mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
* Adding instance weight to batch distill loss as title * add bfloat 16-31 added bfloat 16-31 and their respective unit tests * [CUDA9] Upgrade - fbcode CUDA9 upgrade diff D5654023 has been out for a while thanks to Pieter. But with time growing it's becoming quite hard to rebase, because of the symlinks and auto-generated build/config files in tp2. Break D5654023 into two diffs, one touching tp2 config files, and another one touching fbcode TARGETS file (adding nvcc flag). These two should be a bit easier to rebase (for detailed procedure see "Test Plan"). This diff can only be committed if: 1. CUDA 9 rpm is rolled out fleet-wide (TBD) 2. NVidia driver 390.40 is rolled out fleet-wide (done) 3. Upgrade CUDA 9.1, cudnn 7.1, nccl 2.1 (done) 4. Make sure all dependents are built (done) 5. Test all C2 operators, PyTorch (see test plan) * Share intermediate int32 buffer across Conv ops Adding a known type * [C2 fix] infer function for ensure_cpu_output_op this is adding the missing device funtion for ensure_cpu_output_op * [int8] Add blob serializer/deserializer for Int8TensorCPU To export to logfiledb * [nomnigraph] Add try catch block to optimization passes in predictor This will catch failures that happen in the optimization pass. * Caffe2: avoid static initialization order fiasco for CAFFE_ENFORCE CAFFE_ENFORCE uses strack trace fetcher. Which is currently a global static variable. If at static initialization time CAFFE_ENFORCE is used, this is a SIOF. Recently CAFFE_ENFORCE was added into init functions registration, so we started to see this. Meyers singleton is going to provide safety here. If stacktrace fetcher was not registered yet, it will just use a dummy one. * NUMA support in SparseNN CPU benchmark Adding support for NUMA in SparseNN CPU benchmark * [mobile-roofline] Add logging needed for roofline model This should be all that's needed * Let the operators using the same input if the operators are not chained or else, we have to change the input data dims * fix null-pointer-use UBSAN errors in in reshape_op.h * revert previous fix on input blob name as title * Adding flag to let MineHardNegative automatically extract single value from dict Model exporter requires the output of the model to be a struct. This makes it convenient to use those models directly in MineHardNegative by allow automatic extraction of the single element of dict, which is a common use case. * Reverting change that broke internal tests back to OSS compatible state
1857 lines
67 KiB
Python
1857 lines
67 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
import numpy.testing as npt
|
|
import unittest
|
|
from hypothesis import given
|
|
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
from caffe2.python import (
|
|
layer_model_instantiator,
|
|
core,
|
|
schema,
|
|
workspace,
|
|
)
|
|
from caffe2.python.layers.layers import (
|
|
InstantiationContext,
|
|
)
|
|
from caffe2.python.layers.tags import Tags
|
|
from caffe2.python.layer_test_util import (
|
|
LayersTestCase,
|
|
OpSpec,
|
|
)
|
|
from caffe2.python.layers.layers import (
|
|
IdList,
|
|
set_request_only,
|
|
is_request_only_scalar,
|
|
get_key,
|
|
)
|
|
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TestLayers(LayersTestCase):
|
|
def testAddLoss(self):
|
|
input_record_LR = self.new_record(
|
|
schema.Struct(
|
|
('label', schema.Scalar((np.float64, (1, )))),
|
|
('logit', schema.Scalar((np.float32, (2, )))),
|
|
('weight', schema.Scalar((np.float64, (1, ))))
|
|
)
|
|
)
|
|
loss_LR = self.model.BatchLRLoss(input_record_LR)
|
|
|
|
self.model.add_loss(loss_LR)
|
|
assert 'unnamed' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, tuple())), self.model.loss.unnamed
|
|
)
|
|
self.assertEqual(loss_LR, self.model.loss.unnamed)
|
|
|
|
self.model.add_loss(loss_LR, 'addLoss')
|
|
assert 'addLoss' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, tuple())), self.model.loss.addLoss
|
|
)
|
|
self.assertEqual(loss_LR, self.model.loss.addLoss)
|
|
|
|
self.model.add_loss(
|
|
schema.Scalar(
|
|
dtype=np.float32, blob=core.BlobReference('loss_blob_1')
|
|
), 'addLoss'
|
|
)
|
|
assert 'addLoss_auto_0' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, tuple())), self.model.loss.addLoss_auto_0
|
|
)
|
|
assert core.BlobReference('loss_blob_1') in self.model.loss.field_blobs()
|
|
|
|
self.model.add_loss(
|
|
schema.Struct(
|
|
(
|
|
'structName', schema.Scalar(
|
|
dtype=np.float32,
|
|
blob=core.BlobReference('loss_blob_2')
|
|
)
|
|
)
|
|
), 'addLoss'
|
|
)
|
|
assert 'addLoss_auto_1' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Struct(('structName', schema.Scalar((np.float32, tuple())))),
|
|
self.model.loss.addLoss_auto_1
|
|
)
|
|
assert core.BlobReference('loss_blob_2') in self.model.loss.field_blobs()
|
|
|
|
loss_in_tuple_0 = schema.Scalar(
|
|
dtype=np.float32, blob=core.BlobReference('loss_blob_in_tuple_0')
|
|
)
|
|
|
|
loss_in_tuple_1 = schema.Scalar(
|
|
dtype=np.float32, blob=core.BlobReference('loss_blob_in_tuple_1')
|
|
)
|
|
|
|
loss_tuple = schema.NamedTuple(
|
|
'loss_in_tuple', * [loss_in_tuple_0, loss_in_tuple_1]
|
|
)
|
|
self.model.add_loss(loss_tuple, 'addLoss')
|
|
assert 'addLoss_auto_2' in self.model.loss
|
|
self.assertEqual(
|
|
schema.Struct(
|
|
('loss_in_tuple_0', schema.Scalar((np.float32, tuple()))),
|
|
('loss_in_tuple_1', schema.Scalar((np.float32, tuple())))
|
|
), self.model.loss.addLoss_auto_2
|
|
)
|
|
assert core.BlobReference('loss_blob_in_tuple_0')\
|
|
in self.model.loss.field_blobs()
|
|
assert core.BlobReference('loss_blob_in_tuple_1')\
|
|
in self.model.loss.field_blobs()
|
|
|
|
def testAddOutputSchema(self):
|
|
# add the first field
|
|
self.model.add_output_schema('struct', schema.Struct())
|
|
expected_output_schema = schema.Struct(('struct', schema.Struct()))
|
|
self.assertEqual(
|
|
self.model.output_schema,
|
|
expected_output_schema,
|
|
)
|
|
|
|
# add the second field
|
|
self.model.add_output_schema('scalar', schema.Scalar(np.float64))
|
|
expected_output_schema = schema.Struct(
|
|
('struct', schema.Struct()),
|
|
('scalar', schema.Scalar(np.float64)),
|
|
)
|
|
self.assertEqual(
|
|
self.model.output_schema,
|
|
expected_output_schema,
|
|
)
|
|
|
|
# overwrite a field should raise
|
|
with self.assertRaises(AssertionError):
|
|
self.model.add_output_schema('scalar', schema.Struct())
|
|
|
|
def _test_net(self, net, ops_list):
|
|
"""
|
|
Helper function to assert the net contains some set of operations and
|
|
then to run the net.
