mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This defines a generic counters API that users can utilize to provide monitoring functionality in e.g. a production service. We expose both counters for runtime internals as well as a TorchScript API to create user-defined counters. Synopsis of the API: - `torch/csrc/jit/script/logging.h` specifies the externally-facing API in C++ - `torch/jit/_logging.py` specifies the Python API We use an interface, `LoggerBase`, to define the interactions between users and a logging backend. Implementing a subclass of `LoggerBase` allows the user to handle these events in a custom way, such as logging into a DB or calling into an infra-specific counters API. From the frontend perspective, we can create log events in two ways: 1. We provide an `add_stat_value(name, val)` function. This calls into the Logger backend with a key/value pair. For example, we might call `add_stat_value('foo', 1)` to bump an event counter. 2. We provide a `time_point()` function to record a timestamp in nanoseconds. This can be used in conjunction with `add_stat_value` to record runtime wall clock durations. Examples of frontend usage can be found in `test_jit.py TestLogging`. We provide a trivial `LockingLogger` implementation as an example and for testing purposes. It is likely not ready for production usage. It demonstrates that a backend implementing the API can do things like specify aggregation types and report these aggregate stats via the `get_counters()` API. Pull Request resolved: https://github.com/pytorch/pytorch/pull/18235 Differential Revision: D14545060 Pulled By: jamesr66a fbshipit-source-id: 04099543a1898cfdd411511e46e03d5dce9b4881
1482 lines
41 KiB
C++
1482 lines
41 KiB
C++
#include <torch/csrc/jit/ir.h>
|
|
|
|
#include <c10/util/Exception.h>
|
|
#include <torch/csrc/jit/constants.h>
|
|
#include <torch/csrc/jit/operator.h>
|
|
#include <torch/csrc/jit/passes/python_print.h>
|
|
#include <torch/csrc/jit/script/schema_matching.h>
|
|
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <stack>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
void printQuotedString(std::ostream& stmt, const std::string& str);
|
|
|
|
// Constants relating to maintaining the topological index of nodes.
|
|
//
|
|
// Lower and upper bounds of the index. Inclusive range.
|
|
static constexpr topo_position_t kLowerBound = INT64_MIN;
|
|
static constexpr topo_position_t kUpperBound = INT64_MAX;
|
|
static constexpr topo_position_t kMidPoint = 0;
|
|
// How far away to space nodes that are appended to the graph.
|
|
// should be 2^n, where:
|
|
// - n is the maximum number of repeated insertions without a re-index
|
|
// - 2^(64-n) is the maximum number of appends to the end without reindex
|
|
static constexpr topo_position_t kAppendInterval = 1099511627776ULL /* 2^40 */;
|
|
|
|
// Sigh, see
|
|
// https://stackoverflow.com/questions/8016780/undefined-reference-to-static-constexpr-char
|
|
constexpr Symbol PythonOp::Kind;
|
|
|
|
static void printValueRef(std::ostream& out, const Value* n) {
|
|
out << "%" << n->uniqueName();
|
|
}
|
|
|
|
// NB: This overload will become ambiguous with the one Caffe2 provides in its
|
|
// logging, if they ever intersect.
|
|
template <typename T>
|
|
std::ostream& operator<<(std::ostream& out, const std::vector<T>& nodes) {
|
|
out << at::ArrayRef<T>{nodes};
|
|
return out;
|
|
}
|
|
|
|
template <typename T>
|
|
static std::ostream& printValueRefs(
|
|
std::ostream& out,
|
|
const at::ArrayRef<T>& nodes) {
|
|
size_t i = 0;
|
|
for (auto n : nodes) {
|
|
if (i++ > 0) {
|
|
out << ", ";
|
|
}
|
|
printValueRef(out, n);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
// Can't make these two overloads directly a template, it'll be ambiguous with
|
|
// the global printer for operator<<.
|
|
|
|
std::ostream& operator<<(
|
|
std::ostream& out,
|
|
const at::ArrayRef<const Value*>& nodes) {
|
|
return printValueRefs(out, nodes);
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& out, const at::ArrayRef<Value*>& nodes) {
|
|
return printValueRefs(out, nodes);
|
|
}
|
|
|
|
struct const_value_list_with_types {
|
|
const ArrayRef<const Value*> values;
|
|
std::string delim;
|
|
const_value_list_with_types(
|
|
ArrayRef<const Value*> values,
|
|
std::string delim_ = ", ")
|
|
: values(values), delim(std::move(delim_)) {}
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& out, const_value_list_with_types l) {
|
|
size_t i = 0;
|
|
for (auto n : l.values) {
|
|
if (i++ > 0) {
|
|
out << l.delim;
|
|
}
|
|
printValueRef(out, n);
|
|
out << " : ";
|
|
out << *n->type();
|
|
}
|
|
return out;
|
|
}
|
|
|
|
template <typename T>
|
|
static void printPrimList(std::ostream& out, const std::vector<T>& items) {
|
|
out << "[";
|
|
int i = 0;
|
|
for (auto& item : items) {
|
|
if (i++ > 0) {
|
|
out << ", ";
|
|
}
|
|
out << item;
|
|
}
|
|
out << "]";
|
|
}
|
|
|
|
static void printStrList(
|
|
std::ostream& out,
|
|
const std::vector<std::string>& items) {
|
|
out << "[";
|
|
int i = 0;
|
|
for (auto& item : items) {
|
|
if (i++ > 0)
|
|
out << ", ";
|
|
printQuotedString(out, item);
|
|
}
|
|
out << "]";
|
|
}
|
|
|
|
void Node::printAttrValue(std::ostream& out, const Symbol& name) const {
|
|
switch (kindOf(name)) {
|
|
case AttributeKind::f:
|
|
out << f(name);
|
|
break;
|
|
case AttributeKind::fs:
|
|
printPrimList(out, fs(name));
|
|
break;
|
|
case AttributeKind::i:
|
|
out << i(name);
|
|
break;
|
|
case AttributeKind::is:
|
|
printPrimList(out, is(name));
|
|
break;
|
|
case AttributeKind::s:
|
|
printQuotedString(out, s(name));
|
|
break;
|
|
case AttributeKind::ss:
|
|
printStrList(out, ss(name));
|
|
break;
|
|
case AttributeKind::t: {
|
|
at::Tensor tensor = t(name);
|
|
// 1-elem tensors are usually boxed scalars, so print them like it
|
|
if (tensor.numel() == 1) {
|
|
auto scalar_tensor = tensor.view({}).item();
|
|
out << "{";
|
|
if (scalar_tensor.isFloatingPoint()) {
|
|
out << scalar_tensor.toDouble();
|
|
} else {
|
|
out << scalar_tensor.toLong();
|
|
}
|
|
out << "}";
|
|
} else if (tensor.numel() <= max_tensor_display_size) {
|
|
// TODO: This is awful code. Also it doesn't work on Windows.
