mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This reverts commit 4b82251011f85f9d1395b451d61e976af844d9b1. Reverted https://github.com/pytorch/pytorch/pull/134124 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it breaks lots of internal build ([comment](https://github.com/pytorch/pytorch/pull/134124#issuecomment-2555953189))
3022 lines
109 KiB
Python
3022 lines
109 KiB
Python
# mypy: ignore-errors
|
|
|
|
r"""Importing this file includes common utility methods and base clases for
|
|
checking quantization api and properties of resulting modules.
|
|
"""
|
|
|
|
from functorch.experimental import control_flow
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.ao.nn.intrinsic.quantized.dynamic as nniqd
|
|
import torch.ao.nn.quantized as nnq
|
|
import torch.ao.nn.quantized.dynamic as nnqd
|
|
from torch.ao.nn.intrinsic import _FusedModule
|
|
import torch.distributed as dist
|
|
from torch.testing._internal.common_utils import TestCase, TEST_WITH_ROCM
|
|
|
|
from torch.export import export_for_training
|
|
from torch.ao.quantization import (
|
|
QuantType,
|
|
default_dynamic_qat_qconfig,
|
|
default_embedding_qat_qconfig,
|
|
default_symmetric_qnnpack_qat_qconfig,
|
|
)
|
|
from torch.ao.quantization.quantize_pt2e import (
|
|
_convert_to_reference_decomposed_fx,
|
|
convert_pt2e,
|
|
prepare_pt2e,
|
|
prepare_qat_pt2e,
|
|
)
|
|
from torch.ao.quantization.backend_config import (
|
|
get_executorch_backend_config,
|
|
)
|
|
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
|
|
XNNPACKQuantizer,
|
|
get_symmetric_quantization_config,
|
|
)
|
|
from torch.ao.quantization import QuantWrapper, QuantStub, DeQuantStub, \
|
|
default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \
|
|
propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit, float_qparams_weight_only_qconfig, \
|
|
get_default_qat_qconfig, PerChannelMinMaxObserver, default_dynamic_quant_observer, quantize, \
|
|
QConfigMapping, get_default_qconfig_mapping, get_default_qat_qconfig_mapping
|
|
from torch.ao.quantization.quantization_mappings import (
|
|
get_default_dynamic_quant_module_mappings,
|
|
get_default_qconfig_propagation_list,
|
|
get_default_qat_module_mappings,
|
|
)
|
|
from torch.testing._internal.common_quantized import (
|
|
override_quantized_engine,
|
|
)
|
|
from torch.jit.mobile import _load_for_lite_interpreter
|
|
|
|
try:
|
|
# graph mode quantization based on fx
|
|
from torch.ao.quantization.quantize_fx import (
|
|
prepare_fx,
|
|
prepare_qat_fx,
|
|
convert_fx,
|
|
convert_to_reference_fx,
|
|
)
|
|
from torch.ao.ns.fx.ns_types import NSSingleResultValuesType, NSSubgraph
|
|
from torch.fx.graph import Node
|
|
from torch.fx import GraphModule
|
|
HAS_FX = True
|
|
except ImportError:
|
|
HAS_FX = False
|
|
|
|
import copy
|
|
import io
|
|
import functools
|
|
import os
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from torch.testing import FileCheck
|
|
from typing import Callable, Tuple, Dict, Any, Union, Type, Optional
|
|
import torch._dynamo as torchdynamo
|
|
import torch.ao.quantization.quantizer.x86_inductor_quantizer as xiq
|
|
import torch.ao.quantization.quantizer.xpu_inductor_quantizer as xpuiq
|
|
from torch.ao.quantization.quantizer.x86_inductor_quantizer import X86InductorQuantizer
|
|
from torch.ao.quantization.quantizer.xpu_inductor_quantizer import XPUInductorQuantizer
|
|
import contextlib
|
|
|
|
class NodeSpec:
|
|
''' Used for checking GraphModule Node
|
|
'''
|
|
def __init__(self, op, target):
|
|
'''
|
|
op: call_function | call_module
|
|
target:
|
|
for call_function, target would be a function
|
|
for call_module, target would be the type of PyTorch module
|
|
'''
|
|
self.op = op
|
|
self.target = target
|
|
|
|
@classmethod
|
|
def call_function(cls, target):
|
|
return NodeSpec('call_function', target)
|
|
|
|
@classmethod
|
|
def call_method(cls, target):
|
|
return NodeSpec('call_method', target)
|
|
|
|
@classmethod
|
|
def call_module(cls, target):
|
|
return NodeSpec('call_module', target)
|
|
|
|
def __hash__(self):
|
|
return hash((self.op, self.target))
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, NodeSpec):
|
|
return NotImplemented
|
|
|
|
return self.op == other.op and self.target == other.target
|
|
|
|
def __repr__(self):
|
|
return repr(self.op) + " " + repr(self.target)
|
|
|
|
def get_supported_device_types():
|
|
return ['cpu', 'cuda'] if torch.cuda.is_available() and not TEST_WITH_ROCM else ['cpu']
|
|
|
|
def test_only_eval_fn(model, calib_data):
|
|
r"""
|
|
Default evaluation function takes a torch.utils.data.Dataset or a list of
|
|
input Tensors and run the model on the dataset
|
|
"""
|
|
for inp in calib_data:
|
|
model(*inp)
|
|
|
|
_default_loss_fn = torch.nn.CrossEntropyLoss()
|
|
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
|
|
r"""
|
|
Default train function takes a torch.utils.data.Dataset and train the model
|
|
on the dataset
|
|
"""
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
|
train_loss, correct, total = 0, 0, 0
|
|
for _ in range(10):
|
|
model.train()
|
|
|
|
for data, target in train_data:
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = loss_fn(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
train_loss += loss.item()
|
|
_, predicted = torch.max(output, 1)
|
|
total += target.size(0)
|
|
correct += (predicted == target).sum().item()
|
|
return train_loss, correct, total
|
|
|
|
class AverageMeter:
|
|
"""Computes and stores the average and current value"""
|
|
def __init__(self, name, fmt=':f'):
|
|
self.name = name