|
|
|
|
Inputs:
|
|
net -- the network to test and run
|
|
ops_list -- the list of operation specifications to check for
|
|
in the net
|
|
"""
|
|
ops_output = self.assertNetContainOps(net, ops_list)
|
|
workspace.RunNetOnce(net)
|
|
return ops_output
|
|
|
|
def testFCWithoutBias(self):
|
|
output_dims = 2
|
|
fc_without_bias = self.model.FCWithoutBias(
|
|
self.model.input_feature_schema.float_features, output_dims)
|
|
self.model.output_schema = fc_without_bias
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
fc_without_bias
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
)
|
|
|
|
mat_mul_spec = OpSpec(
|
|
"MatMul",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
init_ops[0].output[0],
|
|
],
|
|
fc_without_bias.field_blobs()
|
|
)
|
|
|
|
self.assertNetContainOps(train_net, [mat_mul_spec])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [mat_mul_spec])
|
|
|
|
def testSparseLookupSumPooling(self):
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('sparse', schema.Struct(
|
|
('sparse_feature_0', schema.List(
|
|
schema.Scalar(np.int64,
|
|
metadata=schema.Metadata(categorical_limit=1000)))),
|
|
)),
|
|
))
|
|
embedding_dim = 64
|
|
embedding_after_pooling = self.model.SparseLookup(
|
|
record.sparse.sparse_feature_0, [embedding_dim], 'Sum')
|
|
self.model.output_schema = schema.Struct()
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (embedding_dim, ))),
|
|
embedding_after_pooling
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
sparse_lookup_op_spec = OpSpec(
|
|
'SparseLengthsSum',
|
|
[
|
|
init_ops[0].output[0],
|
|
record.sparse.sparse_feature_0.items(),
|
|
record.sparse.sparse_feature_0.lengths(),
|
|
],
|
|
[embedding_after_pooling()]
|
|
)
|
|
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
|
|
|
|
@given(
|
|
use_hashing=st.booleans(),
|
|
modulo=st.integers(min_value=100, max_value=200),
|
|
)
|
|
def testSparseFeatureHashIdList(self, use_hashing, modulo):
|
|
record = schema.NewRecord(
|
|
self.model.net,
|
|
schema.List(schema.Scalar(
|
|
np.int64,
|
|
metadata=schema.Metadata(categorical_limit=60000)
|
|
))
|
|
)
|
|
output_schema = self.model.SparseFeatureHash(
|
|
record,
|
|
modulo=modulo,
|
|
use_hashing=use_hashing)
|
|
|
|
self.model.output_schema = output_schema
|
|
|
|
self.assertEqual(len(self.model.layers), 1)
|
|
self.assertEqual(output_schema._items.metadata.categorical_limit,
|
|
modulo)
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
@given(
|
|
use_hashing=st.booleans(),
|
|
modulo=st.integers(min_value=100, max_value=200),
|
|
)
|
|
def testSparseFeatureHashIdScoreList(self, use_hashing, modulo):
|
|
record = schema.NewRecord(self.model.net,
|
|
schema.Map(schema.Scalar(np.int64,
|
|
metadata=schema.Metadata(
|
|
categorical_limit=60000)),
|
|
np.float32))
|
|
|
|
output_schema = self.model.SparseFeatureHash(
|
|
record,
|
|
modulo=modulo,
|
|
use_hashing=use_hashing)
|
|
|
|
self.model.output_schema = output_schema
|
|
|
|
self.assertEqual(len(self.model.layers), 1)
|
|
self.assertEqual(output_schema._items.keys.metadata.categorical_limit,
|
|
modulo)
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
def testSparseLookupIncorrectPositionWeightedOnIdList(self):
|
|
'''
|
|
Currently the implementation of SparseLookup assumed input is id_score_list
|
|
when use PositionWeighted.
|
|
'''
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('sparse', schema.Struct(
|
|
('sparse_feature_0', schema.List(
|
|
schema.Scalar(np.int64,
|
|
metadata=schema.Metadata(categorical_limit=1000)))),
|
|
)),
|
|
))
|
|
|
|
embedding_dim = 64
|
|
with self.assertRaises(AssertionError):
|
|
self.model.SparseLookup(
|
|
record.sparse.sparse_feature_0, [embedding_dim], 'PositionWeighted')
|
|
|
|
def testSparseLookupPositionWeightedOnIdList(self):
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('sparse', schema.Struct(
|
|
('sparse_feature_0', schema.List(
|
|
schema.Scalar(np.int64,
|
|
metadata=schema.Metadata(categorical_limit=1000)))),
|
|
)),
|
|
))
|
|
|
|
# convert id_list to id_score_list with PositionWeighted layer
|
|
sparse_segment = record.sparse.sparse_feature_0
|
|
pos_w_layer = self.model.PositionWeighted(sparse_segment)
|
|
|
|
sparse_segment = schema.Map(
|
|
keys=get_key(sparse_segment),
|
|
values=pos_w_layer.position_weights,
|
|
lengths_blob=sparse_segment.lengths
|
|
)
|
|
|
|
embedding_dim = 64
|
|
embedding_after_pooling = self.model.SparseLookup(
|
|
sparse_segment, [embedding_dim], 'PositionWeighted')
|
|
self.model.output_schema = schema.Struct()
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (embedding_dim, ))),
|
|
embedding_after_pooling
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("ConstantFill", None, None), # position_weights/pos_w
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
self.assertNetContainOps(train_net, [
|
|
OpSpec("LengthsRangeFill", None, None),
|
|
OpSpec("Gather", None, None),
|
|
OpSpec("SparseLengthsWeightedSum", None, None),
|
|
])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [
|
|
OpSpec("LengthsRangeFill", None, None),
|
|
OpSpec("Gather", None, None),
|
|
OpSpec("SparseLengthsWeightedSum", None, None),
|
|
])
|
|
|
|
def testSparseLookupPositionWeightedOnIdScoreList(self):
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('sparse', schema.Struct(
|
|
('id_score_list_0', schema.Map(
|
|
schema.Scalar(
|
|
np.int64,
|
|
metadata=schema.Metadata(
|
|
categorical_limit=1000
|
|
),
|
|
),
|
|
np.float32
|
|
)),
|
|
)),
|
|
))
|
|
|
|
embedding_dim = 64
|
|
embedding_after_pooling = self.model.SparseLookup(
|
|
record.sparse.id_score_list_0, [embedding_dim], 'PositionWeighted')
|
|
self.model.output_schema = schema.Struct()
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (embedding_dim, ))),
|
|
embedding_after_pooling
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
sparse_lookup_op_spec = OpSpec(
|
|
'SparseLengthsWeightedSum',
|
|
[
|
|
init_ops[0].output[0],
|
|
record.sparse.id_score_list_0.values(),
|
|
record.sparse.id_score_list_0.keys(),
|
|
record.sparse.id_score_list_0.lengths(),
|
|
],
|
|
[embedding_after_pooling()]
|
|
)
|
|
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
|
|
|
|
def testPairwiseDotProductWithAllEmbeddings(self):
|
|
embedding_dim = 64
|
|
N = 5
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('all_embeddings', schema.Scalar(
|
|
((np.float32, (N, embedding_dim)))
|
|
)),
|
|
))
|
|
current = self.model.PairwiseDotProduct(
|
|
record, N * N)
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (N * N, ))),
|
|
current
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
self.assertNetContainOps(train_init_net, [])
|
|
self.assertNetContainOps(train_net, [
|
|
OpSpec("BatchMatMul", None, None),
|
|
OpSpec("Flatten", None, None),
|
|
])
|
|
|
|
def testPairwiseDotProductWithXandYEmbeddings(self):
|
|
embedding_dim = 64
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('x_embeddings', schema.Scalar(
|
|
((np.float32, (5, embedding_dim)))
|
|
)),
|
|
('y_embeddings', schema.Scalar(
|
|
((np.float32, (6, embedding_dim)))
|
|
)),
|
|
))
|
|
current = self.model.PairwiseDotProduct(
|
|
record, 5 * 6)
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (5 * 6, ))),
|
|
current
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
self.assertNetContainOps(train_init_net, [])
|
|
self.assertNetContainOps(train_net, [
|
|
OpSpec("BatchMatMul", None, None),
|
|
OpSpec("Flatten", None, None),
|
|
])
|
|
|
|
def testPairwiseDotProductWithXandYEmbeddingsAndGather(self):
|
|
embedding_dim = 64
|
|
|
|
output_idx = [1, 3, 5]
|
|
output_idx_blob = self.model.add_global_constant(
|
|
str(self.model.net.NextScopedBlob('pairwise_dot_product_gather')),
|
|
output_idx,
|
|
dtype=np.int32,
|
|
)
|
|
indices_to_gather = schema.Scalar(
|
|
(np.int32, len(output_idx)),
|
|
output_idx_blob,
|
|
)
|
|
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('x_embeddings', schema.Scalar(
|
|
((np.float32, (5, embedding_dim)))
|
|
)),
|
|
('y_embeddings', schema.Scalar(
|
|
((np.float32, (6, embedding_dim)))
|
|
)),
|
|
('indices_to_gather', indices_to_gather),
|
|
))
|
|
current = self.model.PairwiseDotProduct(
|
|
record, len(output_idx))
|
|
|
|
# This assert is not necessary,
|
|
# output size is passed into PairwiseDotProduct
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (len(output_idx), ))),
|
|
current
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
self.assertNetContainOps(train_init_net, [])
|
|
self.assertNetContainOps(train_net, [
|
|
OpSpec("BatchMatMul", None, None),
|
|
OpSpec("Flatten", None, None),
|
|
OpSpec("BatchGather", None, None),
|
|
])
|
|
|
|
def testPairwiseDotProductIncorrectInput(self):
|
|
embedding_dim = 64
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('x_embeddings', schema.Scalar(
|
|
((np.float32, (5, embedding_dim)))
|
|
)),
|
|
))
|
|
with self.assertRaises(AssertionError):
|
|
self.model.PairwiseDotProduct(
|
|
record, 25)
|
|
|
|
record = schema.NewRecord(self.model.net, schema.Struct(
|
|
('all_embeddings', schema.List(np.float32))
|
|
))
|
|
with self.assertRaises(AssertionError):
|
|
self.model.PairwiseDotProduct(
|
|
record, 25)
|
|
|
|
def testConcat(self):
|
|
embedding_dim = 64
|
|
input_record = self.new_record(schema.Struct(
|
|
('input1', schema.Scalar((np.float32, (embedding_dim, )))),
|
|
('input2', schema.Scalar((np.float32, (embedding_dim, )))),
|
|
('input3', schema.Scalar((np.float32, (embedding_dim, )))),
|
|
))
|
|
|
|
output = self.model.Concat(input_record)
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, ((len(input_record.fields) * embedding_dim, )))),
|
|
output
|
|
)
