Files
pytorch/torch/fx/_graph_pickler.py
2025-10-15 20:00:24 +00:00

625 lines
22 KiB
Python

import dataclasses
import importlib
import io
import pickle
from abc import abstractmethod
from collections.abc import Callable
from typing import Any, NewType, Optional, TypeVar, Union
from typing_extensions import override, Self
import torch
import torch.utils._pytree as pytree
from torch._guards import TracingContext
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode, Tensor
from torch._subclasses.meta_utils import (
MetaConverter,
MetaTensorDesc,
MetaTensorDescriber,
)
from torch.fx.experimental.sym_node import SymNode
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.utils._mode_utils import no_dispatch
_SymNodeT = TypeVar("_SymNodeT", torch.SymInt, torch.SymFloat)
def _ops_filter_safe(name: str) -> bool:
"""
An ops filter which allows pickle-safe ops. Pickle-safe ops are built-in
ones where it will be possible to unpickle on any machine which has PyTorch.
"""
# TODO: This list is pretty pessimistic right now. What's the full list?
return name.startswith(
(
"torch.ops.aten",
"torch.ops.fbgemm",
)
)
@dataclasses.dataclass
class Options:
# A filter for which ops will cause the pickler to raise a
# BypassFxGraphCache exception. If None then all ops are allowed.
ops_filter: Optional[Callable[[str], bool]] = _ops_filter_safe
class GraphPickler(pickle.Pickler):
"""
GraphPickler is a Pickler which helps pickling fx graph - in particular
GraphModule.
"""
def __init__(self, file: io.BytesIO, options: Optional[Options] = None) -> None:
super().__init__(file)
self.options = options or Options()
# This abomination is so we can pass external decoding state to the
# unpickler functions. We serialize _unpickle_state as a persistent
# external item and when we deserialize it we return the common state
# object.
self._unpickle_state = _UnpickleStateToken(object())
# This is used to describe tensors. It needs to be common across the
# pickle so that duplicates and views are properly handled.
self._meta_tensor_describer = MetaTensorDescriber(copy_data=False)
@override
# pyrefly: ignore # bad-override
def reducer_override(
self, obj: object
) -> tuple[Callable[..., Any], tuple[Any, ...]]:
# This function is supposed to return either NotImplemented (meaning to
# do the default pickle behavior) or a pair of (unpickle callable, data
# to pass to unpickle).
# We could instead teach individual classes how to pickle themselves but
# that has a few problems:
#
# 1. If we have some special needs (maybe for this use-case we don't
# want to fully serialize every field) then we're adding private
# details to a public interface.
#
# 2. If we need to have some common shared data (such as a
# FakeTensorMode) which is passed to each value it's harder to
# support.
# These are the types that need special handling. See the individual
# *PickleData classes for details on pickling that particular type.
if isinstance(obj, FakeTensor):
return _TensorPickleData.reduce_helper(self, obj)
elif isinstance(obj, torch.fx.GraphModule):
return _GraphModulePickleData.reduce_helper(self, obj)
elif isinstance(obj, (torch._ops.OperatorBase, torch._ops.OpOverloadPacket)):
return _OpPickleData.reduce_helper(self, obj)
elif isinstance(obj, ShapeEnv):
return _ShapeEnvPickleData.reduce_helper(self, obj)
elif isinstance(obj, torch.SymInt):
return _SymNodePickleData.reduce_helper(self, obj)
elif isinstance(obj, torch._guards.TracingContext):
return _TracingContextPickleData.reduce_helper(self, obj)
else:
# We should never get a raw Node!
assert not isinstance(obj, torch.fx.Node)
if reduce := _TorchNumpyPickleData.reduce_helper(self, obj):
return reduce
# returning `NotImplemented` causes pickle to revert to the default
# behavior for this object.
return NotImplemented
@override
def persistent_id(self, obj: object) -> Optional[str]:
if obj is self._unpickle_state:
return "unpickle_state"
else:
return None
@classmethod
def dumps(cls, obj: object, options: Optional[Options] = None) -> bytes:
"""
Pickle an object.