|
|
std::ostringstream tensor_ss;
|
|
tensor_ss << tensor;
|
|
std::string tensor_s{tensor_ss.str()};
|
|
// Remove newlines
|
|
std::replace(tensor_s.begin(), tensor_s.end(), '\n', ' ');
|
|
out << tensor_s;
|
|
} else {
|
|
out << "<Tensor>";
|
|
}
|
|
break;
|
|
}
|
|
case AttributeKind::ts:
|
|
out << "[<Tensors>]";
|
|
break;
|
|
case AttributeKind::g:
|
|
out << "<Graph>";
|
|
break;
|
|
case AttributeKind::gs:
|
|
out << "[<Graphs>]";
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Node::printAttributes(std::ostream& out, bool ignore_subgraph = false)
|
|
const {
|
|
out << "[";
|
|
auto names = attributeNames();
|
|
int i = 0;
|
|
for (auto name : names) {
|
|
if (ignore_subgraph && name == attr::Subgraph) {
|
|
continue;
|
|
}
|
|
if (i++ > 0) {
|
|
out << ", ";
|
|
}
|
|
// TODO: debugging mode to see the qualifier. We definitely
|
|
// don't want to print the qualifier since it should always
|
|
// be attribute, but you might be able to track down a weird
|
|
// bug by printing it out.
|
|
out << name.toUnqualString() << "=";
|
|
|
|
printAttrValue(out, name);
|
|
}
|
|
out << "]";
|
|
}
|
|
|
|
static std::ostream& indent(std::ostream& out, size_t level) {
|
|
for (size_t i = 0; i < level; ++i) {
|
|
out << " ";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& Node::print(
|
|
std::ostream& out,
|
|
size_t level,
|
|
std::vector<const Node*>* groups) const {
|
|
auto outs = outputs();
|
|
indent(out, level) << const_value_list_with_types(outs);
|
|
out << " = ";
|
|
if (kind() == prim::PythonOp) {
|
|
auto* pyOp = static_cast<const ::torch::jit::PythonOp*>(this);
|
|
out << "^" << pyOp->name();
|
|
pyOp->writeScalars(out);
|
|
} else {
|
|
if (hasAttribute(attr::Subgraph) && groups) {
|
|
out << kind().toQualString() << "_" << groups->size();
|
|
if (numAttributes() > 1 && kind() != prim::DifferentiableGraph) {
|
|
printAttributes(out, /*ignore_subgraph=*/true);
|
|
}
|
|
groups->push_back(this);
|
|
} else {
|
|
out << kind().toQualString();
|
|
if (hasAttributes()) {
|
|
printAttributes(out);
|
|
}
|
|
}
|
|
}
|
|
|
|
out << "(" << inputs() << ")";
|
|
std::string scName = scopeName();
|
|
if (scName.empty()) {
|
|
out << "\n";
|
|
} else {
|
|
out << ", ";
|
|
out << "scope: " << scName << "\n";
|
|
}
|
|
for (size_t i = 0; i < blocks().size(); ++i) {
|
|
auto b = blocks()[i];
|
|
indent(out, level + 1) << "block" << i << "("
|
|
<< const_value_list_with_types(b->inputs())
|
|
<< "):\n";
|
|
for (auto nested : b->nodes()) {
|
|
nested->print(out, level + 2, groups);
|
|
}
|
|
indent(out, level + 2) << "-> (" << b->outputs() << ")\n";
|
|
}
|
|
return out;
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& out, const Node& n) {
|
|
return n.print(out, 0, nullptr);
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& out, const Graph& g) {
|
|
out << "graph(" << const_value_list_with_types(g.inputs(), ",\n ")
|
|
<< "):\n";
|
|
std::vector<const Node*> groups;
|
|
for (auto n : g.nodes()) {
|
|
n->print(out, 1, &groups);
|
|
}
|
|
out << " return (" << g.outputs() << ")\n";
|
|
size_t i = 0;
|
|
for (auto fg : groups) {
|
|
out << "with " << fg->kind().toQualString() << "_" << i++ << " = "
|
|
<< *fg->g(attr::Subgraph);
|
|
}
|
|
/*
|
|
// Uncomment this to debug all_nodes issues
|
|
{
|
|
out << "\n";
|
|
out << "all_nodes:\n";
|
|
for (auto& n : g.all_nodes) {
|
|
printNode(out, const_cast<Node*>(n), nullptr);
|
|
}
|
|
}
|
|
*/
|
|
return out;
|
|
}
|
|
|
|
std::ostream& Graph::prettyPrint(std::ostream& out) {
|
|
std::vector<at::Tensor> tensor_table;
|
|
std::vector<ClassTypePtr> class_table;
|
|
PythonPrint(out, *this, tensor_table, class_table);
|
|
return out;
|
|
}
|
|
|
|
void Graph::dumpPretty() {
|
|
std::vector<at::Tensor> tensor_table;
|
|
std::vector<ClassTypePtr> class_table;
|
|
PythonPrint(std::cout, *this, tensor_table, class_table);
|
|
}
|
|
|
|
static void checkSameDevice(const Node* node) {
|
|
bool has_device = false;
|
|
c10::optional<at::Device> device = c10::nullopt;
|
|
auto checkValue = [&](const Value* v) {
|
|
if (CompleteTensorTypePtr type = v->type()->cast<CompleteTensorType>()) {
|
|
if (!has_device) {
|
|
has_device = true;
|
|
device = type->device();
|
|
} else {
|
|
AT_ASSERT(device == type->device());
|
|
}
|
|
}
|
|
};
|
|
for (auto input : node->inputs()) {
|
|
checkValue(input);
|
|
}
|
|
for (auto output : node->outputs()) {
|
|
checkValue(output);
|
|
}
|
|
}
|
|
|
|
using node_set = std::set<const Node*>;
|
|
#define ALL_OF(container) container.begin(), container.end()
|
|
|
|
// These functions purposely operate on the internal members directly, to force
|
|
// you to think about how the invariants change if you change the data
|
|
// representation (even if the external API does not change.)
|
|
|
|
// NB: This assert is written to assume you don't have any unattached
|
|
// nodes. Unattached nodes can occur while manipulations to the
|
|
// graph are occurring.
|
|
void Node::lint() const {
|
|
// Node invariants
|
|
// - if node should live in list, nodes_iter is consistent
|
|
// - Inputs are all marked as a use by the nodes they refer to
|
|
// - Owning graph is non-null and consistent
|
|
// - The "Select" invariant, when the node is MultiReturn
|
|
//
|
|
// The handle invariant:
|
|
// If a node takes a handle as an input, it is always the
|
|
// LAST input of the node. There is at most one handle input.
