mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
This PR is part of a series attempting to re-submit https://github.com/pytorch/pytorch/pull/134592 as smaller PRs. Add missing `if __name__ == "__main__":` guards to some tests. Pull Request resolved: https://github.com/pytorch/pytorch/pull/154716 Approved by: https://github.com/Skylion007
102 lines
3.2 KiB
Python
102 lines
3.2 KiB
Python
#!/usr/bin/env python3
|
|
# Owner(s): ["oncall: mobile"]
|
|
# mypy: allow-untyped-defs
|
|
|
|
import io
|
|
|
|
import cv2 # @manual
|
|
|
|
import torch
|
|
import torch.utils.bundled_inputs
|
|
from torch.testing._internal.common_utils import TestCase
|
|
|
|
|
|
torch.ops.load_library("//caffe2/torch/fb/operators:decode_bundled_image")
|
|
|
|
|
|
def model_size(sm):
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(sm, buffer)
|
|
return len(buffer.getvalue())
|
|
|
|
|
|
def save_and_load(sm):
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(sm, buffer)
|
|
buffer.seek(0)
|
|
return torch.jit.load(buffer)
|
|
|
|
|
|
"""Return an InflatableArg that contains a tensor of the compressed image and the way to decode it
|
|
|
|
keyword arguments:
|
|
img_tensor -- the raw image tensor in HWC or NCHW with pixel value of type unsigned int
|
|
if in NCHW format, N should be 1
|
|
quality -- the quality needed to compress the image
|
|
"""
|
|
|
|
|
|
def bundle_jpeg_image(img_tensor, quality):
|
|
# turn NCHW to HWC
|
|
if img_tensor.dim() == 4:
|
|
assert img_tensor.size(0) == 1
|
|
img_tensor = img_tensor[0].permute(1, 2, 0)
|
|
pixels = img_tensor.numpy()
|
|
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
|
_, enc_img = cv2.imencode(".JPEG", pixels, encode_param)
|
|
enc_img_tensor = torch.from_numpy(enc_img)
|
|
enc_img_tensor = torch.flatten(enc_img_tensor).byte()
|
|
obj = torch.utils.bundled_inputs.InflatableArg(
|
|
enc_img_tensor, "torch.ops.fb.decode_bundled_image({})"
|
|
)
|
|
return obj
|
|
|
|
|
|
def get_tensor_from_raw_BGR(im) -> torch.Tensor:
|
|
raw_data = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
|
raw_data = torch.from_numpy(raw_data).float()
|
|
raw_data = raw_data.permute(2, 0, 1)
|
|
raw_data = torch.div(raw_data, 255).unsqueeze(0)
|
|
return raw_data
|
|
|
|
|
|
class TestBundledImages(TestCase):
|
|
def test_single_tensors(self):
|
|
class SingleTensorModel(torch.nn.Module):
|
|
def forward(self, arg):
|
|
return arg
|
|
|
|
im = cv2.imread("caffe2/test/test_img/p1.jpg")
|
|
tensor = torch.from_numpy(im)
|
|
inflatable_arg = bundle_jpeg_image(tensor, 90)
|
|
input = [(inflatable_arg,)]
|
|
sm = torch.jit.script(SingleTensorModel())
|
|
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(sm, input)
|
|
loaded = save_and_load(sm)
|
|
inflated = loaded.get_all_bundled_inputs()
|
|
decoded_data = inflated[0][0]
|
|
|
|
# raw image
|
|
raw_data = get_tensor_from_raw_BGR(im)
|
|
|
|
self.assertEqual(len(inflated), 1)
|
|
self.assertEqual(len(inflated[0]), 1)
|
|
self.assertEqual(raw_data.shape, decoded_data.shape)
|
|
self.assertEqual(raw_data, decoded_data, atol=0.1, rtol=1e-01)
|
|
|
|
# Check if fb::image_decode_to_NCHW works as expected
|
|
with open("caffe2/test/test_img/p1.jpg", "rb") as fp:
|
|
weight = torch.full((3,), 1.0 / 255.0).diag()
|
|
bias = torch.zeros(3)
|
|
byte_tensor = torch.tensor(list(fp.read())).byte()
|
|
im2_tensor = torch.ops.fb.image_decode_to_NCHW(byte_tensor, weight, bias)
|
|
self.assertEqual(raw_data.shape, im2_tensor.shape)
|
|
self.assertEqual(raw_data, im2_tensor, atol=0.1, rtol=1e-01)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise RuntimeError(
|
|
"This test is not currently used and should be "
|
|
"enabled in discover_tests.py if required."
|
|
)
|