"""
with io.BytesIO() as stream:
pickler = cls(stream, options)
pickler.dump(obj)
return stream.getvalue()
@staticmethod
def loads(data: bytes, fake_mode: FakeTensorMode) -> object:
"""
Unpickle an object.
"""
state = _UnpickleState(fake_mode)
with io.BytesIO(data) as stream:
unpickler = _GraphUnpickler(stream, state)
return unpickler.load()
class _UnpickleState:
def __init__(self, fake_mode: FakeTensorMode) -> None:
self.fake_mode = fake_mode
self.meta_converter: MetaConverter[FakeTensor] = MetaConverter()
# This token is passed when pickling to indicate that we want to use the
# unpickler's _UnpickleState as a parameter in that position.
_UnpickleStateToken = NewType("_UnpickleStateToken", object)
class _GraphUnpickler(pickle.Unpickler):
def __init__(self, stream: io.BytesIO, unpickle_state: _UnpickleState) -> None:
super().__init__(stream)
self._unpickle_state = unpickle_state
@override
def persistent_load(self, pid: object) -> object:
if pid == "unpickle_state":
return self._unpickle_state
else:
raise pickle.UnpicklingError("Invalid persistent ID")
class _ShapeEnvPickleData:
data: dict[str, object]
@classmethod
def reduce_helper(
cls, pickler: GraphPickler, obj: ShapeEnv
) -> tuple[
Callable[[Self, _UnpickleState], ShapeEnv], tuple[Self, _UnpickleStateToken]
]:
return cls.unpickle, (cls(obj), pickler._unpickle_state)
def __init__(self, env: ShapeEnv) -> None:
# In theory pickle should recognize that a given ShapeEnv was already
# pickled and reuse the resulting _ShapeEnvPickleData (so two objects
# pointing at the same ShapeEnv get the same ShapeEnv out).
assert not env._translation_validation_enabled
self.data = env.__dict__.copy()
del self.data["tracked_fakes"]
del self.data["fake_tensor_cache"]
def unpickle(self, unpickle_state: _UnpickleState) -> ShapeEnv:
# Fill in the existing ShapeEnv rather than creating a new one
assert unpickle_state.fake_mode
assert unpickle_state.fake_mode.shape_env
for k, v in self.data.items():
setattr(unpickle_state.fake_mode.shape_env, k, v)
return unpickle_state.fake_mode.shape_env
class _SymNodePickleData:
@classmethod
def reduce_helper(
cls,
pickler: GraphPickler,
obj: _SymNodeT,
) -> tuple[
Callable[[Self, _UnpickleState], _SymNodeT], tuple[Self, _UnpickleStateToken]
]:
args = (cls(obj.node), pickler._unpickle_state)
if isinstance(obj, torch.SymInt):
# pyrefly: ignore # bad-return
return _SymNodePickleData.unpickle_sym_int, args
else:
raise NotImplementedError(f"Unhandled SymNode type {type(obj)}")
def __init__(self, node: SymNode) -> None:
self.expr = node._expr
self.shape_env = node.shape_env
self.pytype = node.pytype
self.hint = node._hint
def _to_sym_node(self) -> SymNode:
assert self.shape_env is not None
return SymNode(self.expr, self.shape_env, self.pytype, self.hint)
def unpickle_sym_int(self, unpickle_state: _UnpickleState) -> torch.SymInt:
return torch.SymInt(self._to_sym_node())
class _TensorPickleData:
metadata: MetaTensorDesc[FakeTensor]
@classmethod
def reduce_helper(
cls, pickler: GraphPickler, obj: FakeTensor
) -> tuple[
Callable[[Self, _UnpickleState], FakeTensor], tuple[Self, _UnpickleStateToken]
]:
return cls.unpickle, (
cls(pickler._meta_tensor_describer, obj),
pickler._unpickle_state,
)
def __init__(self, describer: MetaTensorDescriber, t: Tensor) -> None:
# THINGS TO WORRY ABOUT:
# 1. Need to make sure that two tensors with the same id end up with the
# same id on the other side of the wire.
metadata = describer.describe_tensor(t)