|
|
|
|
{
|
|
size_t i = 0;
|
|
for (auto input : inputs_) {
|
|
// WARNING: O(n^2)
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
AT_ASSERT(
|
|
std::find(ALL_OF(input->uses_), Use(const_cast<Node*>(this), i)) !=
|
|
input->uses_.end());
|
|
AT_ASSERT(graph_->all_nodes.count(this) == 1);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
for (auto o : outputs()) {
|
|
size_t i = 0;
|
|
for (auto use : o->uses()) {
|
|
// Use invariants
|
|
// - Use is consistent with inputs
|
|
// - Every user node is live (checked in Graph)
|
|
AT_ASSERT(use.user->inputs_[use.offset] == o);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
// Node subclass invariants
|
|
switch (kind()) {
|
|
case prim::Constant:
|
|
AT_ASSERT(inputs_.size() == 0);
|
|
break;
|
|
case prim::Return:
|
|
// Return uses is zero
|
|
AT_ASSERT(outputs().size() == 0);
|
|
break;
|
|
case prim::Param:
|
|
// Param inputs is zero
|
|
AT_ASSERT(inputs_.size() == 0);
|
|
break;
|
|
case prim::PythonOp: {
|
|
// Python operator cconv is correct
|
|
size_t n_scalars = 0, n_tensors = 0;
|
|
auto* value = static_cast<const PythonOp*>(this);
|
|
for (auto c : value->cconv) {
|
|
if (c == 'c') {
|
|
n_scalars++;
|
|
} else if (c == 'd') {
|
|
n_tensors++;
|
|
} else {
|
|
AT_ASSERT(0);
|
|
}
|
|
AT_ASSERT(static_cast<bool>(value->pyobj));
|
|
}
|
|
AT_ASSERT(n_scalars == value->scalar_args.size());
|
|
AT_ASSERT(n_tensors == inputs_.size());
|
|
break;
|
|
}
|
|
case prim::Eval:
|
|
// TODO: add invariants
|
|
// TODO: It's not good for these ops to be top-level, it makes cases
|
|
// longer.
|
|
break;
|
|
case prim::FusionGroup:
|
|
checkSameDevice(this);
|
|
// TODO: Typecheck the parameters
|
|
g(attr::Subgraph)->lint();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// TODO: When lint fails, give better indication about which
|
|
// instruction triggered the failure.
|
|
void Graph::lint() const {
|
|
// Graph invariants
|
|
|
|
// Uncomment the following to see the graph
|
|
// std::cout << *const_cast<Graph*>(this);
|
|
|
|
// nodes
|
|
// - nodes_ is a valid topological ordering for inputs
|
|
// - No repeated nodes
|
|
// - Params and return do NOT occur in nodes
|
|
// - next_unique_ is greater than all uniques in graph
|
|
// - uniques in all_nodes are unique
|
|
// - every use will occur later in the topsort
|
|
|
|
struct LintScope {
|
|
LintScope() = default;
|
|
LintScope(std::unique_ptr<LintScope> parent) : parent(std::move(parent)) {}
|
|
bool contains(const Value* v) {
|
|
return values.count(v) > 0 || (parent && parent->contains(v));
|
|
}
|
|
bool contains(const Node* n) {
|
|
return nodes.count(n) > 0 || (parent && parent->contains(n));
|
|
}
|
|
void insert(const Value* v) {
|
|
AT_ASSERT(!contains(v));
|
|
values.insert(v);
|
|
}
|
|
void insert(const Node* n) {
|
|
AT_ASSERT(!contains(n));
|
|
nodes.insert(n);
|
|
}
|
|
std::unique_ptr<LintScope> parent;
|
|
|
|
private:
|
|
std::unordered_set<const Value*> values;
|
|
std::unordered_set<const Node*> nodes;
|
|
};
|
|
// Struct enables mutual recursion in linting methods.
|
|
// Putting it inside Graph::lint enables access to private Graph members
|
|
struct LintImpl {
|
|
LintImpl(const Graph& g)
|
|
: g(g),
|
|
scope(new LintScope()),
|
|
all_nodes_set(ALL_OF(g.all_nodes)) {} // NB: all_nodes is *unordered*
|
|
const Graph& g;
|
|
std::unique_ptr<LintScope> scope;
|
|
std::unordered_set<size_t> seen_uniques;
|
|
std::unordered_map<const Node*, int64_t> anticipated_uses;
|
|
node_set all_nodes_set;
|
|
node_set sum_set;
|
|
|
|
void check_value(const Value* v) {
|
|
scope->insert(v);
|
|
auto b2 = seen_uniques.insert(v->unique());
|
|
AT_ASSERT(b2.second); // insertion took place
|
|
AT_ASSERT(v->unique() < g.next_unique_);
|
|
|
|
for (auto use : v->uses()) {
|
|
AT_ASSERT(!scope->contains(use.user));
|
|
AT_ASSERT(g.all_nodes.count(use.user) == 1);
|
|
anticipated_uses[use.user]++; // int default constructs to 0
|
|
}
|
|
}
|
|
void check_node(const Node* n) {
|
|
for (auto input : n->inputs_) {
|
|
if (!scope->contains(input)) {
|
|
AT_ASSERTM(0, input->unique(), " not in scope");
|
|
}
|
|
}
|
|
AT_ASSERT(anticipated_uses[n] == static_cast<int64_t>(n->inputs_.size()));
|
|
anticipated_uses[n] = -1; // we saw the anticipated user!
|
|
scope->insert(n);
|
|
for (auto block : n->blocks()) {
|
|
std::unique_ptr<LintScope> new_scope(new LintScope(std::move(scope)));
|
|
scope = std::move(new_scope);
|
|
check_block(block);
|
|
scope = std::move(scope->parent);
|
|
}
|
|
size_t i = 0;
|
|
for (auto o : n->outputs()) {
|
|
AT_ASSERT(o->node() == n);
|
|
AT_ASSERT(i++ == o->offset_);
|
|
check_value(o);
|
|
}
|
|
n->lint();
|
|
}
|
|
void check_block(const Block* b) {
|
|
// Check topological ordering
|
|
AT_ASSERT(b->param_node()->isBefore(*b->nodes().begin()));
|
|
auto curNode = *b->nodes().begin();
|
|
while (curNode != b->return_node()) {
|
|
AT_ASSERT(curNode->isBefore(curNode->next()));
|
|
curNode = curNode->next();
|
|
}
|
|
|
|
for (auto input : b->inputs()) {
|
|
check_value(input);
|
|
AT_ASSERT(input->node()->kind_ == prim::Param);
|
|
}
|
|
|
|
for (auto n : b->nodes()) {
|
|
AT_ASSERT(n->kind_ != prim::Param);
|
|
AT_ASSERT(n->kind_ != prim::Return);
|
|
check_node(n);
|
|
}
|
|
|
|
AT_ASSERT(b->output_->kind() == prim::Return);
|
|
check_node(b->output_);
|
|
|
|
// all_nodes
|
|
// - inputs_, output_ and nodes_ are all included in all_nodes
|
|
// - all_nodes does not contain dead nodes??? (likely to be temporarily
|
|
// suspended). Weaker: all_nodes contains all inputs and returns
|
|
// - only one return node???
