Files
pytorch/torch/_inductor/codegen/mps.py
PyTorch MergeBot 83f14c0b06 Revert "[MPSInductor] Naive welford_reduce implementation (#150824)"
This reverts commit 5edfb4c4fad1bb9504482d930a2540d22427d383.

Reverted https://github.com/pytorch/pytorch/pull/150824 on behalf of https://github.com/malfet due to I should have waited for lint ([comment](https://github.com/pytorch/pytorch/pull/150824#issuecomment-2798249264))
2025-04-12 00:21:14 +00:00

843 lines
30 KiB
Python

# This is not a feature-complete compiler backend
# Just an early prototype that shows that one can compile elementwise ops into a Metal shader
from __future__ import annotations
import itertools
import math
from typing import Any, Optional, TYPE_CHECKING
import sympy
from sympy.printing.precedence import PRECEDENCE
import torch
from torch.utils._sympy.printers import ExprPrinter as ExprPrinter_
from torch.utils._sympy.value_ranges import ValueRanges
from ..utils import ceildiv, get_bounds_index_expr, get_kernel_metadata
from ..virtualized import ops, OpsWrapper, V
from .common import (
CSEVariable,
DeferredLine,
DTYPE_TO_COMPUTATION_DTYPE,
IndentedBuffer,
OpOverrides,
PythonPrinter,
)
from .simd import IterationRangesEntry, SIMDKernel, SIMDScheduling
if TYPE_CHECKING:
from typing import Union
from ..ops_handler import ReductionType, StoreMode
from ..scheduler import Scheduler, SchedulerNode
from .common import OpVarT
DTYPE_TO_METAL = {
torch.bool: "bool",
torch.int8: "char",
torch.int16: "short",
torch.int32: "int",
torch.int64: "long",
torch.uint8: "uchar",
torch.float: "float",
torch.half: "half",
torch.bfloat16: "bfloat",
}
def value_to_metal(val: Union[float, int, bool, str, CSEVariable]) -> str:
if isinstance(val, float):
if val == torch.inf:
return "HUGE_VALF"
elif val == -torch.inf:
return "-HUGE_VALF"
elif val != val: # Only float that not equal to self is nan
return "NAN"
return str(val)
elif isinstance(val, bool):
return "true" if val else "false"
return str(val)
class MetalExprPrinter(ExprPrinter_):
def _print_FloorDiv(self, expr: sympy.Expr) -> str:
x, div = expr.args
x = self.doprint(x)
div = self.doprint(div)
if expr.is_integer:
return f"({x}) / ({div})"
return f"metal::floor({x}) / ({div})"
def _print_ModularIndexing(self, expr: sympy.Expr) -> str:
x, div, mod = expr.args
x = self.doprint(x)
if div != 1:
div = self.doprint(div)
if expr.is_integer:
x = f"({x}) / ({div})"
else:
x = f"metal::floor({x}) / ({div})"
mod = self.doprint(mod)
return f"({x}) % ({mod})"
def _print_Min(self, expr: sympy.Expr) -> str:
if len(expr.args) != 2:
raise RuntimeError("metal::min only supported for 2 args")
return f"metal::min({', '.join(map(self._print, expr.args))})"
def _print_Max(self, expr: sympy.Expr) -> str:
if len(expr.args) != 2:
raise RuntimeError("metal::max only supported for 2 args")
return f"metal::max({', '.join(map(self._print, expr.args))})"
def _print_Abs(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 1
return f"metal::abs({self._print(expr.args[0])})"
def _print_RoundToInt(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 1
return f"static_cast<long>(metal::rint({self._print(expr.args[0])}))"
def _print_RoundDecimal(self, expr: sympy.Expr) -> str:
assert len(expr.args) == 2
number, ndigits = expr.args
if number.is_integer:
# ndigits < 0 should have been filtered by the sympy function
assert ndigits < 0
raise ValueError(
f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
)
number_str = self.parenthesize(number, PRECEDENCE["Mul"])