# view_func is fine if it's either None or a _FakeTensorViewFunc. A
# custom one (which is basically a lambda) can't be serialized.
assert not metadata.view_func or isinstance(
metadata.view_func, torch._subclasses.meta_utils._FakeTensorViewFunc
)
self.metadata = dataclasses.replace(metadata, fake_mode=None)
# Some debugging/verification
for k in MetaTensorDesc._UNSERIALIZABLE:
if k in ("fake_mode", "view_func"):
continue
assert getattr(self.metadata, k) is None, (
f"not None: {k}: {getattr(self.metadata, k)}"
)
def unpickle(self, unpickle_state: _UnpickleState) -> FakeTensor:
# TODO: make common w/ _output_from_cache_entry() in fake_tensor.py?
metadata = dataclasses.replace(
self.metadata,
fake_mode=unpickle_state.fake_mode,
)
# also need to set the fake_mode on the base of a tensor if it's a view
if metadata.is_view and metadata.base is not None:
new_base = dataclasses.replace(
metadata.base,
fake_mode=unpickle_state.fake_mode,
)
metadata = dataclasses.replace(metadata, base=new_base)
def with_fake(
make_meta_t: Callable[[], torch.Tensor], device: Union[torch.device, str]
) -> FakeTensor:
with no_dispatch():
return FakeTensor(
unpickle_state.fake_mode,
make_meta_t(),
# pyrefly: ignore # bad-argument-type
device,
)
return unpickle_state.meta_converter.meta_tensor(
metadata,
unpickle_state.fake_mode.shape_env,
with_fake,
None,
None,
)
class _TorchNumpyPickleData:
@classmethod
def reduce_helper(
cls, pickler: GraphPickler, obj: object
) -> Optional[
tuple[
Callable[[Self, _UnpickleState], object], tuple[Self, _UnpickleStateToken]
]
]:
if data := cls.from_object(obj):
return (cls.unpickle, (data, pickler._unpickle_state))
else:
return None
def __init__(self, mod: str, name: str) -> None:
self.mod = mod
self.name = name
def unpickle(self, unpickle_state: _UnpickleState) -> Callable[..., object]:
np = getattr(importlib.import_module(self.mod), self.name)
return torch._dynamo.variables.misc.get_np_to_tnp_map()[np]
@classmethod
def from_object(cls, tnp: object) -> Optional[Self]:
if not callable(tnp):
return None
tnp_to_np = torch._dynamo.variables.misc.get_tnp_to_np_map()
try:
if not (np := tnp_to_np.get(tnp)):
return None
except TypeError:
return None
if not (mod := getattr(np, "__module__", None)):
mod = "numpy"
if not (name := getattr(np, "__name__", None)):
return None
# pyrefly: ignore # unbound-name
assert np == getattr(importlib.import_module(mod), name)
# pyrefly: ignore # unbound-name
return cls(mod, name)
class _GraphModulePickleData:
@classmethod
def reduce_helper(
cls, pickler: GraphPickler, obj: torch.fx.GraphModule
) -> tuple[
Callable[[Self, _UnpickleState], torch.fx.GraphModule],
tuple[Self, _UnpickleStateToken],
]:
return cls.unpickle, (
cls(obj, pickler.options),
pickler._unpickle_state,
)
def __init__(self, gm: torch.fx.GraphModule, options: Options) -> None:
# Need to do this to ensure the code is created for later pickling.
if isinstance(gm, torch.fx._lazy_graph_module._LazyGraphModule):
_python_code = gm._real_recompile()
else:
_python_code = gm.recompile()
self.gm_dict = gm.__dict__.copy()
del self.gm_dict["_graph"]
self.graph = _GraphPickleData(gm._graph, options)
def unpickle(self, unpickle_state: _UnpickleState) -> torch.fx.GraphModule:
gm = torch.fx.GraphModule.__new__(torch.fx.GraphModule)
gm.__dict__ = self.gm_dict
gm._graph = self.graph.unpickle(gm, unpickle_state)
return gm
class _NodePickleData:
def __init__(
self,
node: torch.fx.Node,
mapping: dict[torch.fx.Node, "_NodePickleData"],
options: Options,
) -> None:
self.args = pytree.tree_map_only(torch.fx.Node, lambda n: mapping[n], node.args)
self.kwargs = pytree.tree_map_only(
torch.fx.Node, lambda n: mapping[n], node.kwargs
)
# -- self.graph = node.graph
self.name = node.name
self.op = node.op
self.target = _OpPickleData.pickle(node.target, options)
# self.input_nodes = node._input_nodes
# self.users = node.users
self.type = node.type
# self.sort_key = node._sort_key
# self.repr_fn = node._repr_fn
# self.meta = node.meta
self.meta = node.meta
def unpickle(
self,
graph: torch.fx.Graph,
mapping: dict["_NodePickleData", torch.fx.Node],
unpickle_state: _UnpickleState,
) -> torch.fx.Node:
args = pytree.tree_map_only(_NodePickleData, lambda n: mapping[n], self.args)
kwargs = pytree.tree_map_only(
_NodePickleData, lambda n: mapping[n], self.kwargs
)
target = self.target.unpickle(unpickle_state)
assert callable(target) or isinstance(target, str)
node = graph.create_node(self.op, target, args, kwargs, self.name, self.type)
node.meta = self.meta
return node
class _OpPickleData:
@classmethod
def reduce_helper(
cls, pickler: GraphPickler, op: object
) -> tuple[Callable[[_UnpickleState], object], tuple[_UnpickleStateToken]]:
result = cls.pickle(op, pickler.options)
return (result.unpickle, (pickler._unpickle_state,))
@classmethod
def pickle(cls, op: object, options: Options) -> "_OpPickleData":
if isinstance(op, str):
return _OpStrPickleData(op)
name = torch.fx.Node._pretty_print_target(op)
if isinstance(op, torch._ops.OpOverload):
return cls._pickle_op(name, _OpOverloadPickleData, options)
elif isinstance(op, torch._ops.OpOverloadPacket):
return cls._pickle_op(name, _OpOverloadPacketPickleData, options)
elif name.startswith(_OpFunctionPickleData.SUPPORTED_ROOTS):
root, detail = name.split(".", 1)
return _OpFunctionPickleData(root, detail)
else:
# TODO: raise a BypassFxGraphCache so we will just bypass this one...
raise NotImplementedError(f"TARGET: {type(op)} {op} {name}")
@staticmethod
def _pickle_op(
name: str,
datacls: Union[
type["_OpOverloadPickleData"], type["_OpOverloadPacketPickleData"]
],
options: Options,
) -> "_OpPickleData":
if (ops_filter := options.ops_filter) and not ops_filter(name):
from torch._inductor.codecache import BypassFxGraphCache
raise BypassFxGraphCache(f"Unable to pickle non-standard op: {name}")
return datacls(name)
@abstractmethod
def unpickle(self, unpickle_state: _UnpickleState) -> object:
pass
@classmethod
def _lookup_global_by_name(cls, name: str) -> object:
"""
Like `globals()[name]` but supports dotted names.
"""
if "." in name:
mod, rest = name.split(".", 1)
root = globals()[mod]
return cls._getattr_by_name(root, rest)
else:
return globals()[name]
@staticmethod
def _getattr_by_name(root: object, name: str) -> object:
"""
Like `getattr(root, name)` but supports dotted names.
"""
while "." in name:
mod, name = name.split(".", 1)
root = getattr(root, mod)
return getattr(root, name)
class _OpStrPickleData(_OpPickleData):
def __init__(self, name: str) -> None:
self.name = name
def unpickle(self, unpickle_state: _UnpickleState) -> str:
return self.name
class _OpOverloadPickleData(_OpPickleData):
def __init__(self, name: str) -> None:
self.name = name
def unpickle(self, unpickle_state: _UnpickleState) -> torch._ops.OpOverload:
obj = self._lookup_global_by_name(self.name)
assert isinstance(obj, torch._ops.OpOverload)
return obj
class _OpOverloadPacketPickleData(_OpPickleData):
def __init__(self, name: str) -> None:
self.name = name
def unpickle(self, unpickle_state: _UnpickleState) -> torch._ops.OpOverloadPacket:
obj = self._lookup_global_by_name(self.name)
assert isinstance(obj, torch._ops.OpOverloadPacket)
return obj
class _OpFunctionPickleData(_OpPickleData):
"""
Supports pickling a set of standard/common functions
These must be prefixed with the full namespace in order to properly
be pickled (i.e `einops.rearrange` and not `from einops import rearrange`)
"""
# Static variable listing supported root names
SUPPORTED_ROOTS = ("builtins.", "math.", "torch.", "operator.", "einops.")