|
|
|
|
node_set nodes_set(ALL_OF(b->nodes()));
|
|
node_set inputs_set{b->input_};
|
|
node_set output_set{b->output_};
|
|
// TODO: Make a more type safe std::includes wrapper which disallows use
|
|
// on non-ordered containers
|
|
AT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(nodes_set)));
|
|
AT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(inputs_set)));
|
|
AT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(output_set)));
|
|
|
|
sum_set.insert(ALL_OF(nodes_set));
|
|
sum_set.insert(ALL_OF(inputs_set));
|
|
sum_set.insert(ALL_OF(output_set));
|
|
}
|
|
void check_graph() {
|
|
node_set all_nodes_set(
|
|
ALL_OF(g.all_nodes)); // NB: all_nodes is *unordered*
|
|
|
|
check_block(g.block_);
|
|
for (auto kv : anticipated_uses) {
|
|
AT_ASSERT(kv.second == -1);
|
|
}
|
|
AT_ASSERT(std::includes(ALL_OF(sum_set), ALL_OF(all_nodes_set)));
|
|
}
|
|
};
|
|
LintImpl(*this).check_graph();
|
|
}
|
|
|
|
void Graph::dump() const {
|
|
std::cout << *this << "\n";
|
|
}
|
|
|
|
void LintGraph(std::shared_ptr<Graph>& graph) {
|
|
graph->lint();
|
|
}
|
|
|
|
Block::Block(Graph* graph_, Node* node_)
|
|
: graph_(graph_),
|
|
output_(initOutput(graph_->create(prim::Return, 0))),
|
|
input_(graph_->create(prim::Param, 0)),
|
|
owning_node_(node_) {
|
|
graph_->all_blocks.emplace(this);
|
|
output_->owning_block_ = this;
|
|
output_->topo_position_ = kUpperBound;
|
|
input_->owning_block_ = this;
|
|
input_->topo_position_ = kLowerBound;
|
|
}
|
|
|
|
void Block::reIndexTopology() {
|
|
auto curPos = kLowerBound;
|
|
for (auto node : nodes()) {
|
|
AT_ASSERT(curPos <= (kUpperBound - kAppendInterval));
|
|
curPos += kAppendInterval;
|
|
node->topo_position_ = curPos;
|
|
}
|
|
}
|
|
|
|
void Block::cloneFrom(Block* src, std::function<Value*(Value*)> value_map) {
|
|
std::unordered_map<Value*, Value*> local_map;
|
|
auto env = [&](Value* v) {
|
|
auto it = local_map.find(v);
|
|
if (it != local_map.end()) {
|
|
return it->second;
|
|
}
|
|
return value_map(v);
|
|
};
|
|
|
|
auto graph = owningGraph();
|
|
for (auto input : src->inputs()) {
|
|
local_map[input] = this->addInput()->copyMetadata(input);
|
|
}
|
|
|
|
for (auto node : src->nodes()) {
|
|
auto new_node = this->appendNode(graph->createClone(node, env));
|
|
for (size_t i = 0; i < node->outputs().size(); ++i) {
|
|
auto oo = node->outputs()[i];
|
|
auto no = new_node->outputs()[i];
|
|
local_map[oo] = no;
|
|
no->copyMetadata(oo);
|
|
}
|
|
}
|
|
for (auto output : src->outputs()) {
|
|
this->registerOutput(env(output));
|
|
}
|
|
}
|
|
|
|
void Block::destroy() {
|
|
// we cannot destroy the output because it is used as the sentinel
|
|
// for the nodes() list and has to remain valid for the loop
|
|
output_->removeAllInputs();
|
|
for (auto it = this->nodes().reverse().begin(),
|
|
end = this->nodes().reverse().end();
|
|
it != end;
|
|
++it) {
|
|
it.destroyCurrent();
|
|
}
|
|
output_->destroy();
|
|
input_->destroy();
|
|
graph_->freeBlock(this);
|
|
}
|
|
|
|
std::shared_ptr<Graph> Graph::copy() {
|
|
auto new_g = std::make_shared<Graph>();
|
|
auto env = [](Value* v) -> Value* {
|
|
AT_ERROR(
|
|
"Graph::copy() encountered a use of a value not in scope. Run lint!");
|
|
};
|
|
new_g->block()->cloneFrom(this->block(), env);
|
|
return new_g;
|
|
}
|
|
|
|
bool Value::mustBeNone() const {
|
|
return node_->mustBeNone();
|
|
}
|
|
bool Value::mustNotBeNone() const {
|
|
return node_->kind() != prim::AutogradAdd && type() != NoneType::get() &&
|
|
!type()->cast<OptionalType>();
|
|
}
|
|
|
|
std::string Value::uniqueNameBase() const {
|
|
std::string name = uniqueName();
|
|
std::string name_base = name;
|
|
auto last_dot_pos = name.find_last_of('.');
|
|
if (last_dot_pos != std::string::npos && last_dot_pos + 1 != name.size()) {
|
|
if (name.find_first_not_of("0123456789", last_dot_pos + 1) ==
|
|
std::string::npos) {
|
|
name_base = name.substr(0, last_dot_pos);
|
|
}
|
|
}
|
|
return name_base;
|
|
}
|
|
|
|
bool Value::isValidName(const std::string& name) {
|
|
// Empty strings are legal
|
|
if (!name.size()) {
|
|
return true;
|
|
}
|
|
|
|
// Numbers are not legal
|
|
if (name.find_first_not_of("0123456789") == std::string::npos) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Value* Value::setUniqueName(const std::string& name) {
|
|
if (!isValidName(name)) {
|
|
throw std::runtime_error("Invalid name: '" + name + "'");
|
|
}
|
|
|
|
auto& names = node()->owningGraph()->unique_names_;
|
|
|
|
// clear any old name from the map
|
|
if (hasUniqueName()) {
|
|
names.erase(unique_name_);
|
|
unique_name_ = "";
|
|
}
|
|
|
|
// allow "" to clear the uniquename
|
|
if (name == "") {
|
|
return this;
|
|
}
|
|
|
|
// if someone else has this name, then rename the other value
|
|
auto old_owner_of_name = names.find(name);
|
|
if (old_owner_of_name != names.end()) {
|
|
size_t suffix = 1;
|
|
std::string name_base = name;
|
|
auto last_dot_pos = name.find_last_of('.');
|
|
if (last_dot_pos != std::string::npos && last_dot_pos + 1 != name.size()) {
|
|
if (name.find_first_not_of("0123456789", last_dot_pos + 1) ==
|
|
std::string::npos) {
|
|
suffix = std::stoll(name.substr(last_dot_pos + 1));
|
|
name_base = name.substr(0, last_dot_pos);
|
|
}
|
|
}
|
|
std::string replacement_name;
|
|
do {
|
|
std::stringstream ss;
|
|
ss << name_base << "." << suffix++;
|
|
replacement_name = ss.str();
|
|
} while (names.count(replacement_name) > 0);
|
|
old_owner_of_name->second->setUniqueName(replacement_name);
|
|
}
|
|
|
|
names[name] = this;
|
|
unique_name_ = name;