|
|
|
|
# Note that in Concat layer we assume first dimension is batch.
|
|
# so input is B * embedding_dim
|
|
# add_axis=1 make it B * 1 * embedding_dim
|
|
# concat on axis=1 make it B * N * embedding_dim
|
|
output = self.model.Concat(input_record, axis=1, add_axis=1)
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, ((len(input_record.fields), embedding_dim)))),
|
|
output
|
|
)
|
|
|
|
def testSamplingTrain(self):
|
|
output_dims = 1000
|
|
|
|
indices = self.new_record(schema.Scalar((np.int32, (10,))))
|
|
sampling_prob = self.new_record(schema.Scalar((np.float32, (10, ))))
|
|
|
|
sampled_fc = self.model.SamplingTrain(
|
|
schema.Struct(
|
|
('input', self.model.input_feature_schema.float_features),
|
|
('indices', indices),
|
|
('sampling_prob', sampling_prob),
|
|
),
|
|
"FC",
|
|
output_dims,
|
|
)
|
|
self.model.output_schema = sampled_fc
|
|
|
|
# Check that we don't add prediction layer into the model
|
|
self.assertEqual(1, len(self.model.layers))
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
sampled_fc
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
)
|
|
|
|
sampled_fc_layer = self.model.layers[0]
|
|
|
|
gather_w_spec = OpSpec(
|
|
"Gather",
|
|
[
|
|
init_ops[0].output[0],
|
|
indices(),
|
|
],
|
|
[
|
|
sampled_fc_layer._prediction_layer.train_param_blobs[0]
|
|
]
|
|
)
|
|
gather_b_spec = OpSpec(
|
|
"Gather",
|
|
[
|
|
init_ops[1].output[0],
|
|
indices(),
|
|
],
|
|
[
|
|
sampled_fc_layer._prediction_layer.train_param_blobs[1]
|
|
]
|
|
)
|
|
train_fc_spec = OpSpec(
|
|
"FC",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
] + sampled_fc_layer._prediction_layer.train_param_blobs,
|
|
sampled_fc.field_blobs()
|
|
)
|
|
log_spec = OpSpec("Log", [sampling_prob()], [None])
|
|
sub_spec = OpSpec(
|
|
"Sub",
|
|
[sampled_fc.field_blobs()[0], None],
|
|
sampled_fc.field_blobs()
|
|
)
|
|
|
|
train_ops = self.assertNetContainOps(
|
|
train_net,
|
|
[gather_w_spec, gather_b_spec, train_fc_spec, log_spec, sub_spec])
|
|
|
|
self.assertEqual(train_ops[3].output[0], train_ops[4].input[1])
|
|
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(
|
|
predict_net,
|
|
[
|
|
OpSpec(
|
|
"FC",
|
|
[
|
|
self.model.input_feature_schema.float_features(),
|
|
init_ops[0].output[0],
|
|
init_ops[1].output[0],
|
|
],
|
|
sampled_fc.field_blobs()
|
|
)
|
|
]
|
|
)
|
|
|
|
def testDistillBatchLRLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float64, (1,)))),
|
|
('logit', schema.Scalar((np.float32, (2,)))),
|
|
('teacher_label', schema.Scalar((np.float32(1,)))),
|
|
('weight', schema.Scalar((np.float64, (1,))))
|
|
))
|
|
loss = self.model.BatchDistillLRLoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
|
|
def testBatchLRLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float64, (1,)))),
|
|
('logit', schema.Scalar((np.float32, (2,)))),
|
|
('weight', schema.Scalar((np.float64, (1,))))
|
|
))
|
|
loss = self.model.BatchLRLoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testMarginRankLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('pos_prediction', schema.Scalar((np.float32, (1,)))),
|
|
('neg_prediction', schema.List(np.float32)),
|
|
))
|
|
pos_items = np.array([0.1, 0.2, 0.3], dtype=np.float32)
|
|
neg_lengths = np.array([1, 2, 3], dtype=np.int32)
|
|
neg_items = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=np.float32)
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[pos_items, neg_lengths, neg_items]
|
|
)
|
|
loss = self.model.MarginRankLoss(input_record)
|
|
self.run_train_net_forward_only()
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testBatchMSELoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float64, (1,)))),
|
|
('prediction', schema.Scalar((np.float32, (2,)))),
|
|
))
|
|
loss = self.model.BatchMSELoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testBatchSigmoidCrossEntropyLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float32, (32,)))),
|
|
('prediction', schema.Scalar((np.float32, (32,))))
|
|
))
|
|
loss = self.model.BatchSigmoidCrossEntropyLoss(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
|
|
|
|
def testBatchSoftmaxLoss(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float32, tuple()))),
|
|
('prediction', schema.Scalar((np.float32, (32,))))
|
|
))
|
|
loss = self.model.BatchSoftmaxLoss(input_record)
|
|
self.assertEqual(schema.Struct(
|
|
('softmax', schema.Scalar((np.float32, (32,)))),
|
|
('loss', schema.Scalar(np.float32)),
|
|
), loss)
|
|
|
|
def testBatchSoftmaxLossWeight(self):
|
|
input_record = self.new_record(schema.Struct(
|
|
('label', schema.Scalar((np.float32, tuple()))),
|
|
('prediction', schema.Scalar((np.float32, (32,)))),
|
|
('weight', schema.Scalar((np.float64, (1,))))
|
|
))
|
|
loss = self.model.BatchSoftmaxLoss(input_record)
|
|
self.assertEqual(schema.Struct(
|
|
('softmax', schema.Scalar((np.float32, (32,)))),
|
|
('loss', schema.Scalar(np.float32)),
|
|
), loss)
|
|
|
|
@given(
|
|
X=hu.arrays(dims=[2, 5]),
|
|
)
|
|
def testBatchNormalization(self, X):
|
|
input_record = self.new_record(schema.Scalar((np.float32, (5,))))
|
|
schema.FeedRecord(input_record, [X])
|
|
bn_output = self.model.BatchNormalization(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, (5,))), bn_output)
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("ConstantFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
|
|
input_blob = input_record.field_blobs()[0]
|
|
output_blob = bn_output.field_blobs()[0]
|
|
|
|
expand_dims_spec = OpSpec(
|
|
"ExpandDims",
|
|
[input_blob],
|
|
None,
|
|
)
|
|
|
|
train_bn_spec = OpSpec(
|
|
"SpatialBN",
|
|
[None, init_ops[0].output[0], init_ops[1].output[0],
|
|
init_ops[2].output[0], init_ops[3].output[0]],
|
|
[output_blob, init_ops[2].output[0], init_ops[3].output[0], None, None],
|
|
{'is_test': 0, 'order': 'NCHW', 'momentum': 0.9},
|
|
)
|
|
|
|
test_bn_spec = OpSpec(
|
|
"SpatialBN",
|
|
[None, init_ops[0].output[0], init_ops[1].output[0],
|
|
init_ops[2].output[0], init_ops[3].output[0]],
|
|
[output_blob],
|
|
{'is_test': 1, 'order': 'NCHW', 'momentum': 0.9},
|
|
)
|
|
|
|
squeeze_spec = OpSpec(
|
|
"Squeeze",
|
|
[output_blob],
|
|
[output_blob],
|
|
)
|
|
|
|
self.assertNetContainOps(
|
|
train_net,
|
|
[expand_dims_spec, train_bn_spec, squeeze_spec]
|
|
)
|
|
|
|
eval_net = self.get_eval_net()
|
|
|
|
self.assertNetContainOps(
|
|
eval_net,
|
|
[expand_dims_spec, test_bn_spec, squeeze_spec]
|
|
)
|
|
|
|
predict_net = self.get_predict_net()
|
|
|
|
self.assertNetContainOps(
|
|
predict_net,
|
|
[expand_dims_spec, test_bn_spec, squeeze_spec]
|
|
)
|
|
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
|
|