def __init__(self, root: str, name: str) -> None:
self.root = root
self.name = name
def unpickle(self, unpickle_state: _UnpickleState) -> object:
if self.root == "builtins":
return __builtins__.get(self.name) # type: ignore[attr-defined]
elif self.root == "math":
import math
return self._getattr_by_name(math, self.name)
elif self.root == "torch":
return self._getattr_by_name(torch, self.name)
elif self.root == "operator":
import operator
return self._getattr_by_name(operator, self.name)
elif self.root == "einops":
import einops
return self._getattr_by_name(einops, self.name)
else:
raise NotImplementedError
class _GraphPickleData:
def __init__(self, graph: torch.fx.Graph, options: Options) -> None:
self.tracer_cls = graph._tracer_cls
self.tracer_extras = graph._tracer_extras
nodes: dict[torch.fx.Node, _NodePickleData] = {}
for node in graph.nodes:
nodes[node] = _NodePickleData(node, nodes, options)
self.nodes = tuple(nodes.values())
# Unpickled variables:
# self._used_names = graph._used_names
# -- self._insert = self._root.prepend
# self._len = graph._len
# self._graph_namespace = graph._graph_namespace
# self._owning_module = graph._owning_module
# self._codegen = graph._codegen
# self._co_fields: Dict[str, Any] = graph._co_fields
# -- self._find_nodes_lookup_table = _FindNodesLookupTable()
def unpickle(
self, gm: torch.fx.GraphModule, unpickle_state: _UnpickleState
) -> torch.fx.Graph:
graph = torch.fx.Graph(gm, self.tracer_cls, self.tracer_extras)
nodes: dict[_NodePickleData, torch.fx.Node] = {}
for nd in self.nodes:
nodes[nd] = nd.unpickle(graph, nodes, unpickle_state)
return graph
class _TracingContextPickleData:
@classmethod
def reduce_helper(
cls, pickler: GraphPickler, obj: torch._guards.TracingContext
) -> tuple[
Callable[[Self, _UnpickleState], torch._guards.TracingContext],
tuple[Self, _UnpickleStateToken],
]:
return (
cls.unpickle,
(
cls(obj),
pickler._unpickle_state,
),
)
def __init__(self, context: TracingContext) -> None:
# TODO: Do we really need all of this?
self.module_context = context.module_context
self.frame_summary_stack = context.frame_summary_stack
self.loc_in_frame = context.loc_in_frame
self.aot_graph_name = context.aot_graph_name
self.params_flat = context.params_flat
self.params_flat_unwrap_subclasses = context.params_flat_unwrap_subclasses
self.params_unwrapped_to_flat_index = context.params_unwrapped_to_flat_index
self.output_strides = context.output_strides
self.force_unspec_int_unbacked_size_like = (
context.force_unspec_int_unbacked_size_like
)
# Not saved (because it's difficult and maybe not needed?):
# self.fw_metadata = context.fw_metadata
# self.guards_context = None
# self.global_context = None
# self.fake_mode = None
# self.fakify_first_call = None
# self.hop_dispatch_set_cache = None
# self.tensor_to_context = context.tensor_to_context
def unpickle(self, unpickle_state: _UnpickleState) -> TracingContext:
context = TracingContext(unpickle_state.fake_mode)
context.module_context = self.module_context
context.frame_summary_stack = self.frame_summary_stack
context.loc_in_frame = self.loc_in_frame
context.aot_graph_name = self.aot_graph_name
context.params_flat = self.params_flat
context.params_flat_unwrap_subclasses = self.params_flat_unwrap_subclasses
context.params_unwrapped_to_flat_index = self.params_unwrapped_to_flat_index
context.output_strides = self.output_strides
context.force_unspec_int_unbacked_size_like = (
self.force_unspec_int_unbacked_size_like
)
return context