|
|
return this;
|
|
}
|
|
|
|
Value* Value::copyMetadata(Value* from) {
|
|
setType(from->type());
|
|
if (from->hasUniqueName()) {
|
|
setUniqueName(from->uniqueName());
|
|
}
|
|
return this;
|
|
}
|
|
|
|
void Value::replaceFirstUseWith(Value* newValue) {
|
|
AT_ASSERT(owningGraph() == newValue->owningGraph());
|
|
auto u = uses()[0];
|
|
u.user->inputs_[u.offset] = newValue;
|
|
newValue->uses_.push_back(u);
|
|
uses_.erase(uses_.begin());
|
|
}
|
|
|
|
void Value::replaceAllUsesWith(Value* newValue) {
|
|
while (!uses().empty()) {
|
|
replaceFirstUseWith(newValue);
|
|
}
|
|
}
|
|
|
|
size_t findArgument(const FunctionSchema& the_schema, Symbol name) {
|
|
auto name_str = name.toUnqualString();
|
|
for (size_t i = 0; i < the_schema.arguments().size(); ++i) {
|
|
const Argument* arg = &the_schema.arguments()[i];
|
|
if (arg->name() == name_str) {
|
|
return i;
|
|
}
|
|
}
|
|
throw std::runtime_error(
|
|
std::string("Couldn't find an argument called ") + name.toQualString());
|
|
}
|
|
|
|
c10::optional<IValue> Node::get(Symbol name) const {
|
|
return toIValue(namedInput(name));
|
|
}
|
|
|
|
Value* Node::namedInput(Symbol name) const {
|
|
return input(findArgument(schema(), name));
|
|
}
|
|
|
|
bool Node::matches(
|
|
const char* signature_literal,
|
|
at::ArrayRef<Symbol> const_inputs) const {
|
|
if (!sig(signature_literal).matches(this)) {
|
|
return false;
|
|
}
|
|
for (Symbol s : const_inputs) {
|
|
if (!is_constant(s)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Node::mustBeNone() const {
|
|
return kind_ == prim::AutogradZero ||
|
|
(kind_ == prim::Constant && !this->hasAttributes() &&
|
|
(output()->type()->cast<OptionalType>() ||
|
|
output()->type() == NoneType::get()));
|
|
}
|
|
|
|
void Node::dump() const {
|
|
std::cout << *this << "\n";
|
|
}
|
|
|
|
void Node::findSchema() const {
|
|
schema_ = &getOperatorFor(this).schema();
|
|
}
|
|
|
|
const FunctionSchema* Node::maybeSchema() const {
|
|
if (!schema_) {
|
|
if (auto op = findOperatorFor(this)) {
|
|
schema_ = &op->schema();
|
|
}
|
|
}
|
|
return schema_;
|
|
}
|
|
|
|
bool Node::isNondeterministic() const {
|
|
static const OperatorSet nondeterministic_ops = {
|
|
"aten::dropout(Tensor input, float p, bool train) -> Tensor",
|
|
"aten::_fused_dropout(Tensor self, float p, Generator? generator) -> (Tensor, Tensor)",
|
|
"aten::_standard_gamma(Tensor self, Generator? generator) -> Tensor",
|
|
"aten::bernoulli(Tensor self, *, Generator? generator) -> Tensor",
|
|
"aten::bernoulli(Tensor self, float p, *, Generator? generator) -> Tensor",
|
|
"aten::multinomial(Tensor self, int num_samples, bool replacement, *, Generator? generator) -> Tensor",
|
|
"aten::normal(Tensor mean, Tensor std, *, Generator? generator) -> Tensor",
|
|
"aten::normal(float mean, Tensor std, *, Generator? generator) -> Tensor",
|
|
"aten::normal(Tensor mean, float std, *, Generator? generator) -> Tensor",
|
|
"aten::poisson(Tensor self, Generator? generator) -> Tensor",
|
|
"aten::rrelu(Tensor self, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
|
|
"aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, Generator? generator) -> Tensor",
|
|
"aten::rand(int[] size, *, int? dtype, int? layout, Device? device) -> Tensor",
|
|
"aten::rand_like(Tensor self) -> Tensor",
|
|
"aten::rand_like(Tensor self, *, int dtype, int layout, Device device) -> Tensor",
|
|
"aten::randint(int high, int[] size, *, int? dtype, int? layout, Device? device) -> Tensor",
|
|
"aten::randint(int low, int high, int[] size, *, int? dtype, int? layout, Device? device) -> Tensor",
|
|
"aten::randint_like(Tensor self, int high) -> Tensor",
|
|
"aten::randint_like(Tensor self, int low, int high) -> Tensor",
|
|
"aten::randint_like(Tensor self, int high, *, int dtype, int layout, Device device) -> Tensor",
|
|
"aten::randint_like(Tensor self, int low, int high, *, int dtype, int layout, Device device) -> Tensor",
|
|
"aten::randn(int[] size, *, int? dtype, int? layout, Device? device) -> Tensor",
|
|
"aten::randn_like(Tensor self) -> Tensor",
|
|
"aten::randn_like(Tensor self, *, int dtype, int layout, Device device) -> Tensor",
|
|
"aten::randperm(int n, *, int? dtype, int? layout, Device? device) -> Tensor"};
|
|
|
|
if (nondeterministic_ops.find(this) == nullptr) {
|
|
return false;
|
|
}
|
|
// Dropout with train = False is deterministic
|
|
if (matches("aten::dropout(Tensor input, float p, bool train) -> Tensor") &&
|
|
is_constant(attr::train) && !get<bool>(attr::train).value()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Node::hasSideEffects() const {
|
|
switch (kind_) {
|
|
case prim::PythonOp:
|
|
case prim::IgnoredPythonOp:
|
|
case prim::Print:
|
|
case prim::RaiseException:
|
|
case prim::SetAttr:
|
|
case aten::warn:
|
|
case prim::AddStatValue:
|
|
case prim::TimePoint:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Assign this node a topological position, to facilitate fast isBefore() and
|
|
// isAfter() queries. Must be called right after a node is inserted into the
|
|
// node list.
|
|
//
|
|
// The basic scheme is: assign every node a position (uint64_t). The common
|
|
// case (appending to the end of the graph) is made more efficient by advancing
|
|
// a fixed interval past the previous node and placing `this` there. Otherwise,
|
|
// assign `this` a position at the midpoint between its prev() and next()
|
|
// nodes.
|
|
//
|
|
// If we ever run out of space (by, e.g. inserting too much in place), we
|
|
// reindex by spreading out all the nodes again.