|
|
self.fmt = fmt
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.val = 0
|
|
self.avg = 0
|
|
self.sum = 0
|
|
self.count = 0
|
|
|
|
def update(self, val, n=1):
|
|
self.val = val
|
|
self.sum += val * n
|
|
self.count += n
|
|
self.avg = self.sum / self.count
|
|
|
|
def __str__(self):
|
|
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
|
|
return fmtstr.format(**self.__dict__)
|
|
|
|
|
|
def accuracy(output, target, topk=(1,)):
|
|
"""Computes the accuracy over the k top predictions for the specified values of k"""
|
|
with torch.no_grad():
|
|
maxk = max(topk)
|
|
batch_size = target.size(0)
|
|
|
|
_, pred = output.topk(maxk, 1, True, True)
|
|
pred = pred.t()
|
|
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
|
|
|
res = []
|
|
for k in topk:
|
|
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
|
|
res.append(correct_k.mul_(100.0 / batch_size))
|
|
return res
|
|
|
|
def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
|
|
model.train()
|
|
cnt = 0
|
|
for image, target in data_loader:
|
|
print('.', end='')
|
|
cnt += 1
|
|
image, target = image.to(device), target.to(device)
|
|
output = model(image)
|
|
loss = criterion(output, target)
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
accuracy(output, target, topk=(1, 5))
|
|
if cnt >= ntrain_batches:
|
|
return
|
|
return
|
|
|
|
def ddp_setup(rank, world_size):
|
|
os.environ['MASTER_ADDR'] = 'localhost'
|
|
os.environ['MASTER_PORT'] = '12355'
|
|
|
|
# initialize the process group
|
|
dist.init_process_group("gloo", rank=rank, world_size=world_size)
|
|
|
|
def ddp_cleanup():
|
|
dist.destroy_process_group()
|
|
|
|
def run_ddp(rank, world_size, prepared):
|
|
ddp_setup(rank, world_size)
|
|
prepared.cuda()
|
|
prepared = torch.nn.parallel.DistributedDataParallel(prepared, device_ids=[rank])
|
|
prepared.to(rank)
|
|
model_with_ddp = prepared
|
|
optimizer = torch.optim.SGD(model_with_ddp.parameters(), lr=0.0001)
|
|
train_one_epoch(model_with_ddp, criterion, optimizer, dataset, rank, 1) # noqa: F821
|
|
ddp_cleanup()
|
|
|
|
|
|
def convert_dynamic(module):
|
|
convert(module, get_default_dynamic_quant_module_mappings(), inplace=True)
|
|
|
|
def prepare_dynamic(model, qconfig_dict=None):
|
|
propagate_qconfig_(model, qconfig_dict)
|
|
|
|
def _make_conv_test_input(
|
|
batch_size, in_channels_per_group, input_feature_map_size,
|
|
out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale,
|
|
W_zero_point, use_bias, use_channelwise,
|
|
):
|
|
in_channels = in_channels_per_group * groups
|
|
out_channels = out_channels_per_group * groups
|
|
|
|
(X_value_min, X_value_max) = (0, 4)
|
|
X_init = torch.randint(
|
|
X_value_min, X_value_max,
|
|
(batch_size, in_channels,) + input_feature_map_size)
|
|
X = X_scale * (X_init - X_zero_point).float()
|
|
X_q = torch.quantize_per_tensor(
|
|
X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
|
|
|
|
W_scale = W_scale * out_channels
|
|
W_zero_point = W_zero_point * out_channels
|
|
# Resize W_scale and W_zero_points arrays equal to out_channels
|
|
W_scale = W_scale[:out_channels]
|
|
W_zero_point = W_zero_point[:out_channels]
|
|
# For testing, we use small values for weights and for activations so that
|
|
# no overflow occurs in vpmaddubsw instruction. If the overflow occurs in
|
|
# qconv implementation and if there is no overflow.
|
|
# In reference we can't exactly match the results with reference.
|
|
# Please see the comment in qconv implementation file
|
|
# aten/src/ATen/native/quantized/cpu/qconv.cpp for more details.
|
|
(W_value_min, W_value_max) = (-5, 5)
|
|
# The operator expects them in the format
|
|
# (out_channels, in_channels/groups,) + kernel_size
|
|
W_init = torch.randint(
|
|
W_value_min, W_value_max,
|
|
(out_channels, in_channels_per_group,) + kernel_size)
|
|
b_init = torch.randint(0, 10, (out_channels,))
|
|
|
|
if use_channelwise:
|
|
W_shape = (-1, 1) + (1,) * len(kernel_size)
|
|
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
|
|
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
|
|
W = W_scales_tensor.reshape(*W_shape) * (
|
|
W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float()
|
|
b = X_scale * W_scales_tensor * b_init.float()
|
|
W_q = torch.quantize_per_channel(
|
|
W, W_scales_tensor.double(), W_zero_points_tensor.long(), 0,
|
|
dtype=torch.qint8)
|
|
else:
|
|
W = W_scale[0] * (W_init - W_zero_point[0]).float()
|
|
b = X_scale * W_scale[0] * b_init.float()
|
|
W_q = torch.quantize_per_tensor(
|
|
W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)
|
|
|
|
return (X, X_q, W, W_q, b if use_bias else None)
|
|
|
|
def _make_conv_add_extra_input_tensor(scale, zero_point, sizes):
|
|
(X_value_min, X_value_max) = (0, 4)
|
|
X_init = torch.randint(
|
|
X_value_min,
|
|
X_value_max,
|
|
sizes # Infer the size of tensor to do the add
|
|
)
|
|
X = scale * (X_init - zero_point).float()
|
|
X_q = torch.quantize_per_tensor(
|
|
X, scale=scale, zero_point=zero_point, dtype=torch.quint8)
|
|
return X, X_q
|
|
|
|
def skipIfNoFBGEMM(fn):
|
|
reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.'
|
|
if isinstance(fn, type):
|
|
if 'fbgemm' not in torch.backends.quantized.supported_engines:
|
|
fn.__unittest_skip__ = True
|
|
fn.__unittest_skip_why__ = reason
|
|
return fn
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if 'fbgemm' not in torch.backends.quantized.supported_engines:
|
|
raise unittest.SkipTest(reason)
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
def skipIfNoQNNPACK(fn):
|
|
reason = 'Quantized operations require QNNPACK.'
