTensor` can be `torch.load()` before `weights_only` defaults to True. Without the change, `torch.load()` a `DTensor` would run into the following error:
```
_pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
        (1) Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
        (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
        WeightsUnpickler error: Unsupported global: GLOBAL torch.distributed.tensor.DTensor was not an allowed global by default. Please use `torch.serialization.add_safe_globals([DTensor])` or the `torch.serialization.safe_globals([DTensor])` context manager to allowlist this global if you trust this class/function.
```

The unit test failure is not being captured by CI when `weights_only` being rolled out for `torch.load()` by default. This is due to another issue that the test communication wrapper `with_comms` let unit tests silently pass without capturing failure due to a recent change (https://github.com/pytorch/pytorch/pull/138108). This wrapper issue is going to be fixed
by a separate PR https://github.com/pytorch/pytorch/pull/139637.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139949
Approved by: https://github.com/mikaylagawarecki
2024-11-08 05:06:11 +00:00

527 lines
20 KiB
Python

# mypy: allow-untyped-defs
# Unpickler restricted to loading only state dicts
# Restrict constructing types to a list defined in _get_allowed_globals()
# Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
# Restrict APPEND/APPENDS to `list`
# In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
# defined by `_get_allowed_globals()` method, that contains:
# - torch types (Storage, dtypes, Tensor, `torch.Size`),
# - `torch._utils._rebuild` functions.
# - `torch.nn.Parameter`
# - `collections.Counter`
# - `collections.OrderedDict`
# Additionally, users can use an allowlist for adding classes they have deemed as safe using
# `_add_safe_globals()` (`torch.serialization.add_safe_globals`)
# `_clear_safe_globals()` (`torch.serialization.clear_safe_globals`)
# `_get_safe_globals()` (`torch.serialization.get_safe_globals`)
# Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
# Expected to be useful for loading PyTorch model weights
# For example:
# data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
# buf = io.BytesIO(data)
# weights = torch.load(buf, weights_only = True)
import functools as _functools
import warnings
from _codecs import encode
from collections import Counter, OrderedDict
from pickle import (
APPEND,
APPENDS,
BINFLOAT,
BINGET,
BININT,
BININT1,
BININT2,
BINPERSID,
BINPUT,
BINUNICODE,
BUILD,
bytes_types,
decode_long,
EMPTY_DICT,
EMPTY_LIST,
EMPTY_SET,
EMPTY_TUPLE,
GLOBAL,
LONG1,
LONG_BINGET,
LONG_BINPUT,
MARK,
NEWFALSE,
NEWOBJ,
NEWTRUE,
NONE,
PROTO,
REDUCE,
SETITEM,
SETITEMS,
SHORT_BINSTRING,
STOP,
TUPLE,
TUPLE1,
TUPLE2,
TUPLE3,
UnpicklingError,
)
from struct import unpack
from sys import maxsize
from typing import Any, Callable, Dict, List, Set, Tuple
import torch
from torch._utils import IMPORT_MAPPING, NAME_MAPPING
# modules in this list are never allowed, even if the user attempts to allowlist
# functions/classes from them
_blocklisted_modules = [
"sys",
"os",
"posix",
"nt",
]
_marked_safe_globals_set: Set[Any] = set()
def _add_safe_globals(safe_globals: List[Any]):
global _marked_safe_globals_set
_marked_safe_globals_set = _marked_safe_globals_set.union(set(safe_globals))
def _get_safe_globals() -> List[Any]:
global _marked_safe_globals_set
return list(_marked_safe_globals_set)
def _clear_safe_globals():
global _marked_safe_globals_set
_marked_safe_globals_set = set()
def _remove_safe_globals(globals_to_remove: List[Any]):
global _marked_safe_globals_set
_marked_safe_globals_set = _marked_safe_globals_set - set(globals_to_remove)
class _safe_globals:
def __init__(self, safe_globals: List[Any]):
self.safe_globals = safe_globals
def __enter__(self):
_add_safe_globals(self.safe_globals)
def __exit__(self, type, value, tb):
_remove_safe_globals(self.safe_globals)
# Separate from _get_allowed_globals because of the lru_cache on _get_allowed_globals
# For example if user had a script like
# torch.load(file_a)
# torch.serialization._add_safe_globals([torch.foo])
# torch.load(file_b)
# the dynamic additions to safe_globals would not be picked up by
# _get_allowed_globals due to the lru_cache
def _get_user_allowed_globals():
rc: Dict[str, Any] = {}
for f in _marked_safe_globals_set:
module, name = f.__module__, f.__name__
rc[f"{module}.{name}"] = f
return rc
def _tensor_rebuild_functions():