|
|
void Node::assignTopoPosition() {
|
|
auto returnNode = owningBlock()->return_node();
|
|
const auto prevPos = prev()->topo_position_;
|
|
const auto nextPos = next()->topo_position_;
|
|
|
|
// Append to the end of the graph
|
|
if (next() == returnNode) {
|
|
if (next() == prev()) {
|
|
// the node list is empty, assign the first position
|
|
topo_position_ = kMidPoint;
|
|
return;
|
|
}
|
|
|
|
if (prevPos >= (kUpperBound - kAppendInterval)) {
|
|
// we're running off the edge
|
|
owningBlock()->reIndexTopology();
|
|
return;
|
|
}
|
|
|
|
topo_position_ = prevPos + kAppendInterval;
|
|
|
|
// Prepend to the graph
|
|
} else if (prev() == returnNode) {
|
|
// next() is the first element in the block list
|
|
if (nextPos <= (kLowerBound + kAppendInterval)) {
|
|
// we're running off the edge
|
|
owningBlock()->reIndexTopology();
|
|
return;
|
|
}
|
|
|
|
topo_position_ = nextPos - kAppendInterval;
|
|
|
|
// insert between two existing nodes
|
|
} else {
|
|
const auto posBetween = prevPos + (nextPos - prevPos) / 2;
|
|
if (posBetween == prevPos) {
|
|
// There was no room
|
|
owningBlock()->reIndexTopology();
|
|
return;
|
|
}
|
|
topo_position_ = posBetween;
|
|
}
|
|
}
|
|
|
|
Node::Node(Graph* graph_, NodeKind kind_)
|
|
: kind_(kind_),
|
|
graph_(graph_),
|
|
owning_block_(nullptr),
|
|
scope_(graph_->current_scope_),
|
|
schema_(nullptr),
|
|
topo_position_(0) {
|
|
graph_->all_nodes.emplace(this);
|
|
}
|
|
|
|
void Node::eraseOutput(size_t i) {
|
|
AT_ASSERT(i < outputs_.size());
|
|
AT_ASSERT(outputs_[i]->uses().empty());
|
|
schema_ = nullptr;
|
|
Value* n = outputs_[i];
|
|
outputs_.erase(outputs_.begin() + i);
|
|
owningGraph()->freeValue(n);
|
|
for (size_t j = i; j < outputs_.size(); j++) {
|
|
outputs_[j]->offset_--;
|
|
}
|
|
}
|
|
|
|
Block* Node::addBlock() {
|
|
schema_ = nullptr;
|
|
blocks_.push_back(new Block(owningGraph(), this));
|
|
return blocks_.back();
|
|
}
|
|
|
|
void Node::eraseBlock(size_t i) {
|
|
AT_ASSERT(i < blocks_.size());
|
|
schema_ = nullptr;
|
|
Block* n = blocks_[i];
|
|
blocks_.erase(blocks_.begin() + i);
|
|
n->destroy();
|
|
}
|
|
|
|
void Node::destroy() {
|
|
while (!outputs().empty()) {
|
|
eraseOutput(outputs().size() - 1);
|
|
}
|
|
while (!blocks().empty()) {
|
|
eraseBlock(blocks().size() - 1);
|
|
}
|
|
removeAllInputs();
|
|
if (inBlockList()) {
|
|
removeFromList();
|
|
}
|
|
graph_->freeNode(this);
|
|
}
|
|
|
|
void Node::cloneFrom(Node* s) {
|
|
setSourceLocation(s->getSourceLocation());
|
|
if (s->scope_ && !s->scope_->isBlank()) {
|
|
scope_ = s->scope_;
|
|
}
|
|
copyAttributes(*s);
|
|
}
|
|
|
|
void Node::replaceAllUsesWith(Node* n) {
|
|
AT_ASSERT(outputs().size() == n->outputs().size());
|
|
size_t nOutputs = outputs().size();
|
|
for (size_t i = 0; i < nOutputs; i++) {
|
|
outputs()[i]->replaceAllUsesWith(n->outputs()[i]);
|
|
}
|
|
}
|
|
|
|
Value* Node::insertInput(size_t i, Value* value) {
|
|
AT_ASSERT(graph_ == value->owningGraph());
|
|
schema_ = nullptr;
|
|
// First we update the offsets for all existing inputs that will reside
|
|
// after the one we're inserting. Concretely, these are the inputs at
|
|
// indices [i, # input). Since we're inserting one input before all of
|
|
// these inputs, increment their use offsets for this value by 1
|
|
for (size_t use_itr = i; use_itr < inputs_.size(); ++use_itr) {
|
|
// See Note [User node does not uniquely identify use]
|
|
auto use = findUseForInput(use_itr);
|
|
use->offset += 1;
|
|
}
|
|
// Insert the actual input at the specified index
|
|
inputs_.insert(inputs_.begin() + i, value);
|
|
// Register the new use of the value we're inserted as an input.
|
|
value->uses_.emplace_back(this, i);
|
|
return value;
|
|
}
|
|
|
|
Value* Node::addInput(Value* value) {
|
|
AT_ASSERT(graph_ == value->owningGraph());
|
|
schema_ = nullptr;
|
|
value->uses_.emplace_back(this, inputs_.size());
|
|
inputs_.push_back(value);
|
|
return value;
|
|
}
|
|
|
|
Value* Node::replaceInput(size_t i, Value* newValue) {
|
|
AT_ASSERT(newValue->owningGraph() == graph_);
|
|
schema_ = nullptr;
|
|
Value* old = dropInput(i);
|
|
inputs_[i] = newValue;
|
|
newValue->uses_.emplace_back(this, i);
|
|
return old;
|
|
}
|
|
|
|
void Node::replaceInputWith(Value* from, Value* to) {
|
|
AT_ASSERT(from->owningGraph() == graph_);
|
|
AT_ASSERT(to->owningGraph() == graph_);
|
|
schema_ = nullptr;
|
|
size_t i = 0;
|
|
for (auto input : inputs()) {
|
|
if (input == from) {
|
|
replaceInput(i, to);
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
Value* Node::addOutput() {
|
|
outputs_.push_back(new Value(this, outputs_.size()));
|
|
schema_ = nullptr;
|
|
return outputs_.back();
|
|
}
|
|
|
|
Value* Node::insertOutput(size_t i) {
|
|
schema_ = nullptr;
|
|
outputs_.insert(outputs_.begin() + i, new Value(this, i));
|
|
for (size_t itr = i + 1; itr < outputs_.size(); ++itr) {
|
|
outputs_[itr]->setOffset(outputs_[itr]->offset() + 1);
|
|
}
|
|
return outputs_.at(i);
|
|
}
|
|
|
|
bool Node::isBeforeOrAfter(const Node* n, MoveSide moveSide) const {
|
|
if (this->owningBlock() == n->owningBlock()) {
|
|
if (moveSide == MoveSide::BEFORE) {
|
|
return this->topo_position_ < n->topo_position_;
|
|
}
|
|
|
|
if (moveSide == MoveSide::AFTER) {
|
|
return this->topo_position_ > n->topo_position_;
|
|
}
|
|
|
|
AT_ASSERT(this == n);
|
|
return false;
|
|
}
|
|
|
|
// These nodes don't share a common block. Traverse the blockchains upward
|
|
// until we find the first common block.