|
|
if isinstance(fn, type):
|
|
if 'qnnpack' not in torch.backends.quantized.supported_engines:
|
|
fn.__unittest_skip__ = True
|
|
fn.__unittest_skip_why__ = reason
|
|
return fn
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if 'qnnpack' not in torch.backends.quantized.supported_engines:
|
|
raise unittest.SkipTest(reason)
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
def withQNNPACKBackend(fn):
|
|
# TODO(future PR): consider combining with skipIfNoQNNPACK,
|
|
# will require testing of existing callsites
|
|
reason = 'Quantized operations require QNNPACK.'
|
|
if isinstance(fn, type):
|
|
if 'qnnpack' not in torch.backends.quantized.supported_engines:
|
|
fn.__unittest_skip__ = True
|
|
fn.__unittest_skip_why__ = reason
|
|
return fn
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if 'qnnpack' not in torch.backends.quantized.supported_engines:
|
|
raise unittest.SkipTest(reason)
|
|
with override_quantized_engine('qnnpack'):
|
|
fn(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
def skipIfNoONEDNN(fn):
|
|
reason = 'Quantized operations require ONEDNN.'
|
|
if isinstance(fn, type):
|
|
if 'onednn' not in torch.backends.quantized.supported_engines:
|
|
fn.__unittest_skip__ = True
|
|
fn.__unittest_skip_why__ = reason
|
|
return fn
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if 'onednn' not in torch.backends.quantized.supported_engines:
|
|
raise unittest.SkipTest(reason)
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
def skipIfNoONEDNNBF16(fn):
|
|
reason = 'Quantized operations require BF16 support.'
|
|
if isinstance(fn, type):
|
|
if not torch.ops.mkldnn._is_mkldnn_bf16_supported():
|
|
fn.__unittest_skip__ = True
|
|
fn.__unittest_skip_why__ = reason
|
|
return fn
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not torch.ops.mkldnn._is_mkldnn_bf16_supported():
|
|
raise unittest.SkipTest(reason)
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
def skipIfNoX86(fn):
|
|
reason = 'Quantized operations require X86.'
|
|
if isinstance(fn, type):
|
|
if 'x86' not in torch.backends.quantized.supported_engines:
|
|
fn.__unittest_skip__ = True
|
|
fn.__unittest_skip_why__ = reason
|
|
return fn
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if 'x86' not in torch.backends.quantized.supported_engines:
|
|
raise unittest.SkipTest(reason)
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
def skipIfNoDynamoSupport(fn):
|
|
reason = "dynamo doesn't support."
|
|
if isinstance(fn, type):
|
|
if not torchdynamo.is_dynamo_supported():
|
|
fn.__unittest_skip__ = True
|
|
fn.__unittest_skip_why__ = reason
|
|
return fn
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not torchdynamo.is_dynamo_supported():
|
|
raise unittest.SkipTest(reason)
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
def skipIfNoInductorSupport(fn):
|
|
reason = "inductor doesn't support."
|
|
if isinstance(fn, type):
|
|
if not torchdynamo.is_inductor_supported():
|
|
fn.__unittest_skip__ = True
|
|
fn.__unittest_skip_why__ = reason
|
|
return fn
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
if not torchdynamo.is_inductor_supported():
|
|
raise unittest.SkipTest(reason)
|
|
else:
|
|
fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
try:
|
|
import torchvision # noqa: F401
|
|
HAS_TORCHVISION = True
|
|
except ImportError:
|
|
HAS_TORCHVISION = False
|
|
skip_if_no_torchvision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
|
|
|
|
def get_script_module(model, tracing, data):
|
|
return torch.jit.trace(model, data) if tracing else torch.jit.script(model)
|
|
|
|
def lengths_to_offsets(t, offset_type=np.int64, use_begin_offset=True):
|
|
"""
|
|
Convert lengths to offsets for embedding_bag
|
|
"""
|
|
tt = np.zeros((t.shape[0] + 1,), dtype=offset_type)
|
|
tt[1:] = t
|
|
tt = torch.from_numpy(np.cumsum(tt, dtype=offset_type))
|
|
if use_begin_offset:
|
|
return tt[:-1]
|
|
return tt[1:]
|
|
|
|
|
|
def _group_quantize_tensor(w, n_bit=4, q_group_size=16):
|
|
assert w.dim() == 2
|
|
w = w.transpose(0, 1).contiguous()
|
|
assert q_group_size > 1
|
|
assert w.shape[-1] % q_group_size == 0
|
|
|
|
to_quant = w.reshape(-1, q_group_size)
|
|
assert torch.isnan(to_quant).sum() == 0
|
|
|
|
max_val = to_quant.amax(dim=1, keepdim=True)
|
|
min_val = to_quant.amin(dim=1, keepdim=True)
|
|
max_int = 2 ** n_bit - 1
|
|
min_int = 0
|
|
scales = (max_val - min_val).clamp(min=1e-6) / max_int
|
|
assert torch.isnan(scales).sum() == 0
|
|
|
|
zeros = min_val + scales * (2 ** (n_bit - 1))
|
|
assert torch.isnan(zeros).sum() == 0
|
|
|
|
out = to_quant.sub(min_val).div(scales).round().clamp_(min_int, max_int)
|
|
assert torch.isnan(out).sum() == 0
|
|
|
|
out = out.to(dtype=torch.int32).reshape(w.shape)
|
|
if out.device != torch.device('cpu'):
|
|
out = (out[::, ::2] << 4 | out[::, 1::2]).to(torch.uint8)
|
|
|
|
# Scales and zeros for the same q-group should be contiguous, so we can
|
|
# load as a 32-bit word
|
|
scales = scales.view(w.shape[0], -1)
|
|
zeros = zeros.view(w.shape[0], -1)
|
|
scales_and_zeros = (
|
|
torch.cat(
|
|
[
|
|
scales.reshape(scales.size(0), scales.size(1), 1),
|
|
zeros.reshape(zeros.size(0), zeros.size(1), 1),
|
|
],
|
|
2,
|
|
).transpose(0, 1).contiguous()
|
|
)
|
|
|
|
return out, scales_and_zeros
|
|
|
|
|
|
def _dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
|
|
# source: https://github.com/pytorch-labs/gpt-fast/blob/main/quantize.py
|
|
# default setup for affine quantization of activations
|
|
x_dtype = x.dtype
|
|
x = x.float()
|
|
eps = torch.finfo(torch.float32).eps
|
|
|
|
# get min and max
|