schema.FeedRecord(input_record, [X])
|
|
workspace.RunNetOnce(eval_net)
|
|
|
|
schema.FeedRecord(input_record, [X])
|
|
workspace.RunNetOnce(predict_net)
|
|
|
|
@given(
|
|
X=hu.arrays(dims=[5, 2]),
|
|
num_to_collect=st.integers(min_value=1, max_value=10),
|
|
)
|
|
def testLastNWindowCollector(self, X, num_to_collect):
|
|
input_record = self.new_record(schema.Scalar(np.float32))
|
|
schema.FeedRecord(input_record, [X])
|
|
last_n = self.model.LastNWindowCollector(input_record, num_to_collect)
|
|
self.run_train_net_forward_only()
|
|
output_record = schema.FetchRecord(last_n.last_n)
|
|
start = max(0, 5 - num_to_collect)
|
|
npt.assert_array_equal(X[start:], output_record())
|
|
num_visited = schema.FetchRecord(last_n.num_visited)
|
|
npt.assert_array_equal([5], num_visited())
|
|
|
|
@given(
|
|
X=hu.arrays(dims=[5, 2]),
|
|
num_to_collect=st.integers(min_value=3, max_value=3),
|
|
)
|
|
def testReservoirSamplingWithID(self, X, num_to_collect):
|
|
ID = np.array([1, 2, 3, 1, 2], dtype=np.int64)
|
|
input_record = self.new_record(
|
|
schema.Struct(
|
|
('record', schema.Struct(
|
|
('dense', schema.Scalar()),
|
|
)),
|
|
('object_id', schema.Scalar(np.int64)),
|
|
)
|
|
)
|
|
schema.FeedRecord(input_record, [X, ID])
|
|
packed_record = self.model.PackRecords(
|
|
input_record.record, 1, fields=input_record.record.field_names())
|
|
reservoir_input = schema.Struct(
|
|
('data', packed_record),
|
|
('object_id', input_record.object_id),
|
|
)
|
|
reservoir = self.model.ReservoirSampling(
|
|
reservoir_input, num_to_collect)
|
|
self.model.output_schema = schema.Struct()
|
|
train_init_net, train_net = \
|
|
layer_model_instantiator.generate_training_nets_forward_only(
|
|
self.model)
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.CreateNet(train_net)
|
|
workspace.RunNet(train_net.Proto().name, num_iter=2)
|
|
num_visited = schema.FetchRecord(reservoir.num_visited)
|
|
npt.assert_array_equal([3], num_visited())
|
|
for param in self.model.params:
|
|
serialized = workspace.SerializeBlob(str(param))
|
|
workspace.DeserializeBlob(str(param), serialized)
|
|
ID = np.array([3, 5, 3, 3, 5], dtype=np.int64)
|
|
schema.FeedRecord(input_record.object_id, [ID])
|
|
workspace.RunNet(train_net.Proto().name, num_iter=2)
|
|
num_visited = schema.FetchRecord(reservoir.num_visited)
|
|
npt.assert_array_equal([2], num_visited())
|
|
|
|
def testUniformSampling(self):
|
|
input_record = self.new_record(schema.Scalar(np.int32))
|
|
input_array = np.array([3, 10, 11, 15, 20, 99], dtype=np.int32)
|
|
schema.FeedRecord(input_record, [input_array])
|
|
num_samples = 20
|
|
num_elements = 100
|
|
uniform_sampling_output = self.model.UniformSampling(
|
|
input_record, num_samples, num_elements)
|
|
self.model.loss = uniform_sampling_output
|
|
self.run_train_net()
|
|
samples = workspace.FetchBlob(uniform_sampling_output.samples())
|
|
sampling_prob = workspace.FetchBlob(
|
|
uniform_sampling_output.sampling_prob())
|
|
self.assertEqual(num_samples, len(samples))
|
|
np.testing.assert_array_equal(input_array, samples[:len(input_array)])
|
|
np.testing.assert_almost_equal(
|
|
np.array([float(num_samples) / num_elements] * num_samples,
|
|
dtype=np.float32),
|
|
sampling_prob
|
|
)
|
|
|
|
def testUniformSamplingWithIncorrectSampleSize(self):
|
|
input_record = self.new_record(schema.Scalar(np.int32))
|
|
num_samples = 200
|
|
num_elements = 100
|
|
with self.assertRaises(AssertionError):
|
|
self.model.UniformSampling(input_record, num_samples, num_elements)
|
|
|
|
def testGatherRecord(self):
|
|
indices = np.array([1, 3, 4], dtype=np.int32)
|
|
dense = np.array(list(range(20)), dtype=np.float32).reshape(10, 2)
|
|
lengths = np.array(list(range(10)), dtype=np.int32)
|
|
items = np.array(list(range(lengths.sum())), dtype=np.int64)
|
|
items_lengths = np.array(list(range(lengths.sum())), dtype=np.int32)
|
|
items_items = np.array(list(range(items_lengths.sum())), dtype=np.int64)
|
|
record = self.new_record(schema.Struct(
|
|
('dense', schema.Scalar(np.float32)),
|
|
('sparse', schema.Struct(
|
|
('list', schema.List(np.int64)),
|
|
('list_of_list', schema.List(schema.List(np.int64))),
|
|
)),
|
|
('empty_struct', schema.Struct())
|
|
))
|
|
indices_record = self.new_record(schema.Scalar(np.int32))
|
|
input_record = schema.Struct(
|
|
('indices', indices_record),
|
|
('record', record),
|
|
)
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[indices, dense, lengths, items, lengths, items_lengths,
|
|
items_items])
|
|
gathered_record = self.model.GatherRecord(input_record)
|
|
self.assertTrue(schema.equal_schemas(gathered_record, record))
|
|
|
|
self.run_train_net_forward_only()
|
|
gathered_dense = workspace.FetchBlob(gathered_record.dense())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([dense[i:i + 1] for i in indices]), gathered_dense)
|
|
gathered_lengths = workspace.FetchBlob(
|
|
gathered_record.sparse.list.lengths())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([lengths[i:i + 1] for i in indices]),
|
|
gathered_lengths)
|
|
gathered_items = workspace.FetchBlob(
|
|
gathered_record.sparse.list.items())
|
|
offsets = lengths.cumsum() - lengths
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items[offsets[i]: offsets[i] + lengths[i]]
|
|
for i in indices
|
|
]), gathered_items)
|
|
|
|
gathered_items_lengths = workspace.FetchBlob(
|
|
gathered_record.sparse.list_of_list.items.lengths())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items_lengths[offsets[i]: offsets[i] + lengths[i]]
|
|
for i in indices
|
|
]),
|
|
gathered_items_lengths
|
|
)
|
|
|
|
nested_offsets = []
|
|
nested_lengths = []
|
|
nested_offset = 0
|
|
j = 0
|
|
for l in lengths:
|
|
nested_offsets.append(nested_offset)
|
|
nested_length = 0
|
|
for _i in range(l):
|
|
nested_offset += items_lengths[j]
|
|
nested_length += items_lengths[j]
|
|
j += 1
|
|
nested_lengths.append(nested_length)
|
|
|
|
gathered_items_items = workspace.FetchBlob(
|
|
gathered_record.sparse.list_of_list.items.items())
|
|
np.testing.assert_array_equal(
|
|
np.concatenate([
|
|
items_items[nested_offsets[i]:
|
|
nested_offsets[i] + nested_lengths[i]]
|
|
for i in indices
|
|
]),
|
|
gathered_items_items
|
|
)
|
|
|
|
def testMapToRange(self):
|
|
input_record = self.new_record(schema.Scalar(np.int32))
|
|
indices_blob = self.model.MapToRange(input_record,
|
|
max_index=100).indices
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([10, 3, 20, 99, 15, 11, 3, 11], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([1, 2, 3, 4, 5, 6, 2, 6], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([10, 3, 23, 35, 60, 15, 10, 15], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(train_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([1, 2, 7, 8, 9, 5, 1, 5], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