|
|
auto lhs = this;
|
|
while (lhs) {
|
|
AT_ASSERT(lhs->owningBlock());
|
|
|
|
auto rhs = n;
|
|
while (rhs) {
|
|
if (!rhs->owningBlock()) {
|
|
break;
|
|
}
|
|
|
|
if (lhs->owningBlock() == rhs->owningBlock()) {
|
|
return lhs->isBeforeOrAfter(rhs, moveSide);
|
|
}
|
|
rhs = rhs->owningBlock()->owningNode();
|
|
}
|
|
|
|
lhs = lhs->owningBlock()->owningNode();
|
|
}
|
|
// should never reach here, since both nodes are ultimately in the same graph
|
|
AT_ASSERT(false);
|
|
}
|
|
|
|
bool Node::isBefore(const Node* n) const {
|
|
return isBeforeOrAfter(n, MoveSide::BEFORE);
|
|
}
|
|
|
|
bool Node::isAfter(const Node* n) const {
|
|
return isBeforeOrAfter(n, MoveSide::AFTER);
|
|
}
|
|
|
|
Node* Node::insertBefore(Node* n) {
|
|
AT_ASSERT(n->inBlockList());
|
|
insertAfter(n->prev());
|
|
return this;
|
|
}
|
|
|
|
Node* Node::insertAfter(Node* n) {
|
|
AT_ASSERT(!inBlockList() && n->inBlockList());
|
|
AT_ASSERT(n->owningBlock());
|
|
this->owning_block_ = n->owningBlock();
|
|
Node* next = n->next();
|
|
n->next() = this;
|
|
this->prev() = n;
|
|
this->next() = next;
|
|
next->prev() = this;
|
|
assignTopoPosition();
|
|
return this;
|
|
}
|
|
|
|
void Node::moveAfter(Node* n) {
|
|
removeFromList();
|
|
insertAfter(n);
|
|
}
|
|
|
|
void Node::moveBefore(Node* n) {
|
|
removeFromList();
|
|
insertBefore(n);
|
|
}
|
|
|
|
void Node::removeInput(size_t i) {
|
|
schema_ = nullptr;
|
|
dropInput(i);
|
|
// everything after this input shifts left,
|
|
// so we need to update their use offsets to match
|
|
for (size_t j = i + 1; j < inputs_.size(); j++) {
|
|
auto it = findUseForInput(j);
|
|
it->offset--;
|
|
}
|
|
inputs_.erase(inputs_.begin() + i);
|
|
}
|
|
|
|
void Node::removeAllInputs() {
|
|
schema_ = nullptr;
|
|
for (size_t i = 0; i < inputs().size(); ++i) {
|
|
dropInput(i);
|
|
}
|
|
inputs_.clear();
|
|
}
|
|
|
|
use_list::iterator Node::findUseForInput(size_t i) {
|
|
auto& input_uses = inputs_[i]->uses_;
|
|
// O(N) on the use list, but unless we get nodes with +100 uses
|
|
// vector traversal still is probably faster than linked list
|
|
auto use_it = std::find(input_uses.begin(), input_uses.end(), Use(this, i));
|
|
AT_ASSERT(use_it != input_uses.end());
|
|
return use_it;
|
|
}
|
|
|
|
Value* Node::dropInput(size_t i) {
|
|
AT_ASSERT(i < inputs_.size());
|
|
auto input_node = inputs_[i];
|
|
auto use_it = findUseForInput(i);
|
|
input_node->uses_.erase(use_it);
|
|
inputs_[i] = nullptr;
|
|
return input_node;
|
|
}
|
|
|
|
void Node::removeFromList() {
|
|
AT_ASSERT(inBlockList());
|
|
this->owning_block_ = nullptr;
|
|
Node* next = this->next();
|
|
Node* prev = this->prev();
|
|
prev->next() = next;
|
|
next->prev() = prev;
|
|
this->next() = nullptr;
|
|
this->prev() = nullptr;
|
|
}
|
|
|
|
inline const SourceRange& fakeRange() {
|
|
static SourceRange range(
|
|
std::make_shared<std::string>("<internally-created-node>"), 0, 1);
|
|
return range;
|
|
}
|
|
|
|
Value* Graph::insert(
|
|
Symbol opname,
|
|
at::ArrayRef<NamedValue> args,
|
|
at::ArrayRef<NamedValue> kwargs,
|
|
const c10::optional<SourceRange>& range) {
|
|
return script::emitBuiltinCall(
|
|
range.value_or(fakeRange()),
|
|
*this,
|
|
opname,
|
|
c10::nullopt,
|
|
args,
|
|
kwargs,
|
|
/*required=*/true);
|
|
}
|
|
|
|
Node* Graph::create(NodeKind kind, size_t num_outputs) {
|
|
// NB: Node constructor adds node to all_nodes
|
|
auto n = new Node(this, kind);
|
|
for (size_t i = 0; i < num_outputs; i++) {
|
|
n->addOutput();
|
|
}
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::create(
|
|
NodeKind kind,
|
|
ArrayRef<Value*> inputs,
|
|
size_t num_outputs) {
|
|
auto n = create(kind, num_outputs);
|
|
for (auto i : inputs) {
|
|
n->addInput(i);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createAutogradZero() {
|
|
return create(prim::AutogradZero);
|
|
}
|
|
|
|
Node* Graph::createNone(TypePtr typ) {
|
|
Node* n = create(prim::Constant);
|
|
n->output()->setType(OptionalType::create(std::move(typ)));
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createFusionGroup() {
|
|
auto n = create(prim::FusionGroup, 0);
|
|
n->g_(attr::Subgraph, std::make_shared<Graph>(current_scope()));
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createTuple(
|
|
at::ArrayRef<Value*> values,
|
|
c10::OptNameList field_names) {
|
|
auto types = fmap(values, [](Value* v) { return v->type(); });
|
|
auto tt = TupleType::create(std::move(types), std::move(field_names));
|
|
auto n = create(prim::TupleConstruct, values);
|
|
n->output()->setType(tt);
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createTupleUnpack(Value* v) {
|
|
TupleTypePtr tt = v->type()->expect<TupleType>();
|
|
auto n = create(prim::TupleUnpack, {v}, 0);
|
|
for (auto& element : tt->elements()) {
|
|
n->addOutput()->setType(element);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createTupleIndex(Value* tup, int64_t index) {
|
|
auto n = create(prim::TupleIndex, {tup});
|
|
n->i_(attr::index, index);
|
|
auto tuple_type = tup->type()->expect<TupleType>();
|
|
n->output()->setType(tuple_type->elements().at(index));
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createTupleSlice(Value* tup, int64_t beg, int64_t end) {
|
|
auto n = create(prim::TupleSlice, {tup});
|
|
auto tuple_type = tup->type()->expect<TupleType>();
|
|
n->i_(attr::beg, beg);
|
|
n->i_(attr::end, end);
|
|
std::vector<TypePtr> output_types;
|
|
for (auto i = beg; i < end; ++i) {
|
|
output_types.push_back(tuple_type->elements().at(i));
|
|
}
|
|
auto tt = TupleType::create(std::move(output_types));
|
|
n->output()->setType(tt);
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createList(const TypePtr& elem_type, at::ArrayRef<Value*> values) {
|
|
auto n = create(prim::ListConstruct, values);
|
|
for (const auto& v : values) {
|
|
AT_ASSERT(v->type()->isSubtypeOf(elem_type));
|
|
}
|
|
n->output()->setType(ListType::create(elem_type));
|
|
return n;
|
|
}
|
|
Node* Graph::createListUnpack(Value* v, size_t size) {
|
|
ListTypePtr list_type = v->type()->expect<ListType>();
|
|
TypePtr elem_type = list_type->getElementType();
|
|