|
min_val, max_val = torch.aminmax(x, dim=1)
|
|
|
|
# calculate scales and zero_points based on min and max
|
|
# reference: https://fburl.com/code/srbiybme
|
|
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
|
|
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
|
|
device = min_val_neg.device
|
|
|
|
# reference: https://fburl.com/code/4wll53rk
|
|
max_val_pos = torch.max(-min_val_neg, max_val_pos)
|
|
scales = max_val_pos / (float(quant_max - quant_min) / 2)
|
|
# ensure scales is the same dtype as the original tensor
|
|
scales = torch.clamp(scales, min=eps).to(x.dtype)
|
|
zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)
|
|
|
|
# quantize based on qmin/qmax/scales/zp
|
|
x_div = x / scales.unsqueeze(-1)
|
|
x_round = torch.round(x_div)
|
|
x_zp = x_round + zero_points.unsqueeze(-1)
|
|
quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype)
|
|
|
|
return quant, scales.to(x_dtype), zero_points
|
|
|
|
|
|
|
|
# QuantizationTestCase used as a base class for testing quantization on modules
|
|
class QuantizationTestCase(TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)]
|
|
self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)]
|
|
self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)]
|
|
for _ in range(2)]
|
|
self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)]
|
|
for _ in range(2)]
|
|
self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)]
|
|
for _ in range(2)]
|
|
self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float),
|
|
torch.randint(0, 1, (1,), dtype=torch.long)]
|
|
for _ in range(2)]
|
|
self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float),
|
|
torch.randint(0, 1, (1,), dtype=torch.long)]
|
|
for _ in range(2)]
|
|
self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float),
|
|
torch.randint(0, 1, (1,), dtype=torch.long)]
|
|
for _ in range(2)]
|
|
|
|
self.img_data_dict = {1 : self.img_data_1d,
|
|
2 : self.img_data_2d,
|
|
3 : self.img_data_3d}
|
|
|
|
# Quant types that produce statically quantized ops
|
|
self.static_quant_types = [QuantType.STATIC, QuantType.QAT]
|
|
# All quant types for (fx based) graph mode quantization
|
|
self.all_quant_types = [QuantType.DYNAMIC, QuantType.STATIC, QuantType.QAT]
|
|
|
|
def checkNoPrepModules(self, module):
|
|
r"""Checks the module does not contain child
|
|
modules for quantization preparation, e.g.
|
|
quant, dequant and observer
|
|
"""
|
|
self.assertFalse(hasattr(module, 'quant'))
|
|
self.assertFalse(hasattr(module, 'dequant'))
|
|
|
|
def checkNoQconfig(self, module):
|
|
r"""Checks the module does not contain qconfig
|
|
"""
|
|
self.assertFalse(hasattr(module, 'qconfig'))
|
|
|
|
for child in module.children():
|
|
self.checkNoQconfig(child)
|
|
|
|
def checkHasPrepModules(self, module):
|
|
r"""Checks the module contains child
|
|
modules for quantization preparation, e.g.
|
|
quant, dequant and observer
|
|
"""
|
|
self.assertTrue(hasattr(module, 'module'))
|
|
self.assertTrue(hasattr(module, 'quant'))
|
|
self.assertTrue(hasattr(module, 'dequant'))
|
|
|
|
def checkObservers(self, module, propagate_qconfig_list=None, prepare_custom_config_dict=None):
|
|
r"""Checks the module or module's leaf descendants
|
|
have observers in preparation for quantization
|
|
"""
|
|
if propagate_qconfig_list is None:
|
|
propagate_qconfig_list = get_default_qconfig_propagation_list()
|
|
if prepare_custom_config_dict is None:
|
|
prepare_custom_config_dict = {}
|
|
float_to_observed_module_class_mapping = prepare_custom_config_dict.get("float_to_observed_custom_module_class", {})
|
|
|
|
# check if a module is a leaf module, ignoring activation_post_process attribute
|
|
def is_leaf_module(module):
|
|
submodule_name_count = 0
|
|
for name, _ in module.named_children():
|
|
if name != 'activation_post_process':
|
|
submodule_name_count += 1
|
|
return submodule_name_count == 0
|
|
|
|
if hasattr(module, 'qconfig') and module.qconfig is not None and \
|
|
((is_leaf_module(module) and not isinstance(module, torch.nn.Sequential)
|
|
and type(module) in propagate_qconfig_list) or
|
|
type(module) in float_to_observed_module_class_mapping.keys()) and \
|
|
not isinstance(module, torch.ao.quantization.DeQuantStub):
|
|
self.assertTrue(hasattr(module, 'activation_post_process'),
|
|
'module: ' + str(type(module)) + ' do not have observer')
|
|
# we don't need to check observers for child modules of the
|
|
# qat modules
|
|
if type(module) not in get_default_qat_module_mappings().values() and \
|
|
type(module) not in float_to_observed_module_class_mapping.values() and \
|
|
not isinstance(module, _FusedModule):
|
|
for child in module.children():
|
|
if type(child) in [nn.Dropout]:
|
|
continue
|
|
self.checkObservers(child, propagate_qconfig_list, prepare_custom_config_dict)
|
|
|
|
def checkQuantDequant(self, mod):
|
|
r"""Checks that mod has nn.Quantize and
|
|
nn.DeQuantize submodules inserted
|
|
"""
|
|
self.assertEqual(type(mod.quant), nnq.Quantize)
|
|
self.assertEqual(type(mod.dequant), nnq.DeQuantize)
|
|
|
|
def checkWrappedQuantizedLinear(self, mod):
|
|
r"""Checks that mod has been swapped for an nnq.Linear
|
|
module, the bias is qint32, and that the module
|
|
has Quantize and DeQuantize submodules
|
|
"""
|
|
self.assertEqual(type(mod.module), nnq.Linear)
|
|
self.checkQuantDequant(mod)
|
|
|
|
def checkQuantizedLinear(self, mod):
|
|
self.assertEqual(type(mod), nnq.Linear)
|
|
|
|
def checkDynamicQuantizedLinear(self, mod, dtype):
|
|
r"""Checks that mod has been swapped for an nnqd.Linear
|
|
module, the bias is float.