eval_net = self.get_eval_net()
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([10, 3, 23, 35, 60, 15, 200], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(eval_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([1, 2, 7, 8, 9, 5, 0], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([10, 3, 23, 15, 101, 115], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(eval_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([1, 2, 7, 5, 0, 0], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
predict_net = self.get_predict_net()
|
|
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array([3, 3, 20, 23, 151, 35, 60, 15, 200], dtype=np.int32)]
|
|
)
|
|
workspace.RunNetOnce(predict_net)
|
|
indices = workspace.FetchBlob(indices_blob())
|
|
np.testing.assert_array_equal(
|
|
np.array([2, 2, 3, 7, 0, 8, 9, 5, 0], dtype=np.int32),
|
|
indices
|
|
)
|
|
|
|
def testSelectRecordByContext(self):
|
|
float_features = self.model.input_feature_schema.float_features
|
|
|
|
float_array = np.array([1.0, 2.0], dtype=np.float32)
|
|
|
|
schema.FeedRecord(float_features, [float_array])
|
|
|
|
with Tags(Tags.EXCLUDE_FROM_PREDICTION):
|
|
log_float_features = self.model.Log(float_features, 1)
|
|
joined = self.model.SelectRecordByContext(
|
|
schema.Struct(
|
|
(InstantiationContext.PREDICTION, float_features),
|
|
(InstantiationContext.TRAINING, log_float_features),
|
|
# TODO: TRAIN_ONLY layers are also generated in eval
|
|
(InstantiationContext.EVAL, log_float_features),
|
|
)
|
|
)
|
|
|
|
# model.output_schema has to a struct
|
|
self.model.output_schema = schema.Struct((
|
|
'joined', joined
|
|
))
|
|
predict_net = layer_model_instantiator.generate_predict_net(self.model)
|
|
workspace.RunNetOnce(predict_net)
|
|
predict_output = schema.FetchRecord(predict_net.output_record())
|
|
npt.assert_array_equal(float_array,
|
|
predict_output['joined']())
|
|
eval_net = layer_model_instantiator.generate_eval_net(self.model)
|
|
workspace.RunNetOnce(eval_net)
|
|
eval_output = schema.FetchRecord(eval_net.output_record())
|
|
npt.assert_array_equal(np.log(float_array),
|
|
eval_output['joined']())
|
|
_, train_net = (
|
|
layer_model_instantiator.generate_training_nets_forward_only(
|
|
self.model
|
|
)
|
|
)
|
|
workspace.RunNetOnce(train_net)
|
|
train_output = schema.FetchRecord(train_net.output_record())
|
|
npt.assert_array_equal(np.log(float_array),
|
|
train_output['joined']())
|
|
|
|
def testFunctionalLayer(self):
|
|
def normalize(net, in_record, out_record):
|
|
mean = net.ReduceFrontMean(in_record(), 1)
|
|
net.Sub(
|
|
[in_record(), mean],
|
|
out_record(),
|
|
broadcast=1)
|
|
normalized = self.model.Functional(
|
|
self.model.input_feature_schema.float_features, 1,
|
|
normalize, name="normalizer")
|
|
|
|
# Attach metadata to one of the outputs and use it in FC
|
|
normalized.set_type((np.float32, 32))
|
|
self.model.output_schema = self.model.FC(normalized, 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 3
|
|
assert ops[0].type == "ReduceFrontMean"
|
|
assert ops[1].type == "Sub"
|
|
assert ops[2].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[1].output) == 1
|
|
assert ops[1].output[0] in ops[2].input
|
|
|
|
def testFunctionalLayerHelper(self):
|
|
mean = self.model.ReduceFrontMean(
|
|
self.model.input_feature_schema.float_features, 1)
|
|
normalized = self.model.Sub(
|
|
schema.Tuple(
|
|
self.model.input_feature_schema.float_features, mean),
|
|
1, broadcast=1)
|
|
# Attach metadata to one of the outputs and use it in FC
|
|
normalized.set_type((np.float32, (32,)))
|
|
self.model.output_schema = self.model.FC(normalized, 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 3
|
|
assert ops[0].type == "ReduceFrontMean"
|
|
assert ops[1].type == "Sub"
|
|
assert ops[2].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[1].output) == 1
|
|
assert ops[1].output[0] in ops[2].input
|
|
|
|
def testFunctionalLayerHelperAutoInference(self):
|
|
softsign = self.model.Softsign(
|
|
schema.Tuple(self.model.input_feature_schema.float_features),
|
|
1)
|
|
assert softsign.field_type().base == np.float32
|
|
assert softsign.field_type().shape == (32,)
|
|
self.model.output_schema = self.model.FC(softsign, 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 2
|
|
assert ops[0].type == "Softsign"
|
|
assert ops[1].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[0].output) == 1
|
|
assert ops[0].output[0] in ops[1].input
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
|
|
def testHalfToFloatTypeInference(self):
|
|
input = self.new_record(schema.Scalar((np.float32, (32,))))
|
|
|
|
output = self.model.FloatToHalf(input, 1)
|
|
assert output.field_type().base == np.float16
|
|
assert output.field_type().shape == (32, )
|
|
|
|
output = self.model.HalfToFloat(output, 1)
|
|
assert output.field_type().base == np.float32
|
|
assert output.field_type().shape == (32, )
|
|
|
|
def testFunctionalLayerHelperAutoInferenceScalar(self):
|
|
loss = self.model.AveragedLoss(self.model.input_feature_schema, 1)
|
|
self.assertEqual(1, len(loss.field_types()))
|
|
self.assertEqual(np.float32, loss.field_types()[0].base)
|
|
self.assertEqual(tuple(), loss.field_types()[0].shape)
|
|
|
|
def testFunctionalLayerInputCoercion(self):
|
|
one = self.model.global_constants['ONE']
|
|
two = self.model.Add([one, one], 1)
|
|
self.model.loss = two
|
|
self.run_train_net()
|
|
data = workspace.FetchBlob(two.field_blobs()[0])
|
|
np.testing.assert_array_equal([2.0], data)
|
|
|
|
def testFunctionalLayerWithOutputNames(self):
|
|
k = 3
|
|
topk = self.model.TopK(
|
|
self.model.input_feature_schema,
|
|
output_names_or_num=['values', 'indices'],
|
|
k=k,
|
|
)
|
|
self.assertEqual(2, len(topk.field_types()))
|
|
self.assertEqual(np.float32, topk.field_types()[0].base)
|
|
self.assertEqual((k,), topk.field_types()[0].shape)
|
|
self.assertEqual(np.int32, topk.field_types()[1].base)
|
|
self.assertEqual((k,), topk.field_types()[1].shape)
|
|
self.assertEqual(['TopK/values', 'TopK/indices'], topk.field_blobs())
|
|
|
|
def testFunctionalLayerSameOperatorOutputNames(self):
|
|
Con1 = self.model.ConstantFill([], 1, value=1)
|
|
Con2 = self.model.ConstantFill([], 1, value=2)
|
|
self.assertNotEqual(str(Con1), str(Con2))
|
|
|
|
def testFunctionalLayerWithOutputDtypes(self):
|
|
loss = self.model.AveragedLoss(
|
|
self.model.input_feature_schema,
|
|
1,
|
|
output_dtypes=(np.float32, (1,)),
|
|
)
|
|