return {
torch._utils._rebuild_parameter,
torch._utils._rebuild_parameter_with_state,
torch._utils._rebuild_qtensor,
torch._utils._rebuild_tensor,
torch._utils._rebuild_tensor_v2,
torch._utils._rebuild_tensor_v3,
torch._utils._rebuild_sparse_tensor,
torch._utils._rebuild_meta_tensor_no_storage,
torch._utils._rebuild_nested_tensor,
torch._utils._rebuild_wrapper_subclass,
# Allowlisting this, but not allowlisting the numpy functions by default
# Reasoning is that we don't have control over the numpy functions, but
# this utility is provided by pytorch
torch._utils._rebuild_device_tensor_from_numpy,
# In 2.6, we should no longer have a dependency on numpy and the above
# _rebuild_device_tensor_from_numpy function.
torch._utils._rebuild_device_tensor_from_cpu_tensor,
}
# Unpickling machinery
@_functools.lru_cache(maxsize=1)
def _get_allowed_globals():
rc: Dict[str, Any] = {
"collections.OrderedDict": OrderedDict,
"collections.Counter": Counter,
"torch.nn.parameter.Parameter": torch.nn.Parameter,
"torch.serialization._get_layout": torch.serialization._get_layout,
"torch.Size": torch.Size,
"torch.Tensor": torch.Tensor,
"torch.device": torch.device,
"_codecs.encode": encode, # for bytes
"builtins.bytearray": bytearray, # for bytearray
"builtins.set": set, # for set
}
# Only add the dtensor related classes if the dtensor module is available
if hasattr(torch.distributed, "tensor"):
dtensor_rc: Dict[str, Any] = {
# DTensor related
"torch.distributed.device_mesh.DeviceMesh": torch.distributed.device_mesh.DeviceMesh,
"torch.distributed.tensor._dtensor_spec.DTensorSpec": torch.distributed.tensor._dtensor_spec.DTensorSpec,
"torch.distributed.tensor._dtensor_spec.TensorMeta": torch.distributed.tensor._dtensor_spec.TensorMeta,
"torch.distributed.tensor.DTensor": torch.distributed.tensor.DTensor,
"torch.distributed.tensor.placement_types.Partial": torch.distributed.tensor.placement_types.Partial,
"torch.distributed.tensor.placement_types.Replicate": torch.distributed.tensor.placement_types.Replicate,
"torch.distributed.tensor.placement_types.Shard": torch.distributed.tensor.placement_types.Shard,
}
rc.update(dtensor_rc)
# dtype
for t in torch.storage._dtype_to_storage_type_map().keys():
rc[str(t)] = t
for t in torch.storage._new_dtypes():
rc[str(t)] = t
# Tensor classes
for tt in torch._tensor_classes:
rc[f"{tt.__module__}.{tt.__name__}"] = tt
# Storage classes
for ts in torch._storage_classes:
if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
# Wrap legacy storage types in a dummy class
rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
ts.__name__
)
else:
rc[f"{ts.__module__}.{ts.__name__}"] = ts
# Quantization specific
for qt in [
torch.per_tensor_affine,
torch.per_tensor_symmetric,
torch.per_channel_affine,
torch.per_channel_symmetric,
torch.per_channel_affine_float_qparams,
]:
rc[str(qt)] = qt
# Rebuild functions
for f in _tensor_rebuild_functions():
