mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163390 Approved by: https://github.com/guilhermeleobas
953 lines
26 KiB
Python
953 lines
26 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
|
|
import contextlib
|
|
import sys
|
|
|
|
import torch
|
|
import torch._dynamo.config
|
|
import torch._dynamo.test_case
|
|
import torch._functorch.config
|
|
import torch.nn
|
|
import torch.utils.checkpoint
|
|
from torch._dynamo.bytecode_transformation import Instruction
|
|
from torch._dynamo.exc import Unsupported
|
|
from torch._dynamo.symbolic_convert import SpeculationLog, SpeculationLogDivergence
|
|
from torch.testing._internal.common_utils import (
|
|
instantiate_parametrized_tests,
|
|
make_dynamo_test,
|
|
parametrize,
|
|
)
|
|
|
|
|
|
class CustomException(Exception):
|
|
pass
|
|
|
|
|
|
class CustomExceptionMeta(type):
|
|
def __instancecheck__(cls, instance):
|
|
return True
|
|
|
|
|
|
class CustomExceptionWithInstanceCheck(Exception, metaclass=CustomExceptionMeta):
|
|
pass
|
|
|
|
|
|
class CustomExceptionWithArgs(Exception):
|
|
def __init__(self, a, b=None):
|
|
self.a = a
|
|
self.b = b
|
|
|
|
|
|
class MyException(OSError):
|
|
pass
|
|
|
|
|
|
class ExceptionTests(torch._dynamo.test_case.TestCase):
|
|
def test_exception(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError
|
|
except Exception:
|
|
x = torch.sigmoid(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception2(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError
|
|
except (NotImplementedError, AttributeError):
|
|
x = torch.sigmoid(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception3(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError("Not implemented")
|
|
except AssertionError:
|
|
x = torch.sigmoid(x)
|
|
except NotImplementedError:
|
|
x = torch.cos(x)
|
|
finally:
|
|
x = torch.cos(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception4(self):
|
|
def fn(x):
|
|
for i in range(10):
|
|
if i == 5:
|
|
return x
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError
|
|
except Exception:
|
|
x = torch.sigmoid(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception_with_another_exception(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
raise NotImplementedError("Not implemented")
|
|
except NotImplementedError:
|
|
x = torch.sigmoid(x)
|
|
try:
|
|
x = torch.cos(x)
|
|
raise AssertionError
|
|
except AssertionError:
|
|
x = torch.cos(x)
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception_with_vars(self):
|
|
def fn(x):
|
|
try:
|
|
vars(42)
|
|
raise RuntimeError("Should not be raised")
|
|
except TypeError:
|
|
return x.sin()
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_autocast_with_exception(self):
|
|
class Optimizer(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
raise NotImplementedError("Not implemented")
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_out):
|
|
return grad_out
|
|
|
|
@torch.compile
|
|
def f(x: torch.Tensor):
|
|
try:
|
|
with torch.autocast(device_type="cpu", dtype=None):
|
|
Optimizer.apply(x)
|
|
except NotImplementedError:
|
|
return x + 1
|
|
|
|
inp = torch.ones(3)
|
|
out = f(inp)
|
|
self.assertTrue(torch.equal(out, inp + 1))
|
|
|
|
@make_dynamo_test
|
|
def test_isinstance_CustomException(self):
|
|