auto n = create(prim::ListUnpack, {v}, 0);
|
|
for (size_t i = 0; i < size; ++i) {
|
|
n->addOutput()->setType(elem_type);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createDict(
|
|
const TypePtr& key_type,
|
|
const TypePtr& value_type,
|
|
at::ArrayRef<Value*> keys,
|
|
at::ArrayRef<Value*> values) {
|
|
AT_ASSERT(keys.size() == values.size());
|
|
auto n = create(prim::DictConstruct, 1);
|
|
for (size_t i = 0; i < keys.size(); ++i) {
|
|
AT_ASSERT(keys[i]->type()->isSubtypeOf(key_type));
|
|
AT_ASSERT(values[i]->type()->isSubtypeOf(value_type));
|
|
|
|
n->addInput(keys[i]);
|
|
n->addInput(values[i]);
|
|
}
|
|
n->output()->setType(DictType::create(key_type, value_type));
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createDictIndex(Value* dict, Value* index) {
|
|
auto dict_type = dict->type()->expect<DictType>();
|
|
AT_ASSERT(index->type()->isSubtypeOf(dict_type->getKeyType()));
|
|
|
|
auto n = create(prim::DictIndex, {dict, index});
|
|
n->output()->setType(dict_type->getValueType());
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createNumToTensor(Value* value) {
|
|
auto typ = value->type();
|
|
Node* result = create(prim::NumToTensor, {value});
|
|
result->output()->setType(CompleteTensorType::fromNumberType(std::move(typ)));
|
|
return result;
|
|
}
|
|
|
|
Node* Graph::createImplicitTensorToNum(const TypePtr& type, Value* value) {
|
|
auto* result = create(prim::ImplicitTensorToNum, {value});
|
|
result->output()->setType(type);
|
|
return result;
|
|
}
|
|
|
|
Node* Graph::createObject(const ClassTypePtr& type) {
|
|
auto result = create(prim::CreateObject);
|
|
result->output()->setType(type);
|
|
return result;
|
|
}
|
|
|
|
Node* Graph::createSetAttr(
|
|
Value* obj,
|
|
const std::string& field,
|
|
Value* newValue) {
|
|
auto n = create(prim::SetAttr, {obj, newValue}, /*num_outputs=*/0);
|
|
n->s_(attr::name, field);
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createGetAttr(Value* obj, const std::string& field) {
|
|
const auto classType = obj->type()->expect<ClassType>();
|
|
|
|
auto n = create(prim::GetAttr, {obj}, /*num_outputs=*/1);
|
|
n->s_(attr::name, field);
|
|
|
|
const auto outputType = classType->getAttribute(field);
|
|
n->output()->setType(outputType);
|
|
return n;
|
|
}
|
|
|
|
Node* Graph::createClone(
|
|
Node* n,
|
|
const std::function<Value*(Value*)>& value_map,
|
|
bool copy_blocks) {
|
|
// n can be from a different graph
|
|
Node* r = n->allocNewInstance(this);
|
|
for (auto o : n->outputs()) {
|
|
r->addOutput()->copyMetadata(o);
|
|
}
|
|
r->cloneFrom(n);
|
|
for (auto i : n->inputs()) {
|
|
r->addInput(value_map(i));
|
|
}
|
|
if (copy_blocks) {
|
|
for (auto b : n->blocks()) {
|
|
r->addBlock()->cloneFrom(b, value_map);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
Value* Graph::insertConstant(
|
|
IValue val,
|
|
const TypePtr& result_type,
|
|
c10::optional<SourceRange> loc,
|
|
c10::optional<ScopePtr> scope) {
|
|
return jit::insertConstant(
|
|
*this, std::move(val), result_type, std::move(loc), std::move(scope));
|
|
}
|
|
|
|
std::string Graph::toString() const {
|
|
std::ostringstream oss;
|
|
oss << *this;
|
|
return oss.str();
|
|
}
|
|
|
|
Graph::~Graph() {
|
|
for (const Node* n : all_nodes) {
|
|
delete n;
|
|
}
|
|
for (const Value* v : all_values) {
|
|
delete v;
|
|
}
|
|
for (const Block* b : all_blocks) {
|
|
delete b;
|
|
}
|
|
}
|
|
|
|
void Graph::freeNode(Node* n) {
|
|
auto it = all_nodes.find(n);
|
|
AT_ASSERT(it != all_nodes.end());
|
|
delete *it;
|
|
all_nodes.erase(it);
|
|
}
|
|
void Graph::freeValue(Value* v) {
|
|
v->setUniqueName("");
|
|
auto it = all_values.find(v);
|
|
AT_ASSERT(it != all_values.end());
|
|
delete *it;
|
|
all_values.erase(it);
|
|
}
|
|
void Graph::freeBlock(Block* b) {
|
|
auto it = all_blocks.find(b);
|
|
AT_ASSERT(it != all_blocks.end());
|
|
delete *it;
|
|
all_blocks.erase(it);
|
|
}
|
|
|
|
at::ArrayRef<Value*> createTupleUnpack(Value* v) {
|
|
// small peephole optimization to ensure IntArrayRef attributes can still turn
|
|
// into constants e.g. in x.expand([3, 4])
|
|
if (v->node()->kind() == prim::TupleConstruct) {
|
|
return v->node()->inputs();
|
|
}
|
|
auto& g = *v->owningGraph();
|
|
return g.insertNode(g.createTupleUnpack(v))->outputs();
|
|
}
|
|
|
|
std::vector<Value*> inlineCallTo(
|
|
Graph& g,
|
|
Graph& callee,
|
|
ArrayRef<Value*> inputs,
|
|
bool unpack_outputs) {
|
|
std::unordered_map<Value*, Value*> value_map;
|
|
auto value_map_func = [&](Value* v) { return value_map.at(v); };
|
|
AT_ASSERT(callee.inputs().size() == inputs.size());
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
value_map[callee.inputs()[i]] = inputs[i];
|
|
}
|
|
for (auto* node : callee.nodes()) {
|
|
auto* new_node = g.insertNode(g.createClone(node, value_map_func));
|
|
for (size_t i = 0; i < node->outputs().size(); ++i) {
|
|
value_map[node->outputs()[i]] = new_node->outputs()[i];
|
|
}
|
|
}
|
|
|
|
std::vector<Value*> outputs;
|
|
for (auto* output : callee.outputs()) {
|
|
outputs.push_back(value_map_func(output));
|
|
}
|
|
|
|
if (unpack_outputs && outputs.size() == 1 &&
|
|
callee.outputs().at(0)->type()->kind() == TupleType::Kind) {
|
|
auto tup = outputs[0];
|
|
outputs.clear();
|
|
for (Value* v : createTupleUnpack(tup)) {
|
|
outputs.emplace_back(v);
|
|
}
|
|
// if this was a peephole tuple unpack we can just get rid of
|
|
// the tuple construct here and prevent needing DCE
|
|
if (tup->node()->kind() == prim::TupleConstruct &&
|
|
!tup->node()->hasUses()) {
|
|
tup->node()->destroy();
|
|
}
|
|
}
|
|
|
|
return outputs;
|
|
}
|
|
|
|
PythonOp* defaultAllocPythonOp(Graph* g) {
|
|
throw std::runtime_error(
|
|
"Trying to allocate a Python object without python bindings loaded");
|
|
}
|
|
std::atomic<decltype(&defaultAllocPythonOp)> alloc_python_op;
|
|
|
|
// patched in when python bindings are loaded
|
|
PythonOp* allocPythonOp(Graph* g) {
|
|
return alloc_python_op.load()(g);
|
|
}
|
|
void setAllocPythonOp(PythonOp* (*v)(Graph* g)) {
|
|
alloc_python_op.store(v);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|