|
|
"""
|
|
self.assertEqual(type(mod), nnqd.Linear)
|
|
self.assertEqual(mod._packed_params.dtype, dtype)
|
|
|
|
def checkDynamicQuantizedLinearRelu(self, mod, dtype):
|
|
r"""Checks that mod has been swapped for an nnqd.Linear
|
|
module, the bias is float.
|
|
"""
|
|
self.assertEqual(type(mod), nniqd.LinearReLU)
|
|
self.assertEqual(mod._packed_params.dtype, dtype)
|
|
|
|
def check_eager_serialization(self, ref_model, loaded_model, x):
|
|
# Check state dict serialization and torch.save APIs
|
|
model_dict = ref_model.state_dict()
|
|
b = io.BytesIO()
|
|
torch.save(model_dict, b)
|
|
b.seek(0)
|
|
# weights_only=False as we sometimes get a ScriptObect here (weird)
|
|
loaded_dict = torch.load(b, weights_only=False)
|
|
loaded_model.load_state_dict(loaded_dict)
|
|
ref_out = ref_model(*x)
|
|
load_out = loaded_model(*x)
|
|
|
|
def check_outputs(ref_out, load_out):
|
|
self.assertEqual(ref_out[0], load_out[0])
|
|
if isinstance(ref_out[1], tuple):
|
|
self.assertEqual(ref_out[1][0], load_out[1][0])
|
|
self.assertEqual(ref_out[1][1], load_out[1][1])
|
|
else:
|
|
self.assertEqual(ref_out[1], load_out[1])
|
|
|
|
check_outputs(ref_out, load_out)
|
|
b = io.BytesIO()
|
|
torch.save(ref_model, b)
|
|
b.seek(0)
|
|
# weights_only=False as this is legacy code that saves the model
|
|
loaded = torch.load(b, weights_only=False)
|
|
load_out = loaded(*x)
|
|
check_outputs(ref_out, load_out)
|
|
|
|
def check_weight_bias_api(self, ref_model, weight_keys, bias_keys):
|
|
weight = ref_model.get_weight()
|
|
bias = ref_model.get_bias()
|
|
self.assertEqual(weight_keys ^ weight.keys(), set())
|
|
self.assertEqual(bias_keys ^ bias.keys(), set())
|
|
|
|
def checkDynamicQuantizedLSTM(self, mod, reference_module_type, dtype):
|
|
r"""Checks that mod has been swapped for an nnqd.LSTM type
|
|
module, the bias is float.
|
|
"""
|
|
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
|
|
self.assertEqual(type(mod), reference_module_type)
|
|
for packed_params in mod._all_weight_values:
|
|
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
|
|
|
|
def checkLinear(self, mod):
|
|
self.assertEqual(type(mod), torch.nn.Linear)
|
|
|
|
def checkDynamicQuantizedModule(self, mod, reference_module_type, dtype):
|
|
r"""Checks that mod has been swapped for an nnqd.Linear
|
|
module, the bias is float.
|
|
"""
|
|
wt_dtype_map = {torch.qint8: 'quantized_dynamic', torch.float16: 'quantized_fp16'}
|
|
self.assertEqual(type(mod), reference_module_type)
|
|
if hasattr(mod, '_all_weight_values'):
|
|
for packed_params in mod._all_weight_values:
|
|
self.assertEqual(packed_params.param.__getstate__()[0][0], wt_dtype_map[dtype])
|
|
|
|
def checkScriptable(self, orig_mod, calib_data, check_save_load=False):
|
|
scripted = torch.jit.script(orig_mod)
|
|
self._checkScriptable(orig_mod, scripted, calib_data, check_save_load)
|
|
|
|
# Use first calib_data entry as trace input
|
|
traced = torch.jit.trace(orig_mod, calib_data[0])
|
|
self._checkScriptable(orig_mod, traced, calib_data, check_save_load)
|
|
|
|
# Call this twice: once for a scripted module and once for a traced module
|
|
def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load):
|
|
self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data)
|
|
|
|
# Test save/load
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(script_mod, buffer)
|
|
|
|
buffer.seek(0)
|
|
loaded_mod = torch.jit.load(buffer)
|
|
# Pending __get_state_ and __set_state__ support
|
|
# See tracking task https://github.com/pytorch/pytorch/issues/23984
|
|
if check_save_load:
|
|
self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data)
|
|
|
|
def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data):
|
|
for inp in calib_data:
|
|
ref_output = orig_mod(*inp)
|
|
scripted_output = test_mod(*inp)
|
|
self.assertEqual(scripted_output, ref_output)
|
|
|
|
|
|
def checkGraphModeOp(self, module, inputs, quantized_op, tracing=False, debug=False,
|
|
check=True, eval_mode=True, dynamic=False, qconfig=None):
|
|
if debug:
|
|
print('Testing:', str(module))
|
|
qconfig_dict = {'': get_default_qconfig(torch.backends.quantized.engine)}
|
|
|
|
if eval_mode:
|
|
module = module.eval()
|
|
if dynamic:
|
|
qconfig_dict = {'': default_dynamic_qconfig if qconfig is None else qconfig}
|
|
model = get_script_module(module, tracing, inputs[0]).eval()
|
|
if debug:
|
|