assert isinstance(CustomException, type)
|
|
assert not isinstance(CustomException(), type)
|
|
C = CustomExceptionWithInstanceCheck
|
|
assert isinstance(C, C)
|
|
assert isinstance(C(), C)
|
|
|
|
@make_dynamo_test
|
|
def test_propagate_exception_inside_ctx_manager(self):
|
|
@contextlib.contextmanager
|
|
def cm():
|
|
try:
|
|
yield
|
|
except BaseException: # noqa: B036
|
|
raise ValueError # noqa: B904
|
|
|
|
@contextlib.contextmanager
|
|
def nothing():
|
|
try:
|
|
yield
|
|
finally:
|
|
pass
|
|
|
|
z = 0
|
|
with nothing():
|
|
try:
|
|
with cm():
|
|
raise IndexError
|
|
except ValueError:
|
|
z = 1
|
|
except IndexError:
|
|
z = 2
|
|
assert z == 1
|
|
|
|
def test_exception_else(self):
|
|
def gn(x):
|
|
return torch.cos(x)
|
|
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
x = gn(x)
|
|
except Exception:
|
|
x = torch.sigmoid(x)
|
|
else:
|
|
x = torch.cos(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
@make_dynamo_test
|
|
def test_raise_match(self):
|
|
a = AttributeError
|
|
b = BytesWarning
|
|
c = ConnectionError
|
|
d = DeprecationWarning
|
|
e = Exception
|
|
|
|
def fn(a, b):
|
|
try:
|
|
raise a
|
|
finally:
|
|
raise b
|
|
|
|
def fix_exc_context(frame_exc, new_exc, old_exc):
|
|
# slightly change from ExitStack.fix_exc_context function
|
|
while 1:
|
|
exc_context = new_exc.__context__
|
|
if exc_context is None or exc_context is old_exc:
|
|
return
|
|
if exc_context is frame_exc:
|
|
break
|
|
new_exc = exc_context
|
|
new_exc.__context__ = old_exc
|
|
|
|
@contextlib.contextmanager
|
|
def ctx():
|
|
try:
|
|
yield
|
|
finally:
|
|
frame_exc = prev_exc = sys.exc_info()
|
|
args = [(d, c), (b, a)]
|
|
for x, y in args:
|
|
try:
|
|
fn(x, y)
|
|
except BaseException: # noqa: B036
|
|
new_exc = sys.exc_info()
|
|
fix_exc_context(frame_exc[1], new_exc[1], prev_exc[1])
|
|
prev_exc = new_exc
|
|
|
|
try:
|
|
fixed_ctx = prev_exc[1].__context__
|
|
raise prev_exc[1]
|
|
except BaseException: # noqa: B036
|
|
prev_exc[1].__context__ = fixed_ctx
|
|
raise
|
|
|
|
try:
|
|
with ctx():
|
|
raise e
|
|
except Exception as exc:
|
|
assert isinstance(exc, a)
|
|
assert isinstance(exc.__context__, b)
|
|
assert isinstance(exc.__context__.__context__, c)
|
|
assert isinstance(exc.__context__.__context__.__context__, d)
|
|
assert isinstance(exc.__context__.__context__.__context__.__context__, e)
|
|
|
|
# TODO(anijain2305) - does not work with fullgraph=True
|
|
def test_exception_with_another_exception2(self):
|
|
def gn(x):
|
|
try:
|
|
x = torch.cos(x)
|
|
raise NotImplementedError("Not implemented")
|
|
except NotImplementedError:
|
|
x = torch.sigmoid(x)
|
|
raise
|
|
|
|
def fn(x):
|
|
try:
|
|
x = torch.cos(x)
|
|
gn(x)
|
|
except Exception:
|
|
pass
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
fn(x)
|
|
# Can't use fullgraph=True because RERAISE is not supported
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
opt_fn(x)
|
|
|
|
def test_exception_with_ctx_manager(self):
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
with torch.no_grad():
|
|
x = torch.sin(x)
|
|
raise NotImplementedError("Not implemented")
|
|
except NotImplementedError:
|
|
x = torch.sigmoid(x)
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_exception_raised_from_child(self):
|
|
def gn():
|
|