return f"static_cast<float>(metal::rint(1e{ndigits} * {number_str}) * 1e{-ndigits})"
def _print_IntTrueDiv(self, expr: sympy.Expr) -> str:
lhs, rhs = expr.args
# TODO: This is only accurate up to 2**23
return f"static_cast<float>({self._print(lhs)}) / static_cast<float>({self._print(rhs)})"
class MetalOverrides(OpOverrides):
@staticmethod
def to_dtype(
x: CSEVariable,
dtype: torch.dtype,
src_dtype: Optional[torch.dtype] = None,
use_compute_types: bool = True,
) -> str:
return f"static_cast<{DTYPE_TO_METAL[dtype]}>({x})"
@staticmethod
def to_dtype_bitcast(
x: CSEVariable, dtype: torch.dtype, src_dtype: torch.dtype
) -> str:
return f"*reinterpret_cast<thread {DTYPE_TO_METAL[dtype]}*>(&{x})"
@staticmethod
def constant(val: Union[bool, float, int], dtype: torch.dtype) -> str:
return value_to_metal(val)
@staticmethod
def index_expr(expr: sympy.Expr, dtype: torch.dtype) -> str:
idx_str = V.kernel.index_to_str(V.kernel.prepare_indexing(expr))
var = V.kernel.cse.generate(
V.kernel.compute, idx_str, bounds=get_bounds_index_expr(expr)
)
return ops.to_dtype(var, dtype)
@staticmethod
def masked(mask: CSEVariable, body: sympy.Expr, other: CSEVariable) -> str:
# TODO: Type annotation for other is wrong, it's often float or int
with V.kernel.mask_loads(mask, other) as new_mask:
result = body()
if result.bounds.is_bool:
other = bool(other) # type: ignore[assignment]
return ops.where(new_mask, result, other)
@staticmethod
def where(a: OpVarT, b: OpVarT, c: OpVarT) -> str:
return f"{a} ? {b} : {value_to_metal(c)}"
@staticmethod
def remainder(a: OpVarT, b: OpVarT) -> str:
if (
isinstance(b, CSEVariable)
and b.dtype is not None
and not b.dtype.is_floating_point
):
return f"{a} % {b}"
# Upcast to float otherwise results of remainder op are wrong for half
float_a = (
f"static_cast<float>({a})"
if isinstance(a, CSEVariable) and a.dtype != torch.float
else a
)
float_b = (
f"static_cast<float>({b})"
if isinstance(b, CSEVariable) and b.dtype != torch.float
else b
)
return f"{float_a} - {float_b} * metal::floor({float_a} / {float_b})"
@staticmethod
def maximum(a: CSEVariable, b: CSEVariable) -> str:
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"c10::metal::max({typecast_a}, {typecast_b})"
@staticmethod
def minimum(a: CSEVariable, b: CSEVariable) -> str:
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"c10::metal::min({typecast_a}, {typecast_b})"
@staticmethod
def logical_or(a: CSEVariable, b: CSEVariable) -> str:
return f"{a} || {b}"
@staticmethod
def logical_and(a: CSEVariable, b: CSEVariable) -> str:
return f"{a} && {b}"
@staticmethod
def isnan(x: CSEVariable) -> str:
return f"metal::isnan({x})"
@staticmethod
def isinf(x: CSEVariable) -> str:
return f"metal::isinf({x})"
@staticmethod
def log(x: CSEVariable) -> str:
return f"metal::log({x})"
@staticmethod
def exp(x: CSEVariable) -> str:
return f"metal::exp({x})"
@staticmethod
def abs(x: CSEVariable) -> str:
return f"metal::abs({x})"
@staticmethod
def signbit(x: CSEVariable) -> str:
return f"metal::signbit({x})"
@staticmethod
def sin(x: CSEVariable) -> str:
return f"metal::precise::sin({x})"
@staticmethod
def sinc(x: CSEVariable) -> str:
return f"c10::metal::sinc({x})"
@staticmethod
def cos(x: CSEVariable) -> str:
return f"metal::precise::cos({x})"
@staticmethod
def i0(x: CSEVariable) -> str:
return f"c10::metal::i0({x})"
@staticmethod
def i0e(x: CSEVariable) -> str:
return f"c10::metal::i0e({x})"
@staticmethod
def i1(x: CSEVariable) -> str:
return f"c10::metal::i1({x})"
@staticmethod
def i1e(x: CSEVariable) -> str:
return f"c10::metal::i1e({x})"
@staticmethod
def erf(x: CSEVariable) -> str:
return f"c10::metal::erf({x})"
@staticmethod
def erfinv(x: CSEVariable) -> str:
return f"c10::metal::erfinv({x})"
@staticmethod
def lgamma(x: CSEVariable) -> str:
return f"c10::metal::log_gamma({x})"
@staticmethod
def polygamma(x: CSEVariable, y: CSEVariable) -> str:
return f"c10::metal::polygamma({x}, {y})"
@staticmethod
def digamma(x: CSEVariable) -> str:
return f"c10::metal::digamma({x})"
@staticmethod
def tan(x: CSEVariable) -> str:
return f"metal::tan({x})"
@staticmethod
def asin(x: CSEVariable) -> str:
return f"metal::asin({x})"
@staticmethod
def acos(x: CSEVariable) -> str:
return f"metal::acos({x})"
@staticmethod
def atan(x: CSEVariable) -> str:
return f"metal::atan({x})"
@staticmethod
def atan2(x: CSEVariable, y: CSEVariable) -> str:
return f"::metal::atan2({x}, {y})"
@staticmethod
def sqrt(x: CSEVariable) -> str:
return f"metal::sqrt({x})"
@staticmethod
def neg(x: CSEVariable) -> str:
# TODO: Does it rely on undefined behavior?
# If so, add special logic for unsigned types
return f"static_cast<decltype({x})>(-{x})"
@staticmethod
def rsqrt(x: CSEVariable) -> str:
return f"metal::rsqrt({x})"
@staticmethod
def tanh(x: CSEVariable) -> str:
return f"metal::tanh({x})"
@staticmethod
def atanh(x: CSEVariable) -> str:
return f"metal::atanh({x})"
@staticmethod
def floordiv(a: CSEVariable, b: CSEVariable) -> str:
# a and b are integer type
quot = f"{a} / {b}"
rem = f"{a} % {b}"
return f"(({a} < 0) != ({b} < 0) ? ({rem} != 0 ? {quot} - 1 : {quot}) : {quot})"
@staticmethod
def floor(x: CSEVariable) -> str:
return f"metal::floor({x})"
@staticmethod
def sign(x: CSEVariable) -> str:
return f"metal::sign({x})"
@staticmethod
def fmod(a: CSEVariable, b: CSEVariable) -> str:
typecast_a = f"static_cast<decltype({a}+{b})>({a})"
typecast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"metal::fmod({typecast_a}, {typecast_b})"
@staticmethod
def trunc(x: CSEVariable) -> str:
return f"metal::trunc({x})"
@staticmethod
def truncdiv(a: CSEVariable, b: CSEVariable) -> str:
# Upcast to float otherwise the generated code doesn't typecheck.
# TODO (dcci): remove this workaround
float_a = f"static_cast<float>({a})" if a.dtype != torch.float else a
float_b = f"static_cast<float>({b})" if b.dtype != torch.float else b
return f"metal::trunc({float_a}/{float_b})"
@staticmethod
def ceil(x: CSEVariable) -> str:
return f"metal::ceil({x})"
@staticmethod
def rand(seed: CSEVariable, offset: CSEVariable) -> str:
return f"c10::metal::rand({seed}, {offset})"
@staticmethod
def randn(seed: CSEVariable, offset: CSEVariable) -> str:
return f"c10::metal::randn({seed}, {offset})"
@staticmethod
def randint64(
seed: CSEVariable, offset: CSEVariable, low: CSEVariable, high: CSEVariable
) -> str:
return f"c10::metal::randint64({seed}, {offset}, {low}, {high})"
@staticmethod
def round(x: CSEVariable) -> str:
return f"metal::round({x})"
@staticmethod
def pow(a: CSEVariable, b: CSEVariable) -> str:
cast_a = f"static_cast<decltype({a}+{b})>({a})"
cast_b = f"static_cast<decltype({a}+{b})>({b})"
return f"metal::pow({cast_a}, {cast_b})"
@staticmethod
def zeta(a: CSEVariable, b: CSEVariable) -> str:
return f"c10::metal::zeta({a}, {b})"
@staticmethod
def spherical_bessel_j0(x: CSEVariable) -> str:
return f"c10::metal::spherical_bessel_j0({x})"
@staticmethod
def xlog1py(x: CSEVariable) -> str:
return f"c10::metal::xlog1py({x})"
@staticmethod
def entr(x: CSEVariable) -> str:
return f"c10::metal::entr({x})"