print('input graph:', model.graph)
|
|
models = {}
|
|
outputs = {}
|
|
for debug in [True, False]:
|
|
if dynamic:
|
|
models[debug] = quantize_dynamic_jit(model, qconfig_dict, debug=debug)
|
|
# make sure it runs
|
|
outputs[debug] = models[debug](inputs)
|
|
else:
|
|
# module under test can contain in-place ops, and we depend on
|
|
# input data staying constant for comparisons
|
|
inputs_copy = copy.deepcopy(inputs)
|
|
models[debug] = quantize_jit(
|
|
model, qconfig_dict, test_only_eval_fn, [inputs_copy], inplace=False,
|
|
debug=debug)
|
|
# make sure it runs
|
|
outputs[debug] = models[debug](*inputs[0])
|
|
|
|
if debug:
|
|
print('debug graph:', models[True].graph)
|
|
print('non debug graph:', models[False].graph)
|
|
|
|
if check:
|
|
# debug and non-debug option should have the same numerics
|
|
self.assertEqual(outputs[True], outputs[False])
|
|
|
|
# non debug graph should produce quantized op
|
|
FileCheck().check(quantized_op) \
|
|
.run(models[False].graph)
|
|
|
|
return models[False]
|
|
|
|
def checkGraphModuleNodes(
|
|
self, graph_module,
|
|
expected_node=None,
|
|
expected_node_occurrence=None,
|
|
expected_node_list=None):
|
|
""" Check if GraphModule contains the target node
|
|
Args:
|
|
graph_module: the GraphModule instance we want to check
|
|
expected_node, expected_node_occurrence, expected_node_list:
|
|
see docs for checkGraphModeFxOp
|
|
"""
|
|
nodes_in_graph = {}
|
|
node_list = []
|
|
modules = dict(graph_module.named_modules(remove_duplicate=False))
|
|
for node in graph_module.graph.nodes:
|
|
n = None
|
|
if node.op == 'call_function' or node.op == 'call_method':
|
|
n = NodeSpec(node.op, node.target)
|
|
elif node.op == 'call_module':
|
|
n = NodeSpec(node.op, type(modules[node.target]))
|
|
|
|
if n is not None:
|
|
node_list.append(n)
|
|
if n in nodes_in_graph:
|
|
nodes_in_graph[n] += 1
|
|
else:
|
|
nodes_in_graph[n] = 1
|
|
|
|
if expected_node is not None:
|
|
self.assertTrue(expected_node in nodes_in_graph, 'node:' + str(expected_node) +
|
|
' not found in the graph module')
|
|
|
|
if expected_node_occurrence is not None:
|
|
for expected_node, occurrence in expected_node_occurrence.items():
|
|
if occurrence != 0:
|
|
self.assertTrue(
|
|
expected_node in nodes_in_graph,
|
|
'Check failed for node:' + str(expected_node) +
|
|
' not found')
|
|
self.assertTrue(
|
|
nodes_in_graph[expected_node] == occurrence,
|
|
'Check failed for node:' + str(expected_node) +
|
|
' Expected occurrence:' + str(occurrence) +
|
|
' Found occurrence:' + str(nodes_in_graph[expected_node]))
|
|
else:
|
|
self.assertTrue(
|
|
expected_node not in nodes_in_graph,
|
|
'Check failed for node:' + str(expected_node) +
|
|
' expected no occurrence but found')
|
|
|
|
if expected_node_list is not None:
|
|
cur_index = 0
|
|
for n in node_list:
|
|
if cur_index == len(expected_node_list):
|
|
return
|
|
if n == expected_node_list[cur_index]:
|
|
cur_index += 1
|
|
self.assertTrue(
|
|
cur_index == len(expected_node_list),
|
|
"Check failed for graph:" +
|
|
self.printGraphModule(graph_module, print_str=False) +
|
|
"Expected ordered list:" +
|
|
str(expected_node_list))
|
|
|
|
def printGraphModule(self, graph_module, print_str=True):
|
|
modules = dict(graph_module.named_modules(remove_duplicate=False))
|
|
node_infos = []
|
|
for n in graph_module.graph.nodes:
|
|
node_info = ' '.join(map(repr, [n.op, n.name, n.target, n.args, n.kwargs]))
|
|
if n.op == 'call_module':
|
|
node_info += ' module type: ' + repr(type(modules[n.target]))
|
|
node_infos.append(node_info)
|
|
str_to_print = '\n'.join(node_infos)
|
|
if print_str:
|
|
print(str_to_print)
|
|
return str_to_print
|
|
|
|
if HAS_FX:
|
|
|
|
def assert_types_for_matched_subgraph_pairs(
|
|
self,
|
|
matched_subgraph_pairs: Dict[str, Tuple[NSSubgraph, NSSubgraph]],
|
|
expected_types: Dict[str, Tuple[Tuple[Callable, Callable], Tuple[Callable, Callable]]],
|
|
gm_a: GraphModule,
|
|
gm_b: GraphModule,
|
|
) -> None:
|
|
"""
|
|
Verifies that the types specified in expected_types match
|
|
the underlying objects pointed to by the nodes in matched_subgraph_pairs.
|
|
|
|
An example successful test case:
|
|
|
|
matched_subgraph_pairs = {'x0': (graph_a_conv_0_node, graph_b_conv_0_node)}
|
|
expected_types = {'x0': (nn.Conv2d, nnq.Conv2d)}
|
|
|
|
The function tests for key equivalence, and verifies types with
|
|
instance checks.