raise NotImplementedError("foo")
|
|
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
try:
|
|
x = torch.sin(x)
|
|
gn()
|
|
x = torch.sin(x)
|
|
except Exception:
|
|
x = torch.sigmoid(x)
|
|
|
|
return x
|
|
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_dynamo_undo_kw_names(self):
|
|
def g(x, k=None):
|
|
if k:
|
|
raise TypeError("error")
|
|
return x.sin()
|
|
|
|
def fn(x):
|
|
d = {"a": x}
|
|
try:
|
|
g(x, k=True)
|
|
except Exception:
|
|
y = 0
|
|
for _, b in d.items(): # noqa: PERF102
|
|
y += b.sum()
|
|
return y
|
|
|
|
x = torch.randn(2, 3)
|
|
expected = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
got = opt_fn(x)
|
|
self.assertEqual(expected, got)
|
|
|
|
def test_raise_custom_exception(self):
|
|
class Exc(Exception):
|
|
pass
|
|
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
try:
|
|
raise Exc
|
|
except Exc:
|
|
return t.sin()
|
|
except Exception:
|
|
return t.cos()
|
|
|
|
t = torch.randn(2)
|
|
y = fn(t)
|
|
self.assertEqual(y, t.sin())
|
|
|
|
def test_raise_custom_exception_with_args(self):
|
|
class Exc(Exception):
|
|
pass
|
|
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
try:
|
|
raise Exc(1, 2.0)
|
|
except Exc as e:
|
|
return t.sin() + e.args[0] + e.args[1]
|
|
except Exception:
|
|
return t.cos()
|
|
|
|
t = torch.randn(2)
|
|
y = fn(t)
|
|
self.assertEqual(y, t.sin() + 1 + 2.0)
|
|
|
|
def test_nn_module_getattr(self):
|
|
class A:
|
|
def __init__(self) -> None:
|
|
self._b = 20
|
|
|
|
def __getattr__(self, name):
|
|
fixed_name = "_" + name
|
|
if fixed_name in self.__dict__:
|
|
return self.__dict__[fixed_name]
|
|
raise AttributeError(f"{name} absent")
|
|
|
|
class B(A):
|
|
def __init__(self) -> None:
|
|
self.a = 10
|
|
|
|
def __getattr__(self, name):
|
|
try:
|
|
return super().__getattr__(name)
|
|
except AttributeError:
|
|
return 30
|
|
|
|
obj = B()
|
|
|
|
def fn(x):
|
|
return x * obj.a * obj.b * obj.c
|
|
|
|
x = torch.ones(4)
|
|
ref = fn(x)
|
|
print(ref)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
@torch._dynamo.config.patch(inline_inbuilt_nn_modules=True)
|
|
def test_custom_getattr_on_module_exception(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self, a=3):
|
|
super().__init__()
|
|
self.register_parameter("a", torch.nn.Parameter(torch.ones(4) * 2))
|
|
|
|
def __getattr__(self, name):
|
|
try:
|
|
return super().__getattr__(name) # defer to nn.Module's logic
|
|
except AttributeError:
|
|
if name == "a_copy":
|
|
return self.a
|
|
raise
|
|
|
|
def forward(self, x):
|
|
return x * self.a * self.a_copy
|
|
|
|
mod = Foo()
|
|
opt_mod = torch.compile(mod, backend="eager", fullgraph=True)
|
|
|
|
x = torch.ones(4)
|
|
self.assertEqual(mod(x), opt_mod(x))
|
|
|
|
def test_attribute_error_from_getattr(self):
|
|
class Mock:
|
|
def __init__(self):
|
|
self.a = 5
|
|
|
|
def __getattr__(self, name):
|
|
if name != "a":
|
|
raise AttributeError("missing")
|
|
return self.__dict__["a"]
|
|
|
|
mock = Mock()
|
|
|
|
def fn(x):
|
|
if hasattr(mock, "b"):
|
|
return torch.cos(x)
|
|
return torch.sin(x)
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_stop_iteration(self):
|
|
def zip_longest(*iterables, fillvalue=None):
|
|
# Get the iterators for each iterable
|
|
iterators = [iter(it) for it in iterables]
|
|
|