@staticmethod
def bessel_j0(x: CSEVariable) -> str:
return f"c10::metal::bessel_j0_forward({x})"
@staticmethod
def bessel_j1(x: CSEVariable) -> str:
return f"c10::metal::bessel_j1_forward({x})"
@staticmethod
def bessel_y0(x: CSEVariable) -> str:
return f"c10::metal::bessel_y0_forward({x})"
@staticmethod
def bessel_y1(x: CSEVariable) -> str:
return f"c10::metal::bessel_y1_forward({x})"
@staticmethod
def modified_bessel_i0(x: CSEVariable) -> str:
return f"c10::metal::modified_bessel_i0_forward({x})"
@staticmethod
def modified_bessel_i1(x: CSEVariable) -> str:
return f"c10::metal::modified_bessel_i1_forward({x})"
@staticmethod
def modified_bessel_k0(x: CSEVariable) -> str:
return f"c10::metal::modified_bessel_k0_forward({x})"
@staticmethod
def modified_bessel_k1(x: CSEVariable) -> str:
return f"c10::metal::modified_bessel_k1_forward({x})"
@staticmethod
def scaled_modified_bessel_k0(x: CSEVariable) -> str:
return f"c10::metal::scaled_modified_bessel_k0_forward({x})"
@staticmethod
def scaled_modified_bessel_k1(x: CSEVariable) -> str:
return f"c10::metal::scaled_modified_bessel_k1_forward({x})"
@staticmethod
def chebyshev_polynomial_t(x: CSEVariable, n: CSEVariable) -> str:
return f"c10::metal::chebyshev_polynomial_t_forward({x}, {n})"
@staticmethod
def chebyshev_polynomial_u(x: CSEVariable, n: CSEVariable) -> str:
return f"c10::metal::chebyshev_polynomial_u_forward({x}, {n})"
@staticmethod
def chebyshev_polynomial_v(x: CSEVariable, n: CSEVariable) -> str:
return f"c10::metal::chebyshev_polynomial_v_forward({x}, {n})"
@staticmethod
def chebyshev_polynomial_w(x: CSEVariable, n: CSEVariable) -> str:
return f"c10::metal::chebyshev_polynomial_w_forward({x}, {n})"
@staticmethod
def hermite_polynomial_h(x: CSEVariable, n: CSEVariable) -> str:
return f"c10::metal::hermite_polynomial_h_forward({x}, {n})"
MetalOverrides._initialize_pointwise_overrides("mps")
class MetalKernel(SIMDKernel):
overrides = MetalOverrides # type: ignore[assignment]
suffix = ";"
newvar_prefix = "auto "
max_threadgroup_size = 1024
simd_group_size = 32
pexpr = PythonPrinter().doprint
sexpr = MetalExprPrinter().doprint
kexpr = sexpr
def __init__(
self,
tiling: dict[str, sympy.Expr],
**kwargs: Any,
) -> None:
super().__init__(tiling, **kwargs)
self.acc_var_ids = itertools.count()
self.multistage_reduction = False
def dtype_to_str(self, dtype: torch.dtype) -> str:
return DTYPE_TO_METAL[dtype]
def load(self, name: str, index: sympy.Expr) -> CSEVariable:
"""Codegen a load from an InputBuffer"""
var = self.args.input(name)
index = self.prepare_indexing(index)
line = f"{var}[{self.index_to_str(index)}]"
return self.cse.generate(self.loads, line, dtype=V.graph.get_dtype(name))
def store(
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
) -> None:
var = self.args.output(name)
index = self.prepare_indexing(index)
dtype_str = self.dtype_to_str(V.graph.get_dtype(name))
line = f"{var}[{self.index_to_str(index)}] = static_cast<{dtype_str}>({value});"
if self.inside_reduction:
self.compute.writeline(DeferredLine(name, line))
else:
self.stores.writeline(DeferredLine(name, line))
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable) -> None:
var = self.args.output(name)
index = self.prepare_indexing(index)
dtype_str = self.dtype_to_str(V.graph.get_dtype(name))
reduction_dim = next(t for t in self.range_trees if t.is_reduction)
# Only one thread in the reduction group needs to store the results
line = f"{var}[{self.index_to_str(index)}] = static_cast<{dtype_str}>({value});"