|
|
"""
|
|
|
|
def _get_underlying_op_type(
|
|
node: Node, gm: GraphModule
|
|
) -> Union[Callable, str]:
|
|
if node.op == 'call_module':
|
|
mod = getattr(gm, node.target)
|
|
return type(mod)
|
|
else:
|
|
assert node.op in ('call_function', 'call_method')
|
|
return node.target
|
|
|
|
self.assertTrue(
|
|
len(matched_subgraph_pairs) == len(expected_types),
|
|
f'Expected length of results to match, but got {len(matched_subgraph_pairs)} and {len(expected_types)}'
|
|
)
|
|
for k, v in expected_types.items():
|
|
expected_types_a, expected_types_b = v
|
|
exp_type_start_a, exp_type_end_a = expected_types_a
|
|
exp_type_start_b, exp_type_end_b = expected_types_b
|
|
subgraph_a, subgraph_b = matched_subgraph_pairs[k]
|
|
|
|
act_type_start_a = _get_underlying_op_type(subgraph_a.start_node, gm_a)
|
|
act_type_start_b = _get_underlying_op_type(subgraph_b.start_node, gm_b)
|
|
act_type_end_a = _get_underlying_op_type(subgraph_a.end_node, gm_a)
|
|
act_type_end_b = _get_underlying_op_type(subgraph_b.end_node, gm_b)
|
|
types_match = (exp_type_start_a is act_type_start_a) and \
|
|
(exp_type_end_a is act_type_end_a) and \
|
|
(exp_type_start_b is act_type_start_b) and \
|
|
(exp_type_end_b is act_type_end_b)
|
|
self.assertTrue(
|
|
types_match,
|
|
f'Type mismatch at {k}: expected {(exp_type_start_a, exp_type_end_a, exp_type_start_b, exp_type_end_b)}, '
|
|
f'got {(act_type_start_a, act_type_end_a, act_type_start_b, act_type_end_b)}'
|
|
)
|
|
|
|
def assert_ns_compare_dict_valid(
|
|
self,
|
|
act_compare_dict: Dict[str, Dict[str, Dict[str, Any]]],
|
|
) -> None:
|
|
"""
|
|
Verifies that the act_compare_dict (output of Numeric Suite APIs) is valid:
|
|
1. for each layer, results are recorded for two models
|
|
2. number of seen tensors match
|
|
3. shapes of each pair of seen tensors match
|
|
"""
|
|
for layer_name, result_type_to_data in act_compare_dict.items():
|
|
for result_type, layer_data in result_type_to_data.items():
|
|
self.assertTrue(
|
|
len(layer_data) == 2,
|
|
f"Layer {layer_name} does not have exactly two model results.")
|
|
model_name_0, model_name_1 = layer_data.keys()
|
|
for res_idx in range(len(layer_data[model_name_0])):
|
|
layer_data_0 = layer_data[model_name_0][res_idx]
|
|
layer_data_1 = layer_data[model_name_1][res_idx]
|
|
self.assertTrue(
|
|
layer_data_0['type'] == layer_data_0['type'],
|
|
f"Layer {layer_name}, {model_name_0} and {model_name_1} do not have the same type.")
|
|
|
|
self.assertTrue(
|
|
len(layer_data_0['values']) ==
|
|
len(layer_data_1['values']),
|
|
f"Layer {layer_name}, {model_name_0} and {model_name_1} do not have the same number of seen Tensors.")
|
|
|
|
# F.conv1d weight has rank 3, and toq.conv1d unpacked weight
|
|
# has rank 4. For now, skip the length check for conv1d only.
|
|
is_weight_functional_conv1d = (
|
|
result_type == NSSingleResultValuesType.WEIGHT.value and
|
|
(
|
|
'conv1d' in layer_data_0['prev_node_target_type'] or
|
|
'conv1d' in layer_data_1['prev_node_target_type']
|
|
)
|
|
)
|
|
if not is_weight_functional_conv1d:
|
|
for idx in range(len(layer_data_0['values'])):
|
|
values_0 = layer_data_0['values'][idx]
|
|
values_1 = layer_data_1['values'][idx]
|
|
if isinstance(values_0, torch.Tensor):
|
|
self.assertTrue(
|
|
values_0.shape == values_1.shape,
|
|
f"Layer {layer_name}, {model_name_0} and {model_name_1} " +
|
|
f"have a shape mismatch at idx {idx}.")
|
|
elif isinstance(values_0, list):
|
|
values_0 = values_0[0]
|
|
values_1 = values_1[0]
|
|
self.assertTrue(
|
|
values_0.shape == values_1.shape,
|
|
f"Layer {layer_name}, {model_name_0} and {model_name_1} " +
|
|
f"have a shape mismatch at idx {idx}.")
|
|
else:
|
|
assert isinstance(values_0, tuple), \
|
|
f"unhandled type {type(values_0)}"
|
|
assert len(values_0) == 2
|
|
assert len(values_0[1]) == 2
|
|
assert values_0[0].shape == values_1[0].shape
|
|
assert values_0[1][0].shape == values_1[1][0].shape
|
|
assert values_0[1][1].shape == values_1[1][1].shape
|
|
|
|
# verify that ref_node_name is valid
|
|
ref_node_name_0 = layer_data_0['ref_node_name']
|
|
ref_node_name_1 = layer_data_1['ref_node_name']
|
|
prev_node_name_0 = layer_data_0['prev_node_name']
|
|
prev_node_name_1 = layer_data_1['prev_node_name']
|
|
if layer_data_0['type'] == NSSingleResultValuesType.NODE_OUTPUT.value:
|
|
self.assertTrue(ref_node_name_0 == prev_node_name_0)
|
|
self.assertTrue(ref_node_name_1 == prev_node_name_1)
|
|
elif layer_data_0['type'] == NSSingleResultValuesType.NODE_INPUT.value:
|
|
self.assertTrue(ref_node_name_0 != prev_node_name_0)
|
|
self.assertTrue(ref_node_name_1 != prev_node_name_1)
|
|
|
|
def checkGraphModeFxOp(
|
|
self,
|
|
model,
|
|
inputs,
|
|
quant_type,
|
|
expected_node=None,
|
|
expected_node_occurrence=None,
|
|
expected_node_list=None,
|
|
is_reference=False,
|
|
print_debug_info=False,
|
|
custom_qconfig_dict=None,
|
|
prepare_expected_node=None,
|
|
prepare_expected_node_occurrence=None,
|
|
prepare_expected_node_list=None,
|
|
prepare_custom_config=None,
|
|
backend_config=None):
|
|
""" Quantizes model with graph mode quantization on fx and check if the
|
|
quantized model contains the quantized_node
|
|
|
|
Args:
|
|