self.assertEqual(1, len(loss.field_types()))
|
|
self.assertEqual(np.float32, loss.field_types()[0].base)
|
|
self.assertEqual((1,), loss.field_types()[0].shape)
|
|
|
|
def testPropagateRequestOnly(self):
|
|
# test case when output is request only
|
|
input_record = self.new_record(schema.Struct(
|
|
('input1', schema.Scalar((np.float32, (32, )))),
|
|
('input2', schema.Scalar((np.float32, (64, )))),
|
|
('input3', schema.Scalar((np.float32, (16, )))),
|
|
))
|
|
|
|
set_request_only(input_record)
|
|
concat_output = self.model.Concat(input_record)
|
|
self.assertEqual(is_request_only_scalar(concat_output), True)
|
|
|
|
# test case when output is not request only
|
|
input_record2 = self.new_record(schema.Struct(
|
|
('input4', schema.Scalar((np.float32, (100, ))))
|
|
)) + input_record
|
|
|
|
concat_output2 = self.model.Concat(input_record2)
|
|
self.assertEqual(is_request_only_scalar(concat_output2), False)
|
|
|
|
def testSetRequestOnly(self):
|
|
input_record = schema.Scalar(np.int64)
|
|
schema.attach_metadata_to_scalars(
|
|
input_record,
|
|
schema.Metadata(
|
|
categorical_limit=100000000,
|
|
expected_value=99,
|
|
feature_specs=schema.FeatureSpec(
|
|
feature_ids=[1, 100, 1001]
|
|
)
|
|
)
|
|
)
|
|
|
|
set_request_only(input_record)
|
|
self.assertEqual(input_record.metadata.categorical_limit, 100000000)
|
|
self.assertEqual(input_record.metadata.expected_value, 99)
|
|
self.assertEqual(
|
|
input_record.metadata.feature_specs.feature_ids,
|
|
[1, 100, 1001]
|
|
)
|
|
|
|
@given(
|
|
X=hu.arrays(dims=[5, 5]), # Shape of X is irrelevant
|
|
)
|
|
def testDropout(self, X):
|
|
input_record = self.new_record(schema.Scalar((np.float32, (1,))))
|
|
schema.FeedRecord(input_record, [X])
|
|
d_output = self.model.Dropout(input_record)
|
|
self.assertEqual(schema.Scalar((np.float32, (1,))), d_output)
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
input_blob = input_record.field_blobs()[0]
|
|
output_blob = d_output.field_blobs()[0]
|
|
|
|
train_d_spec = OpSpec(
|
|
"Dropout",
|
|
[input_blob],
|
|
[output_blob, None],
|
|
{'is_test': 0, 'ratio': 0.5}
|
|
)
|
|
|
|
test_d_spec = OpSpec(
|
|
"Dropout",
|
|
[input_blob],
|
|
[output_blob, None],
|
|
{'is_test': 1, 'ratio': 0.5}
|
|
)
|
|
|
|
self.assertNetContainOps(
|
|
train_net,
|
|
[train_d_spec]
|
|
)
|
|
|
|
eval_net = self.get_eval_net()
|
|
|
|
self.assertNetContainOps(
|
|
eval_net,
|
|
[test_d_spec]
|
|
)
|
|
|
|
predict_net = self.get_predict_net()
|
|
|
|
self.assertNetContainOps(
|
|
predict_net,
|
|
[test_d_spec]
|
|
)
|
|
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
|
|
schema.FeedRecord(input_record, [X])
|
|
workspace.RunNetOnce(eval_net)
|
|
|
|
schema.FeedRecord(input_record, [X])
|
|
workspace.RunNetOnce(predict_net)
|
|
|
|
@given(
|
|
num_inputs=st.integers(1, 3),
|
|
batch_size=st.integers(5, 10)
|
|
)
|
|
def testMergeIdListsLayer(self, num_inputs, batch_size):
|
|
inputs = []
|
|
for _ in range(num_inputs):
|
|
lengths = np.random.randint(5, size=batch_size).astype(np.int32)
|
|
size = lengths.sum()
|
|
values = np.random.randint(1, 10, size=size).astype(np.int64)
|
|
inputs.append(lengths)
|
|
inputs.append(values)
|
|
input_schema = schema.Tuple(
|
|
*[schema.List(
|
|
schema.Scalar(dtype=np.int64, metadata=schema.Metadata(
|
|
categorical_limit=20
|
|
))) for _ in range(num_inputs)]
|
|
)
|
|
|
|
input_record = schema.NewRecord(self.model.net, input_schema)
|
|
schema.FeedRecord(input_record, inputs)
|
|
output_schema = self.model.MergeIdLists(input_record)
|
|
assert schema.equal_schemas(
|
|
output_schema, IdList,
|
|
check_field_names=False)
|
|
|
|
@given(
|
|
batch_size=st.integers(min_value=2, max_value=10),
|
|
input_dims=st.integers(min_value=5, max_value=10),
|
|
output_dims=st.integers(min_value=5, max_value=10),
|
|
bandwidth=st.floats(min_value=0.1, max_value=5),
|
|
)
|
|
def testRandomFourierFeatures(self, batch_size, input_dims, output_dims, bandwidth):
|
|
|
|
def _rff_hypothesis_test(rff_output, X, W, b, scale):
|
|
"""
|
|
Runs hypothesis test for Semi Random Features layer.
|
|
|
|
Inputs:
|
|
rff_output -- output of net after running random fourier features layer
|
|
X -- input data
|
|
W -- weight parameter from train_init_net
|
|
b -- bias parameter from train_init_net
|
|
scale -- value by which to scale the output vector
|
|
"""
|
|
output = workspace.FetchBlob(rff_output)
|
|
output_ref = scale * np.cos(np.dot(X, np.transpose(W)) + b)
|
|
npt.assert_allclose(output, output_ref, rtol=1e-3, atol=1e-3)
|
|
|
|
X = np.random.random((batch_size, input_dims)).astype(np.float32)
|
|
scale = np.sqrt(2.0 / output_dims)
|
|
input_record = self.new_record(schema.Scalar((np.float32, (input_dims,))))
|
|
schema.FeedRecord(input_record, [X])
|
|
input_blob = input_record.field_blobs()[0]
|
|
rff_output = self.model.RandomFourierFeatures(input_record,
|
|
output_dims,
|
|
bandwidth)
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
rff_output
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
# Init net assertions
|
|
init_ops_list = [
|
|
OpSpec("GaussianFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
init_ops = self._test_net(train_init_net, init_ops_list)
|
|
W = workspace.FetchBlob(self.model.layers[0].w)
|
|
b = workspace.FetchBlob(self.model.layers[0].b)
|
|
|
|
# Operation specifications
|
|
fc_spec = OpSpec("FC", [input_blob, init_ops[0].output[0],
|
|
init_ops[1].output[0]], None)
|
|
cosine_spec = OpSpec("Cos", None, None)
|
|
scale_spec = OpSpec("Scale", None, rff_output.field_blobs(),
|
|
{'scale': scale})
|
|
ops_list = [
|
|
fc_spec,
|
|
cosine_spec,
|
|
scale_spec
|
|
]
|
|
|
|
# Train net assertions
|
|
self._test_net(train_net, ops_list)
|
|
_rff_hypothesis_test(rff_output(), X, W, b, scale)
|
|
|
|
# Eval net assertions
|
|
eval_net = self.get_eval_net()
|
|
self._test_net(eval_net, ops_list)
|
|
_rff_hypothesis_test(rff_output(), X, W, b, scale)
|
|
|
|
# Predict net assertions
|
|
predict_net = self.get_predict_net()
|
|
self._test_net(predict_net, ops_list)
|
|
_rff_hypothesis_test(rff_output(), X, W, b, scale)
|
|
|
|
@given(
|
|
batch_size=st.integers(min_value=2, max_value=10),
|
|
input_dims=st.integers(min_value=5, max_value=10),
|
|
output_dims=st.integers(min_value=5, max_value=10),
|
|
s=st.integers(min_value=0, max_value=3),
|
|
scale=st.floats(min_value=0.1, max_value=5),
|
|
set_weight_as_global_constant=st.booleans()
|
|
)
|
|
def testArcCosineFeatureMap(self, batch_size, input_dims, output_dims, s, scale,
|
|
set_weight_as_global_constant):
|
|
|
|
def _arc_cosine_hypothesis_test(ac_output, X, W, b, s):
|
|
"""
|
|
Runs hypothesis test for Arc Cosine layer.