line = f"if ({reduction_dim.name} == 0) {line}"
self.stores.writeline(DeferredLine(name, line))
def _new_idxvar(
self,
dtype: torch.dtype,
elem_count: Optional[int] = None,
default_value: Optional[Any] = None,
is_threadgroup: bool = True,
bounds: ValueRanges[Any] = ValueRanges.unknown(),
) -> CSEVariable:
var_name = f"tmp_acc_{next(self.acc_var_ids)}"
var = V.kernel.create_cse_var(var_name, bounds, dtype)
var_def = "threadgroup " if is_threadgroup else ""
var_def += f"{self.dtype_to_str(dtype)} {var_name}"
if elem_count:
var_def += f"[{elem_count}]"
if default_value is not None:
var_def += f" = {default_value}"
self.indexing_code.writeline(var_def + self.suffix)
return var
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, tuple[CSEVariable, ...]],
) -> Union[CSEVariable, tuple[CSEVariable, ...]]:
"""Codegen a reduction operation"""
# Establish reduction buffer size and index expression
reduction_idx = ""
acc_buf_size = 1
for rd in self.range_trees:
if not rd.is_reduction:
continue
if reduction_idx:
reduction_idx += " + "
reduction_idx += f"{rd.name} * {acc_buf_size}"
acc_buf_size *= rd.numel
acc_buf_size = min(acc_buf_size, self.max_threadgroup_size)
if reduction_type == "any":
acc = self._new_idxvar(dtype)
self.indexing_code.writeline(f"{acc} = false;")
self.indexing_code.writeline(
"threadgroup_barrier(metal::mem_flags::mem_threadgroup);"
)
self.compute.splice(
f"""
if ({value}) {{
{acc} = true;
}}
"""
)
self.stores.writeline(
"threadgroup_barrier(metal::mem_flags::mem_threadgroup);"
)
return acc
if reduction_type in ["prod", "sum"]:
acc_dtype = DTYPE_TO_COMPUTATION_DTYPE[src_dtype]
acc_buf = self._new_idxvar(
acc_dtype, ceildiv(acc_buf_size, self.simd_group_size)
)
if not self.multistage_reduction:
val = value
else:
default_val, reduction_op = (
(0, "+") if reduction_type == "sum" else (1, "*")
)
val = self._new_idxvar(
acc_dtype, default_value=default_val, is_threadgroup=False
)
self.compute.splice(f"{val} {reduction_op}= {value};")
return self.cse.generate(
self.stores,
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {val}, {reduction_idx}, {acc_buf_size})",
dtype=DTYPE_TO_COMPUTATION_DTYPE[dtype],
)
if reduction_type in ["max", "min", "argmin", "argmax"]:
acc_buf = self._new_idxvar(src_dtype, acc_buf_size)
acc_thread_var = f"{acc_buf}[{reduction_idx}]"
src_metal_type = DTYPE_TO_METAL[src_dtype]
if not self.multistage_reduction:
self.compute.splice(
f"{acc_thread_var} = static_cast<{src_metal_type}>({value});"
)
return self.cse.generate(
self.stores,
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {acc_buf_size})",
dtype=dtype,
)
lim_fn = "lowest" if reduction_type.endswith("max") else "max"
self.indexing_code.writeline(
f"{acc_thread_var} = ::metal::numeric_limits<{src_metal_type}>::{lim_fn}();"
)
if reduction_type.startswith("arg"):
idx_var = next(
t for t in self.range_tree_nodes.values() if t.is_reduction
)
idx_acc_buf = self._new_idxvar(torch.long, acc_buf_size)
cmp_op = ">" if reduction_type == "argmax" else "<"
idx_thread_var = f"{idx_acc_buf}[{reduction_idx}]"
self.indexing_code.splice(f"{idx_thread_var} = -1;")
self.compute.splice(f"""
if ({value} {cmp_op} {acc_thread_var}) {{
{acc_thread_var} = {value};
{idx_thread_var} = {idx_var.name};
}}
""")
return self.cse.generate(
self.stores,
f"{idx_acc_buf}[c10::metal::threadgroup_{reduction_type}({acc_buf}, {acc_buf_size})]",
dtype=dtype,
)
self.compute.writeline(
f"{acc_thread_var} = ::c10::metal::{reduction_type}({acc_thread_var}, {value});"
)
return self.cse.generate(