|
result = []
|
|
while True:
|
|
for it in iterators:
|
|
try:
|
|
value = next(it)
|
|
except StopIteration:
|
|
result.append(fillvalue)
|
|
return result
|
|
result.append(value)
|
|
|
|
def fn(x, y):
|
|
torch.cos(torch.randn(4))
|
|
return tuple(zip_longest(x, y))
|
|
|
|
x = [1, 2, 3, 4]
|
|
y = [10, 11, 12]
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
ref = fn(x, y)
|
|
res = opt_fn(x, y)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_nn_reraise(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
raise ValueError("woof")
|
|
return x + 2
|
|
|
|
m = M()
|
|
m.register_forward_pre_hook(lambda m, go: None)
|
|
|
|
torch._dynamo.utils.clear_compilation_metrics()
|
|
opt_call = torch.compile(lambda x: m(x), backend="eager")
|
|
self.assertRaises(ValueError, lambda: opt_call(torch.randn(3)))
|
|
metrics = torch._dynamo.utils.get_compilation_metrics()
|
|
self.assertIn("Observed exception", metrics[0].fail_reason)
|
|
|
|
def test_key_error(self):
|
|
def fn(x, d):
|
|
try:
|
|
a = d["b"]
|
|
except KeyError:
|
|
a = 2
|
|
return x * a
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
x = torch.randn(4)
|
|
d = {"a": 1}
|
|
ref = fn(x, d)
|
|
res = opt_fn(x, d)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_atrribute_error(self):
|
|
class Mock:
|
|
def __init__(self):
|
|
self.a = 1
|
|
|
|
mock = Mock()
|
|
|
|
def fn(x):
|
|
try:
|
|
c = 2
|
|
mock.b
|
|
except AttributeError:
|
|
c = 3
|
|
return torch.sin(x) * c
|
|
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
x = torch.randn(4)
|
|
ref = fn(x)
|
|
res = opt_fn(x)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_raise_from_None(self):
|
|
# Inspired from os.environ
|
|
class MyMapping:
|
|
def __init__(self, d):
|
|
self._d = d
|
|
|
|
def __getitem__(self, key):
|
|
try:
|
|
value = self._d[key]
|
|
except KeyError:
|
|
raise KeyError(key) from None
|
|
return value
|
|
|
|
d = MyMapping({"a": 10, "b": 20})
|
|
|
|
def mapping_get(obj, key, value=None):
|
|
try:
|
|
return obj.__getitem__(key)
|
|
except KeyError:
|
|
return value
|
|
|
|
def fn(x, d, key):
|
|
x = torch.sin(x + 1)
|
|
return x, mapping_get(d, key)
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
|
|
x = torch.rand(2, 3)
|
|
ref = fn(x, d, "m")
|
|
res = opt_fn(x, d, "m")
|
|
self.assertEqual(ref[0], res[0])
|
|
self.assertEqual(ref[1], res[1])
|
|
|
|
@make_dynamo_test
|
|
def test_raise_from_None_2(self):
|
|
def fn():
|
|
try:
|
|
raise ValueError
|
|
except Exception:
|
|
raise TypeError from None
|
|
|
|
try:
|
|
fn()
|
|
except TypeError as e:
|
|
assert e.__cause__ is None
|
|
assert e.__suppress_context__ is True
|
|
|
|
@make_dynamo_test
|
|
def test_raise_from_other(self):
|
|
def fn():
|
|
try:
|
|
raise ValueError
|
|
except Exception as e:
|
|
raise TypeError from e
|
|
|
|
try:
|
|
fn()
|
|
except TypeError as e:
|
|
assert isinstance(e.__cause__, ValueError)
|
|
assert e.__suppress_context__ is True
|
|
|
|
@make_dynamo_test
|
|
def test_reraise_first_exc(self):
|
|
def fn():
|
|
try:
|
|
raise ZeroDivisionError
|
|
except ZeroDivisionError:
|
|
try:
|
|
raise ValueError
|
|
except ValueError:
|
|
pass
|
|
raise
|
|
|
|
try:
|
|
fn()
|
|
except ZeroDivisionError:
|
|
pass
|
|
assert sys.exc_info()[0] is None
|
|
|
|
@make_dynamo_test