rc[f"torch._utils.{f.__name__}"] = f
# Handles Tensor Subclasses, Tensor's with attributes.
# NOTE: It calls into above rebuild functions for regular Tensor types.
rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
return rc
def _read_global_instruction(readline: Callable) -> Tuple[str, str]:
module = readline()[:-1].decode("utf-8")
name = readline()[:-1].decode("utf-8")
# Patch since torch.save default protocol is 2
# users will be running this code in python > 3
if (module, name) in NAME_MAPPING:
module, name = NAME_MAPPING[(module, name)]
elif module in IMPORT_MAPPING:
module = IMPORT_MAPPING[module]
return module, name
def get_globals_in_pkl(file) -> Set[str]:
globals_in_checkpoint = set()
protocol = None
read = file.read
readline = file.readline
op_to_bytes_to_read = {
NEWOBJ[0]: 0,
REDUCE[0]: 0,
BUILD[0]: 0,
APPEND[0]: 0,
APPENDS[0]: 0,
SETITEM[0]: 0,
SETITEMS[0]: 0,
MARK[0]: 0,
TUPLE[0]: 0,
TUPLE1[0]: 0,
TUPLE2[0]: 0,
TUPLE3[0]: 0,
NONE[0]: 0,
NEWFALSE[0]: 0,
NEWTRUE[0]: 0,
EMPTY_TUPLE[0]: 0,
EMPTY_LIST[0]: 0,
EMPTY_DICT[0]: 0,
EMPTY_SET[0]: 0,
BINPERSID[0]: 0,
BININT[0]: 4,
BININT1[0]: 1,
BININT2[0]: 2,
BINFLOAT[0]: 8,
BINGET[0]: 1,
LONG_BINGET[0]: 4,
BINPUT[0]: 1,
LONG_BINPUT[0]: 4,
}
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
if key[0] == GLOBAL[0]:
module, name = _read_global_instruction(readline)
globals_in_checkpoint.add(f"{module}.{name}")
elif key[0] in op_to_bytes_to_read:
bytes_to_read = op_to_bytes_to_read[key[0]]
if bytes_to_read:
read(bytes_to_read)
# ops where bytes to read depends on the data
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise UnpicklingError("String is too long")
read(strlen)
elif key[0] in {SHORT_BINSTRING[0], LONG1[0]}:
strlen = read(1)[0]
read(strlen)
# first and last op
elif key[0] == PROTO[0]:
protocol = read(1)[0]
elif key[0] == STOP[0]:
return globals_in_checkpoint
else:
raise UnpicklingError(f"Unsupported operand {key[0]}")
class Unpickler:
def __init__(self, file, *, encoding: str = "bytes"):
self.encoding = encoding
self.readline = file.readline
self.read = file.read
self.memo: Dict[int, Any] = {}
self.proto: int = -1
def load(self):
"""Read a pickled object representation from the open file.
Return the reconstituted object hierarchy specified in the file.
"""
self.metastack = []
self.stack: List[Any] = []
self.append = self.stack.append
read = self.read
readline = self.readline
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
# Risky operators
if key[0] == GLOBAL[0]:
module, name = _read_global_instruction(self.readline)
full_path = f"{module}.{name}"
if module in _blocklisted_modules:
raise UnpicklingError(
f"Trying to load unsupported GLOBAL {full_path} whose module {module} is blocked."
)
if full_path in _get_allowed_globals():
self.append(_get_allowed_globals()[full_path])
elif full_path in _get_user_allowed_globals():
self.append(_get_user_allowed_globals()[full_path])
else:
raise UnpicklingError(
f"Unsupported global: GLOBAL {full_path} was not an allowed global by default. "
f"Please use `torch.serialization.add_safe_globals([{name}])` or the "
f"`torch.serialization.safe_globals([{name}])` context manager to allowlist this global "
"if you trust this class/function."
)
elif key[0] == NEWOBJ[0]:
args = self.stack.pop()
cls = self.stack.pop()
if cls is torch.nn.Parameter:
self.append(torch.nn.Parameter(*args))
elif (
cls in _get_user_allowed_globals().values()
or cls in _get_allowed_globals().values()
):
self.append(cls.__new__(cls, *args))
else:
raise UnpicklingError(
"Can only create new object for nn.Parameter or classes allowlisted "
f"via `add_safe_globals` but got {cls}"
)
elif key[0] == REDUCE[0]:
args = self.stack.pop()
func = self.stack[-1]
if (
func not in _get_allowed_globals().values()
and func not in _get_user_allowed_globals().values()
):
raise UnpicklingError(
f"Trying to call reduce for unrecognized function {func}"
)
self.stack[-1] = func(*args)
elif key[0] == BUILD[0]:
state = self.stack.pop()
inst = self.stack[-1]
if type(inst) is torch.Tensor:
# Legacy unpickling
inst.set_(*state)
elif type(inst) is torch.nn.Parameter:
inst.__setstate__(state)
elif type(inst) is OrderedDict:
inst.__dict__.update(state)
elif (
type(inst) in _get_user_allowed_globals().values()
or type(inst) in _get_allowed_globals().values()