self.stores,
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {acc_buf_size})",
dtype=dtype,
)
if reduction_type == "welford_reduce":
assert not self.multistage_reduction, (
f"Multistage reduction not yet supported for {reduction_type}"
)
acc_buf = self._new_idxvar(src_dtype, acc_buf_size)
self.compute.splice(f"{acc_buf}[{reduction_idx}] = {value};")
wf_res = self.cse.generate(
self.compute,
f"c10::metal::threadgroup_{reduction_type}({acc_buf}, {acc_buf_size})",
)
return OpsWrapper._unwrap(
(f"{wf_res}.x", f"{wf_res}.y", self.features.reduction_numel)
)
raise NotImplementedError(reduction_type)
def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry) -> None:
index_expr = self.rename_indexing(entry.expr)
index_str = self.sexpr(index_expr) # type: ignore[misc]
if entry.is_reduction:
self.multistage_reduction = entry.root.numel > self.max_threadgroup_size
if not entry.is_reduction or not self.multistage_reduction:
self.indexing_code.writeline(
f"{self.index_dtype} {entry.name} = {index_str};"
)
return
# When reducing the thensor whose size exceeds max threadgroup size
# loop over extra indices per reduction thread and perform part of the operation
# using values in the shared memory
loop_size = (
entry.root.numel + self.max_threadgroup_size - 1
) // self.max_threadgroup_size
self.body.writeline(
f"for(auto {entry.name}_cnt = 0; {entry.name}_cnt < {loop_size}; ++{entry.name}_cnt) {{"
)
with self.body.indent():
self.body.writeline(
f"{self.index_dtype} {entry.name} = {loop_size} * {index_str} + {entry.name}_cnt;"
)
# Check that reduction is performed only within tensor boundary
if loop_size * self.max_threadgroup_size != entry.root.numel:
self.body.writeline(f"if ({entry.name} >= {entry.root.numel}) break;")
def codegen_body(self) -> None:
"""
Concat output code from index_code, loads, compute, stores,
suffix into self.body.
For pointwise kernels, this is called just once at the end.
For reduction kernels, this generates a loop over the reduction
axis.
"""
if self.multistage_reduction:
with self.body.indent():
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.writeline("}")
self.multistage_reduction = False
else:
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
self.loads.clear()
self.compute.clear()
self.stores.clear()
def codegen_kernel(self, name: Optional[str] = None) -> str:
"""Called at the end to generate a final kernel string"""
self.codegen_body()
code = IndentedBuffer()
code.writeline('compile_mps_shader("""')
idx_vars = self.active_range_trees()
with code.indent():
code.splice(
"""
#include <c10/metal/random.h>
#include <c10/metal/special_math.h>
#include <c10/metal/utils.h>
""",
strip=True,
)
if self.inside_reduction:
code.writeline("#include <c10/metal/reduction_utils.h>")
if self.inside_reduction:
total_reduction_size = math.prod(
t.numel for t in self.range_trees if t.is_reduction
)
threadgroup_size = min(total_reduction_size, self.max_threadgroup_size)
code.writeline(
f"[[max_total_threads_per_threadgroup({threadgroup_size})]]"
)
code.writeline("kernel void generated_kernel(")
with code.indent():
for outer, inner in self.args.output_buffers.items():
if outer in self.removed_buffers:
continue
dtype_str = self.dtype_to_str(V.graph.get_dtype(outer))
code.writeline(f"device {dtype_str}* {inner},")
for outer, inner in self.args.input_buffers.items():
dtype_str = self.dtype_to_str(V.graph.get_dtype(outer))
code.writeline(f"constant {dtype_str}* {inner},")
for outer, inner in self.args.sizevars.items():