|
|
def test_ensure_exception_is_active_after_try_except_block(self):
|
|
try:
|
|
try:
|
|
raise ZeroDivisionError
|
|
except ZeroDivisionError:
|
|
for exc in (KeyError, IndexError):
|
|
try:
|
|
raise exc
|
|
except exc:
|
|
pass
|
|
raise
|
|
except ZeroDivisionError:
|
|
pass
|
|
assert sys.exc_info()[0] is None
|
|
|
|
@make_dynamo_test
|
|
def test_ensure_exception_is_active_inside_try_except_block(self):
|
|
try:
|
|
try:
|
|
raise ZeroDivisionError
|
|
except ZeroDivisionError:
|
|
for exc in (KeyError, IndexError):
|
|
try:
|
|
raise exc
|
|
except exc as e:
|
|
assert isinstance(e.__context__, ZeroDivisionError)
|
|
raise
|
|
except ZeroDivisionError:
|
|
pass
|
|
assert sys.exc_info()[0] is None
|
|
|
|
@make_dynamo_test
|
|
def test_handle_all_exceptions(self):
|
|
def cm():
|
|
try:
|
|
yield 1
|
|
except ValueError:
|
|
try:
|
|
raise TypeError
|
|
finally:
|
|
pass
|
|
|
|
try:
|
|
gen = cm()
|
|
next(gen)
|
|
gen.throw(ValueError)
|
|
except TypeError:
|
|
pass
|
|
assert sys.exc_info()[0] is None
|
|
|
|
@make_dynamo_test
|
|
def test_reraise(self):
|
|
try:
|
|
try:
|
|
raise ValueError
|
|
except ValueError: # noqa: TRY203
|
|
raise
|
|
except ValueError:
|
|
pass
|
|
assert sys.exc_info()[0] is None
|
|
|
|
@make_dynamo_test
|
|
def test_raise_finally_simple(self):
|
|
def fn():
|
|
try:
|
|
raise ValueError
|
|
except ValueError:
|
|
try:
|
|
raise TypeError
|
|
finally:
|
|
pass
|
|
|
|
try:
|
|
fn()
|
|
except TypeError:
|
|
pass
|
|
assert sys.exc_info()[0] is None
|
|
|
|
def test_reconstruct___context__(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
v = ValueError(1, 2, 3)
|
|
v.__context__ = TypeError()
|
|
v.__cause__ = RuntimeError()
|
|
return t.sin(), v
|
|
|
|
t = torch.randn(2)
|
|
y, v = fn(t)
|
|
self.assertEqual(y, t.sin())
|
|
self.assertIsInstance(v, ValueError)
|
|
self.assertIsInstance(v.__context__, TypeError)
|
|
self.assertIsInstance(v.__cause__, RuntimeError)
|
|
self.assertTrue(v.__suppress_context__)
|
|
|
|
def test_reconstruct_exception_2(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
try:
|
|
raise ValueError(1, 2, 3)
|
|
except Exception:
|
|
try:
|
|
raise TypeError(4, 5) from None
|
|
except Exception as e:
|
|
e.__cause__ = RuntimeError(6, 7)
|
|
return t.sin(), e
|
|
|
|
t = torch.randn(2)
|
|
y, v = fn(t)
|
|
self.assertEqual(y, t.sin())
|
|
self.assertIsInstance(v, TypeError)
|
|
self.assertIsInstance(v.__context__, ValueError)
|
|
self.assertIsInstance(v.__cause__, RuntimeError)
|
|
|
|
def test_raise_GeneratorExit(self):
|
|
# GeneratorExit does not inherit from Exception
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
try:
|
|
raise GeneratorExit
|
|
except Exception:
|
|
return t.sin()
|
|
except BaseException: # noqa: B036
|
|
return t.cos()
|
|
|
|
t = torch.randn(2)
|
|
y = fn(t)
|
|
self.assertEqual(y, t.cos())
|
|
|
|
def test_speculation_exception(self):
|
|
log = SpeculationLog()
|
|
log.next("fake", 555, "fake", Instruction(1, "fake", 1, 1))
|
|
log.restart()
|
|
with self.assertRaises(SpeculationLogDivergence):
|
|
log.next("bad", 58, "bad", Instruction(2, "different", 2, 2))
|
|
|
|
def test_dict_pop(self):
|
|
# Pattern from inspect.bind
|
|
def fn(dt, x):
|
|
try:
|
|
dt.pop("b")
|
|
except KeyError:
|
|
return torch.sin(x)
|