|
|
|
|
Inputs:
|
|
ac_output -- output of net after running arc cosine layer
|
|
X -- input data
|
|
W -- weight parameter from train_init_net
|
|
b -- bias parameter from train_init_net
|
|
s -- degree parameter
|
|
"""
|
|
# Get output from net
|
|
net_output = workspace.FetchBlob(ac_output)
|
|
|
|
# Computing output directly
|
|
x_rand = np.matmul(X, np.transpose(W)) + b
|
|
x_pow = np.power(x_rand, s)
|
|
if s > 0:
|
|
h_rand_features = np.piecewise(x_rand,
|
|
[x_rand <= 0, x_rand > 0],
|
|
[0, 1])
|
|
else:
|
|
h_rand_features = np.piecewise(x_rand,
|
|
[x_rand <= 0, x_rand > 0],
|
|
[0, lambda x: x / (1 + x)])
|
|
output_ref = np.multiply(x_pow, h_rand_features)
|
|
|
|
# Comparing net output and computed output
|
|
npt.assert_allclose(net_output, output_ref, rtol=1e-3, atol=1e-3)
|
|
|
|
X = np.random.normal(size=(batch_size, input_dims)).astype(np.float32)
|
|
input_record = self.new_record(schema.Scalar((np.float32, (input_dims,))))
|
|
schema.FeedRecord(input_record, [X])
|
|
input_blob = input_record.field_blobs()[0]
|
|
|
|
ac_output = self.model.ArcCosineFeatureMap(
|
|
input_record,
|
|
output_dims,
|
|
s=s,
|
|
scale=scale,
|
|
set_weight_as_global_constant=set_weight_as_global_constant
|
|
)
|
|
self.model.output_schema = schema.Struct()
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims, ))),
|
|
ac_output
|
|
)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
# Run create_init_net to initialize the global constants, and W and b
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(self.model.create_init_net(name='init_net'))
|
|
|
|
if set_weight_as_global_constant:
|
|
W = workspace.FetchBlob(
|
|
self.model.global_constants['arc_cosine_feature_map_fixed_rand_W']
|
|
)
|
|
b = workspace.FetchBlob(
|
|
self.model.global_constants['arc_cosine_feature_map_fixed_rand_b']
|
|
)
|
|
else:
|
|
W = workspace.FetchBlob(self.model.layers[0].random_w)
|
|
b = workspace.FetchBlob(self.model.layers[0].random_b)
|
|
|
|
# Operation specifications
|
|
fc_spec = OpSpec("FC", [input_blob, None, None], None)
|
|
softsign_spec = OpSpec("Softsign", None, None)
|
|
relu_spec = OpSpec("Relu", None, None)
|
|
relu_spec_output = OpSpec("Relu", None, ac_output.field_blobs())
|
|
pow_spec = OpSpec("Pow", None, None, {'exponent': float(s - 1)})
|
|
mul_spec = OpSpec("Mul", None, ac_output.field_blobs())
|
|
|
|
if s == 0:
|
|
ops_list = [
|
|
fc_spec,
|
|
softsign_spec,
|
|
relu_spec_output,
|
|
]
|
|
elif s == 1:
|
|
ops_list = [
|
|
fc_spec,
|
|
relu_spec_output,
|
|
]
|
|
else:
|
|
ops_list = [
|
|
fc_spec,
|
|
relu_spec,
|
|
pow_spec,
|
|
mul_spec,
|
|
]
|
|
|
|
# Train net assertions
|
|
self._test_net(train_net, ops_list)
|
|
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
|
|
|
|
# Eval net assertions
|
|
eval_net = self.get_eval_net()
|
|
self._test_net(eval_net, ops_list)
|
|
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
|
|
|
|
# Predict net assertions
|
|
predict_net = self.get_predict_net()
|
|
self._test_net(predict_net, ops_list)
|
|
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
|
|
|
|
@given(
|
|
batch_size=st.integers(min_value=2, max_value=10),
|
|
input_dims=st.integers(min_value=5, max_value=10),
|
|
output_dims=st.integers(min_value=5, max_value=10),
|
|
s=st.integers(min_value=0, max_value=3),
|
|
scale=st.floats(min_value=0.1, max_value=5),
|
|
set_weight_as_global_constant=st.booleans(),
|
|
use_struct_input=st.booleans(),
|
|
)
|
|
def testSemiRandomFeatures(self, batch_size, input_dims, output_dims, s, scale,
|
|
set_weight_as_global_constant, use_struct_input):
|
|
|
|
def _semi_random_hypothesis_test(srf_output, X_full, X_random, rand_w,
|
|
rand_b, s):
|
|
"""
|
|
Runs hypothesis test for Semi Random Features layer.
|
|
|
|
Inputs:
|
|
srf_output -- output of net after running semi random features layer
|
|
X_full -- full input data
|
|
X_random -- random-output input data
|
|
rand_w -- random-initialized weight parameter from train_init_net
|
|
rand_b -- random-initialized bias parameter from train_init_net
|
|
s -- degree parameter
|
|
|
|
"""
|
|
# Get output from net
|
|
net_output = workspace.FetchBlob(srf_output)
|
|
|
|
# Fetch learned parameter blobs
|
|
learned_w = workspace.FetchBlob(self.model.layers[0].learned_w)
|
|
learned_b = workspace.FetchBlob(self.model.layers[0].learned_b)
|
|
|
|
# Computing output directly
|
|
x_rand = np.matmul(X_random, np.transpose(rand_w)) + rand_b
|
|
x_learn = np.matmul(X_full, np.transpose(learned_w)) + learned_b
|
|
x_pow = np.power(x_rand, s)
|
|
if s > 0:
|
|
h_rand_features = np.piecewise(x_rand,
|
|
[x_rand <= 0, x_rand > 0],
|
|
[0, 1])
|
|
else:
|
|
h_rand_features = np.piecewise(x_rand,
|
|
[x_rand <= 0, x_rand > 0],
|
|
[0, lambda x: x / (1 + x)])
|
|
output_ref = np.multiply(np.multiply(x_pow, h_rand_features), x_learn)
|
|
|
|
# Comparing net output and computed output
|
|
npt.assert_allclose(net_output, output_ref, rtol=1e-3, atol=1e-3)
|
|
|
|
X_full = np.random.normal(size=(batch_size, input_dims)).astype(np.float32)
|
|
if use_struct_input:
|
|
X_random = np.random.normal(size=(batch_size, input_dims)).\
|
|
astype(np.float32)
|
|
input_data = [X_full, X_random]
|
|
input_record = self.new_record(schema.Struct(
|
|
('full', schema.Scalar(
|
|
(np.float32, (input_dims,))
|
|
)),
|
|
('random', schema.Scalar(
|
|
(np.float32, (input_dims,))
|
|
))
|
|
))
|
|
else:
|
|
X_random = X_full
|
|
input_data = [X_full]
|
|
input_record = self.new_record(schema.Scalar(
|
|
(np.float32, (input_dims,))
|
|
))
|
|
|
|
schema.FeedRecord(input_record, input_data)
|
|
srf_output = self.model.SemiRandomFeatures(
|
|
input_record,
|
|
output_dims,
|
|
s=s,
|
|
scale_random=scale,
|
|
scale_learned=scale,
|
|
set_weight_as_global_constant=set_weight_as_global_constant
|
|
)
|
|
|
|
self.model.output_schema = schema.Struct()
|
|
|
|
self.assertEqual(
|
|
schema.Struct(
|
|
('full', schema.Scalar(
|
|
(np.float32, (output_dims,))
|
|
)),
|
|
('random', schema.Scalar(
|
|
(np.float32, (output_dims,))
|
|
))
|
|
),
|
|
srf_output
|
|
)
|
|
|
|
init_ops_list = [
|
|
OpSpec("GaussianFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
OpSpec("GaussianFill", None, None),
|
|
OpSpec("UniformFill", None, None),
|
|
]
|
|
train_init_net, train_net = self.get_training_nets()
|
|
|
|
# Need to run to initialize the global constants for layer
|
|
workspace.RunNetOnce(self.model.create_init_net(name='init_net'))
|
|
|
|
if set_weight_as_global_constant:
|
|
# If weight params are global constants, they won't be in train_init_net
|
|
init_ops = self._test_net(train_init_net, init_ops_list[:2])
|
|
rand_w = workspace.FetchBlob(
|
|
self.model.global_constants['semi_random_features_fixed_rand_W']
|
|
)
|
|
rand_b = workspace.FetchBlob(
|
|
self.model.global_constants['semi_random_features_fixed_rand_b']
|
|
)
|
|
|
|
# Operation specifications
|
|
fc_random_spec = OpSpec("FC", [None, None, None], None)
|
|
fc_learned_spec = OpSpec("FC", [None, init_ops[0].output[0],
|
|
init_ops[1].output[0]], None)
|
|
else:
|
|
init_ops = self._test_net(train_init_net, init_ops_list)
|
|
rand_w = workspace.FetchBlob(self.model.layers[0].random_w)
|
|
rand_b = workspace.FetchBlob(self.model.layers[0].random_b)
|
|
|
|
# Operation specifications
|
|
fc_random_spec = OpSpec("FC", [None, init_ops[0].output[0],
|
|
init_ops[1].output[0]], None)
|
|
fc_learned_spec = OpSpec("FC", [None, init_ops[2].output[0],
|
|
init_ops[3].output[0]], None)
|
|
|
|
softsign_spec = OpSpec("Softsign", None, None)
|
|