):
if hasattr(inst, "__setstate__"):
inst.__setstate__(state)
else:
# mimics load_build in pickle
# https://github.com/python/cpython/blob/f0c6fccd08904787a39269367f09f263d496114c/Lib/pickle.py#L1854-L1867
slotstate = None
if isinstance(state, tuple) and len(state) == 2:
state, slotstate = state
if state:
inst.__dict__.update(state)
if slotstate:
for k, v in slotstate.items():
setattr(inst, k, v)
else:
raise UnpicklingError(
"Can only build Tensor, Parameter, OrderedDict or types allowlisted "
f"via `add_safe_globals`, but got {type(inst)}"
)
# Stack manipulation
elif key[0] == APPEND[0]:
item = self.stack.pop()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise UnpicklingError(
f"Can only append to lists, but got {type(list_obj)}"
)
list_obj.append(item)
elif key[0] == APPENDS[0]:
items = self.pop_mark()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise UnpicklingError(
f"Can only extend lists, but got {type(list_obj)}"
)
list_obj.extend(items)
elif key[0] == SETITEM[0]:
(v, k) = (self.stack.pop(), self.stack.pop())
self.stack[-1][k] = v
elif key[0] == SETITEMS[0]:
items = self.pop_mark()
for i in range(0, len(items), 2):
self.stack[-1][items[i]] = items[i + 1]
elif key[0] == MARK[0]:
self.metastack.append(self.stack)
self.stack = []
self.append = self.stack.append
elif key[0] == TUPLE[0]:
items = self.pop_mark()
self.append(tuple(items))
elif key[0] == TUPLE1[0]:
self.stack[-1] = (self.stack[-1],)
elif key[0] == TUPLE2[0]:
self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
elif key[0] == TUPLE3[0]:
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
# Basic types construction
elif key[0] == NONE[0]:
self.append(None)
elif key[0] == NEWFALSE[0]:
self.append(False)
elif key[0] == NEWTRUE[0]:
self.append(True)
elif key[0] == EMPTY_TUPLE[0]:
self.append(())
elif key[0] == EMPTY_LIST[0]:
self.append([])
elif key[0] == EMPTY_DICT[0]:
self.append({})
elif key[0] == EMPTY_SET[0]:
self.append(set())
elif key[0] == BININT[0]:
self.append(unpack("<i", read(4))[0])
elif key[0] == BININT1[0]:
self.append(self.read(1)[0])
elif key[0] == BININT2[0]:
self.append(unpack("<H", read(2))[0])
elif key[0] == BINFLOAT[0]:
self.append(unpack(">d", self.read(8))[0])
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise UnpicklingError("String is too long")
strval = str(read(strlen), "utf-8", "surrogatepass")
self.append(strval)
elif key[0] == SHORT_BINSTRING[0]:
strlen = read(1)[0]
strdata = read(strlen)
if self.encoding != "bytes":
strdata = strdata.decode(self.encoding, "strict")
self.append(strdata)
elif key[0] == BINPERSID[0]:
pid = self.stack.pop()
# Only allow persistent load of storage
if type(pid) is not tuple and not type(pid) is not int:
raise UnpicklingError(
f"persistent_load id must be tuple or int, but got {type(pid)}"
)
if (
type(pid) is tuple
and len(pid) > 0
and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
):
raise UnpicklingError(
f"Only persistent_load of storage is allowed, but got {pid[0]}"
)
self.append(self.persistent_load(pid))
elif key[0] in [BINGET[0], LONG_BINGET[0]]:
idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
self.append(self.memo[idx])
elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
if i < 0:
raise ValueError("negative argument")
self.memo[i] = self.stack[-1]
elif key[0] == LONG1[0]:
n = read(1)[0]
data = read(n)
self.append(decode_long(data))
# First and last deserializer ops
elif key[0] == PROTO[0]:
self.proto = read(1)[0]
if self.proto != 2:
warnings.warn(
f"Detected pickle protocol {self.proto} in the checkpoint, which was "
"not the default pickle protocol used by `torch.load` (2). The weights_only "
"Unpickler might not support all instructions implemented by this protocol, "
"please file an issue for adding support if you encounter this."
)
elif key[0] == STOP[0]:
rc = self.stack.pop()
return rc
else:
raise UnpicklingError(f"Unsupported operand {key[0]}")
# Return a list of items pushed in the stack after last MARK instruction.
def pop_mark(self):
items = self.stack
self.stack = self.metastack.pop()
self.append = self.stack.append
return items
def persistent_load(self, pid):
raise UnpicklingError("unsupported persistent id encountered")
def load(file, *, encoding: str = "ASCII"):
return Unpickler(file, encoding=encoding).load()