|
else:
|
|
return torch.cos(x)
|
|
|
|
d = {"a": 1}
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
|
|
x = torch.randn(4)
|
|
self.assertEqual(fn(d, x), opt_fn(d, x))
|
|
self.assertEqual(fn({"a": 1, "b": 2}, x), opt_fn({"a": 1, "b": 2}, x))
|
|
|
|
def test_block_stack_cleanup(self):
|
|
params = {
|
|
"a": 3,
|
|
"b": 4,
|
|
"c": 5,
|
|
}
|
|
|
|
dt = {
|
|
"c": 5,
|
|
}
|
|
|
|
def fn(x):
|
|
for name in params:
|
|
try:
|
|
x = x * dt[name]
|
|
except KeyError:
|
|
x = x * torch.sin(x)
|
|
return x
|
|
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
x = torch.randn(4)
|
|
self.assertEqual(fn(x), opt_fn(x))
|
|
|
|
def test_set_cause_with_arg(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t, err):
|
|
err.__cause__ = ValueError()
|
|
return t.sin()
|
|
|
|
t = torch.randn(2)
|
|
e = TypeError("abcd")
|
|
fn(t, e)
|
|
self.assertIsInstance(e.__cause__, ValueError)
|
|
|
|
def test_set_cause_with_arg_error(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t, err):
|
|
err.__cause__ = 2
|
|
return t.sin()
|
|
|
|
t = torch.randn(2)
|
|
e = TypeError("abcd")
|
|
with self.assertRaisesRegex(TypeError, "exception cause must be"):
|
|
fn(t, e)
|
|
|
|
@parametrize(
|
|
"ex",
|
|
[TypeError, CustomException],
|
|
name_fn=lambda x: x.__name__,
|
|
)
|
|
@make_dynamo_test
|
|
def test_set___cause__(self, ex):
|
|
def fn():
|
|
try:
|
|
raise ex
|
|
except ex:
|
|
raise TypeError from None
|
|
|
|
try:
|
|
fn()
|
|
except TypeError as e:
|
|
assert isinstance(e.__context__, ex)
|
|
assert e.__cause__ is None
|
|
assert e.__suppress_context__ is True
|
|
|
|
@parametrize(
|
|
"ex",
|
|
[RuntimeError, CustomException],
|
|
name_fn=lambda x: x.__name__,
|
|
)
|
|
@make_dynamo_test
|
|
def test_set___cause___error(self, ex):
|
|
def fn():
|
|
try:
|
|
raise ex
|
|
except Exception as e:
|
|
e.__cause__ = 2
|
|
raise
|
|
|
|
z = 0
|
|
|
|
try:
|
|
fn()
|
|
except TypeError as e:
|
|
z = 1
|
|
assert e.args == (
|
|
"exception cause must be None or derive from BaseException",
|
|
)
|
|
except Exception:
|
|
raise AssertionError from None
|
|
|
|
assert z == 1
|
|
|
|
def test_user_defined_exception_variable(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
z = 0
|
|
try:
|
|
raise CustomException
|
|
except ValueError:
|
|
z = 1
|
|
except CustomException:
|
|
z = 2
|
|
assert z == 2
|
|
return t.sin()
|
|
|
|
t = torch.randn(2)
|
|
fn(t)
|
|
|
|
def test_user_defined_exception_with_args(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(t):
|
|
z = 0
|
|
try:
|
|
raise CustomExceptionWithArgs(2, b=3)
|
|
except ValueError:
|
|
z = 1
|
|
except CustomExceptionWithArgs:
|
|
z = 2
|
|
assert z == 2
|
|
|
|
t = torch.randn(2)
|
|
fn(t)
|
|
|
|
@make_dynamo_test
|
|
def test_raise_set___context__(self):
|
|
try:
|
|
raise TypeError
|
|
except TypeError as e:
|
|
exc = e
|
|
|
|
assert exc.__context__ is None
|
|
|
|
try:
|
|
raise ValueError
|
|
except ValueError as e:
|
|
exc2 = e
|
|
|
|
assert exc2.__context__ is None
|
|
|
|
def test_exception_kwargs(self):
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn():
|
|
raise AttributeError(name="a")
|
|
|
|
self.assertRaises(Unsupported, fn)
|
|
|
|
|
|
instantiate_parametrized_tests(ExceptionTests)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|