relu_spec = OpSpec("Relu", None, None)
|
|
relu_output_spec = OpSpec("Relu", None, srf_output.random.field_blobs())
|
|
pow_spec = OpSpec("Pow", None, None, {'exponent': float(s - 1)})
|
|
mul_interim_spec = OpSpec("Mul", None, srf_output.random.field_blobs())
|
|
mul_spec = OpSpec("Mul", None, srf_output.full.field_blobs())
|
|
|
|
if s == 0:
|
|
ops_list = [
|
|
fc_learned_spec,
|
|
fc_random_spec,
|
|
softsign_spec,
|
|
relu_output_spec,
|
|
mul_spec,
|
|
]
|
|
elif s == 1:
|
|
ops_list = [
|
|
fc_learned_spec,
|
|
fc_random_spec,
|
|
relu_output_spec,
|
|
mul_spec,
|
|
]
|
|
else:
|
|
ops_list = [
|
|
fc_learned_spec,
|
|
fc_random_spec,
|
|
relu_spec,
|
|
pow_spec,
|
|
mul_interim_spec,
|
|
mul_spec,
|
|
]
|
|
|
|
# Train net assertions
|
|
self._test_net(train_net, ops_list)
|
|
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
|
|
rand_w, rand_b, s)
|
|
|
|
# Eval net assertions
|
|
eval_net = self.get_eval_net()
|
|
self._test_net(eval_net, ops_list)
|
|
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
|
|
rand_w, rand_b, s)
|
|
|
|
# Predict net assertions
|
|
predict_net = self.get_predict_net()
|
|
self._test_net(predict_net, ops_list)
|
|
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
|
|
rand_w, rand_b, s)
|
|
|
|
def testConv(self):
|
|
batch_size = 50
|
|
H = 1
|
|
W = 10
|
|
C = 50
|
|
output_dims = 32
|
|
kernel_h = 1
|
|
kernel_w = 3
|
|
stride_h = 1
|
|
stride_w = 1
|
|
pad_t = 0
|
|
pad_b = 0
|
|
pad_r = None
|
|
pad_l = None
|
|
|
|
input_record = self.new_record(schema.Scalar((np.float32, (H, W, C))))
|
|
X = np.random.random((batch_size, H, W, C)).astype(np.float32)
|
|
schema.FeedRecord(input_record, [X])
|
|
conv = self.model.Conv(
|
|
input_record,
|
|
output_dims,
|
|
kernel_h=kernel_h,
|
|
kernel_w=kernel_w,
|
|
stride_h=stride_h,
|
|
stride_w=stride_w,
|
|
pad_t=pad_t,
|
|
pad_b=pad_b,
|
|
pad_r=pad_r,
|
|
pad_l=pad_l,
|
|
order='NHWC'
|
|
)
|
|
|
|
self.assertEqual(
|
|
schema.Scalar((np.float32, (output_dims,))),
|
|
conv
|
|
)
|
|
|
|
self.run_train_net_forward_only()
|
|
output_record = schema.FetchRecord(conv)
|
|
# check the number of output channels is the same as input in this example
|
|
assert output_record.field_types()[0].shape == (H, W, output_dims)
|
|
assert output_record().shape == (batch_size, H, W, output_dims)
|
|
|
|
train_init_net, train_net = self.get_training_nets()
|
|
# Init net assertions
|
|
init_ops = self.assertNetContainOps(
|
|
train_init_net,
|
|
[
|
|
OpSpec("XavierFill", None, None),
|
|
OpSpec("ConstantFill", None, None),
|
|
]
|
|
)
|
|
conv_spec = OpSpec(
|
|
"Conv",
|
|
[
|
|
input_record.field_blobs()[0],
|
|
init_ops[0].output[0],
|
|
init_ops[1].output[0],
|
|
],
|
|
conv.field_blobs()
|
|
)
|
|
|
|
# Train net assertions
|
|
self.assertNetContainOps(train_net, [conv_spec])
|
|
|
|
# Predict net assertions
|
|
predict_net = self.get_predict_net()
|
|
self.assertNetContainOps(predict_net, [conv_spec])
|
|
|
|
# Eval net assertions
|
|
eval_net = self.get_eval_net()
|
|
self.assertNetContainOps(eval_net, [conv_spec])
|
|
|
|
@given(
|
|
num=st.integers(min_value=10, max_value=100),
|
|
feed_weight=st.booleans(),
|
|
**hu.gcs
|
|
)
|
|
def testAdaptiveWeight(self, num, feed_weight, gc, dc):
|
|
input_record = self.new_record(schema.RawTuple(num))
|
|
data = np.random.random(num)
|
|
schema.FeedRecord(
|
|
input_record,
|
|
[np.array(x).astype(np.float32) for x in data]
|
|
)
|
|
weights = np.random.random(num) if feed_weight else None
|
|
result = self.model.AdaptiveWeight(input_record, weights=weights)
|
|
train_init_net, train_net = self.get_training_nets(True)
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
result = workspace.FetchBlob(result())
|
|
if not feed_weight:
|
|
weights = 1. / num
|
|
expected = np.sum(weights * data + np.log(1. / 2. / weights))
|
|
npt.assert_allclose(expected, result, atol=1e-4, rtol=1e-4)
|
|
|
|
@given(num=st.integers(min_value=10, max_value=100), **hu.gcs)
|
|
def testConstantWeight(self, num, gc, dc):
|
|
input_record = self.new_record(schema.RawTuple(num))
|
|
data = np.random.random(num)
|
|
schema.FeedRecord(
|
|
input_record, [np.array(x).astype(np.float32) for x in data]
|
|
)
|
|
weights = np.random.random(num)
|
|
result = self.model.ConstantWeight(input_record, weights=weights)
|
|
train_init_net, train_net = self.get_training_nets(True)
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
result = workspace.FetchBlob(result())
|
|
expected = np.sum(weights * data)
|
|
npt.assert_allclose(expected, result, atol=1e-4, rtol=1e-4)
|
|
|
|
@given(**hu.gcs)
|
|
def testHomotopyWeight(self, gc, dc):
|
|
input_record = self.new_record(schema.RawTuple(2))
|
|
data = np.random.random(2)
|
|
schema.FeedRecord(
|
|
input_record, [np.array(x).astype(np.float32) for x in data]
|
|
)
|
|
# ensure: quad_life > 2 * half_life
|
|
half_life = int(np.random.random() * 1e2 + 1)
|
|
quad_life = int(np.random.random() * 1e3 + 2 * half_life + 1)
|
|
min_weight = np.random.random()
|
|
max_weight = np.random.random() + min_weight + 1e-5
|
|
result = self.model.HomotopyWeight(
|
|
input_record,
|
|
min_weight=min_weight,
|
|
max_weight=max_weight,
|
|
half_life=half_life,
|
|
quad_life=quad_life,
|
|
)
|
|
train_init_net, train_net = self.get_training_nets(True)
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.CreateNet(train_net)
|
|
workspace.RunNet(train_net.Name(), num_iter=half_life)
|
|
half_life_result = workspace.FetchBlob(result())
|
|
workspace.RunNet(train_net.Name(), num_iter=quad_life - half_life)
|
|
quad_life_result = workspace.FetchBlob(result())
|
|
|
|
alpha = (min_weight + max_weight) / 2.
|
|
beta = (min_weight + max_weight) / 2.
|
|
expected_half_life_result = alpha * data[0] + beta * data[1]
|
|
alpha = (3 * min_weight + max_weight) / 4.
|
|
beta = (min_weight + 3 * max_weight) / 4.
|
|
expected_quad_life_result = alpha * data[0] + beta * data[1]
|
|
npt.assert_allclose(
|
|
expected_half_life_result, half_life_result, atol=1e-2, rtol=1e-2
|
|
)
|
|
npt.assert_allclose(
|
|
expected_quad_life_result, quad_life_result, atol=1e-2, rtol=1e-2
|
|
)
|
|
|
|
def _testLabelSmooth(self, categories, binary_prob_label, bsz):
|
|
label = self.new_record(schema.Scalar((np.float32, (1, ))))
|
|
label_np = np.random.randint(categories, size=bsz).astype(np.float32)
|
|
schema.FeedRecord(label, [label_np])
|
|
smooth_matrix_shape = (
|
|
2 if binary_prob_label else (categories, categories)
|
|
)
|
|
smooth_matrix = np.random.random(smooth_matrix_shape)
|
|
smoothed_label = self.model.LabelSmooth(label, smooth_matrix)
|
|
train_init_net, train_net = self.get_training_nets(True)
|
|
workspace.RunNetOnce(train_init_net)
|
|
workspace.RunNetOnce(train_net)
|
|
smoothed_label_np = workspace.FetchBlob(smoothed_label())
|
|
if binary_prob_label:
|
|
expected = np.array(
|
|
[
|
|
smooth_matrix[0] if x == 0.0 else smooth_matrix[1]
|
|
for x in label_np
|
|
]
|
|
)
|
|
else:
|
|
expected = np.array([smooth_matrix[int(x)] for x in label_np])
|
|
npt.assert_allclose(expected, smoothed_label_np, atol=1e-4, rtol=1e-4)
|
|
|
|
@given(
|
|
categories=st.integers(min_value=2, max_value=10),
|
|
bsz=st.integers(min_value=10, max_value=100),
|
|
**hu.gcs
|
|
)
|
|
def testLabelSmoothForCategoricalLabel(self, categories, bsz, gc, dc):
|
|
self._testLabelSmooth(categories, False, bsz)
|
|
|
|
@given(
|
|
bsz=st.integers(min_value=10, max_value=100),
|
|
**hu.gcs
|
|
)
|
|
def testLabelSmoothForBinaryProbLabel(self, bsz, gc, dc):
|
|
self._testLabelSmooth(2, True, bsz)
|