code.writeline(f"constant long& {inner},")
assert len(idx_vars) < 4, "Up to 3 index variables are supported"
thread_pos_dtype = (
f"uint{len(idx_vars)}" if len(idx_vars) > 1 else "uint"
)
thread_pos_var_name = (
idx_vars[0].name if len(idx_vars) == 1 else "thread_pos"
)
thread_pos_suffix = "," if self.inside_reduction else ""
code.writeline(
f"{thread_pos_dtype} {thread_pos_var_name} [[thread_position_in_grid]]{thread_pos_suffix}"
)
if self.inside_reduction:
code.writeline(
f"{thread_pos_dtype} group_pos [[thread_position_in_threadgroup]]"
)
code.writeline(") {")
with code.indent():
if len(idx_vars) > 1:
for idx, var in enumerate(idx_vars):
code.writeline(
f"auto {var.name} = thread_pos.{chr(120 + idx)};"
)
code.splice(self.indexing_code)
code.splice(self.body)
code.writeline("}")
code.writeline('""")')
return code.getvalue()
def call_kernel(self, name: str, node: Any = None) -> None:
"""Codegen a call to this kernel"""
wrapper = V.graph.wrapper_code
args = [*self.args.output_buffers.keys(), *self.args.input_buffers.keys()]
args = [arg for arg in args if arg not in self.removed_buffers]
args += [str(v) for v in self.args.sizevars.keys()]
# For reduction kernels, limit the maximum size over reduction dimentions to
# a maximum threadgroup size
if len(self.active_range_trees()) > 0:
threads = [
self.pexpr(
sympy.Min(v.numel, self.max_threadgroup_size) # type: ignore[misc]
if v.is_reduction
else v.numel
)
for v in self.active_range_trees()
]
args += [f"threads=[{', '.join(threads)}]"]
if self.inside_reduction:
threads = [
self.pexpr(sympy.Min(v.numel, self.max_threadgroup_size)) # type: ignore[misc]
if v.is_reduction
else "1"
for v in self.active_range_trees()
]
args += [f"group_size=[{', '.join(threads)}]"]
wrapper.generate_kernel_call(
name,
args,
device=torch.device("cpu"), # TODO: Fix me, MPS does not expose streams now
triton=False,
)
def check_bounds(
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
) -> None:
if not (lower or upper):
return
# TODO(malfet): support asserts
# See https://github.com/pytorch/pytorch/issues/144634
expr_str = self.index_to_str(expr)
lower_expr = f"{expr_str} < 0" if lower else ""
# TODO(malfet): Is upper bound inclusive or exclusive?
upper_expr = f"{expr_str} > {self.index_to_str(size)}" if upper else ""
if lower and upper:
line = f"if (({lower_expr}) && ({upper_expr})) return"
else:
line = f"if ({lower_expr}{upper_expr}) return"
self.cse.generate(self.compute, line, assignment=False)
class MetalScheduling(SIMDScheduling):
kernel_type = MetalKernel # type: ignore[assignment]
def __init__(self, scheduler: Optional[Scheduler]) -> None:
super().__init__(scheduler)
wrapper = V.graph.wrapper_code
if wrapper is not None:
wrapper.header.splice(
"from torch._inductor.runtime.runtime_utils import compile_mps_shader"
)
def define_kernel(
self, src_code: str, node_schedule: list[SchedulerNode], kernel: MetalKernel
) -> str:
wrapper = V.graph.wrapper_code
if src_code in wrapper.src_to_kernel:
kernel_name = wrapper.src_to_kernel[src_code]
else:
# TODO: Merge multiple kernels into a single library
# Either using MultiKernel concept or overriding SIMDScheduling.codegen_node_scheduling
mps_lib_name = f"mps_lib_{wrapper.next_kernel_suffix()}"
kernel_name = f"{mps_lib_name}.generated_kernel"
wrapper.src_to_kernel[src_code] = kernel_name
origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
metadata_comment = f"{origins}\n{detailed_origins}"
wrapper.define_kernel(mps_lib_name, src_code, metadata_comment)
return kernel_name