model: floating point torch.nn.Module
|
|
inputs: one positional sample input arguments for model
|
|
expected_node: NodeSpec
|
|
e.g. NodeSpec.call_function(torch.quantize_per_tensor)
|
|
expected_node_occurrence: a dict from NodeSpec to
|
|
expected number of occurrences (int)
|
|
e.g. {NodeSpec.call_function(torch.quantize_per_tensor) : 1,
|
|
NodeSpec.call_method('dequantize'): 1}
|
|
expected_node_list: a list of NodeSpec, used to check the order
|
|
of the occurrence of Node
|
|
e.g. [NodeSpec.call_function(torch.quantize_per_tensor),
|
|
NodeSpec.call_module(nnq.Conv2d),
|
|
NodeSpec.call_function(F.hardtanh_),
|
|
NodeSpec.call_method('dequantize')]
|
|
is_reference: if True, enables reference mode
|
|
print_debug_info: if True, prints debug info
|
|
custom_qconfig_dict: overrides default qconfig_dict
|
|
prepare_expected_node: same as expected_node, but for prepare
|
|
prepare_expected_node_occurrence: same as
|
|
expected_node_occurrence, but for prepare
|
|
prepare_expected_node_list: same as expected_node_list, but
|
|
for prepare
|
|
|
|
Returns:
|
|
A dictionary with the following structure:
|
|
{
|
|
"prepared": ..., # the prepared model
|
|
"quantized": ..., # the quantized non-reference model
|
|
"quantized_reference": ..., # the quantized reference model
|
|
"result": ..., # the result for either quantized or
|
|
# quantized_reference model depending on the
|
|
# is_reference argument
|
|
}
|
|
"""
|
|
# TODO: make img_data a single example instead of a list
|
|
if type(inputs) == list:
|
|
inputs = inputs[0]
|
|
|
|
if quant_type == QuantType.QAT:
|
|
qconfig_mapping = get_default_qat_qconfig_mapping(torch.backends.quantized.engine)
|
|
model.train()
|
|
elif quant_type == QuantType.STATIC:
|
|
qconfig_mapping = get_default_qconfig_mapping(torch.backends.quantized.engine)
|
|
model.eval()
|
|
else:
|
|
qconfig = default_dynamic_qconfig
|
|
qconfig_mapping = QConfigMapping().set_global(qconfig)
|
|
model.eval()
|
|
|
|
if quant_type == QuantType.QAT:
|
|
prepare = prepare_qat_fx
|
|
else:
|
|
prepare = prepare_fx
|
|
|
|
# overwrite qconfig_dict with custom_qconfig_dict
|
|
if custom_qconfig_dict is not None:
|
|
assert type(custom_qconfig_dict) in (QConfigMapping, dict), \
|
|
'custom_qconfig_dict should be a QConfigMapping or a dict'
|
|
if isinstance(custom_qconfig_dict, QConfigMapping):
|
|
qconfig_mapping = custom_qconfig_dict
|
|
else:
|
|
qconfig_mapping = QConfigMapping.from_dict(custom_qconfig_dict)
|
|
prepared = prepare(
|
|
model, qconfig_mapping,
|
|
example_inputs=inputs,
|
|
prepare_custom_config=prepare_custom_config,
|
|
backend_config=backend_config)
|
|
if not quant_type == QuantType.DYNAMIC:
|
|
prepared(*inputs)
|
|
|
|
if print_debug_info:
|
|
print()
|
|
print('quant type:\n', quant_type)
|
|
print('original model:\n', model)
|
|
print()
|
|
print('prepared model:\n', prepared)
|
|
|
|
self.checkGraphModuleNodes(
|
|
prepared, prepare_expected_node,
|
|
prepare_expected_node_occurrence, prepare_expected_node_list)
|
|
|
|
prepared_copy = copy.deepcopy(prepared)
|
|
qgraph = convert_fx(copy.deepcopy(prepared))
|
|
qgraph_reference = convert_to_reference_fx(copy.deepcopy(prepared))
|
|
result = qgraph(*inputs)
|
|
result_reference = qgraph_reference(*inputs)
|
|
qgraph_copy = copy.deepcopy(qgraph)
|
|
qgraph_reference_copy = copy.deepcopy(qgraph_reference)
|
|
|
|
qgraph_to_check = qgraph_reference if is_reference else qgraph
|
|
if print_debug_info:
|
|
print()
|
|
print('quantized model:\n', qgraph_to_check)
|
|
self.printGraphModule(qgraph_to_check)
|
|
print()
|
|
self.checkGraphModuleNodes(
|
|
qgraph_to_check, expected_node, expected_node_occurrence, expected_node_list)
|
|
return {"prepared": prepared_copy,
|
|
"quantized": qgraph_copy,
|
|
"quantized_reference": qgraph_reference_copy,
|
|
"quantized_output": result,
|
|
"quantized_reference_output": result_reference}
|
|
|
|
|
|
def checkEmbeddingSerialization(self, qemb, num_embeddings, embedding_dim, indices, offsets,
|
|
set_qconfig, is_emb_bag, dtype=torch.quint8):
|
|
# Test serialization of dynamic EmbeddingBag module using state_dict
|
|
if is_emb_bag:
|
|
inputs = [indices, offsets]
|
|
else:
|
|
inputs = [indices]
|
|
emb_dict = qemb.state_dict()
|
|
b = io.BytesIO()
|
|
torch.save(emb_dict, b)
|
|
b.seek(0)
|
|
loaded_dict = torch.load(b)
|
|
embedding_unpack = torch.ops.quantized.embedding_bag_unpack
|
|
# Check unpacked weight values explicitly
|
|
for key in emb_dict:
|
|
if isinstance(emb_dict[key], torch._C.ScriptObject):
|
|
assert isinstance(loaded_dict[key], torch._C.ScriptObject)
|
|
emb_weight = embedding_unpack(emb_dict[key])
|
|
loaded_weight = embedding_unpack(loaded_dict[key])
|
|
self.assertEqual(emb_weight, loaded_weight)
|
|
|
|
# Check state dict serialization and torch.save APIs
|
|
if is_emb_bag:
|
|
loaded_qemb = nnq.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim,
|
|
include_last_offset=True, mode='sum', dtype=dtype)
|
|
else:
|
|
loaded_qemb = nnq.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim, dtype=dtype)
|
|
self.check_eager_serialization(qemb, loaded_qemb, inputs)
|
|
|
|
loaded_qemb.load_state_dict(loaded_dict)
|
|
self.assertEqual(embedding_unpack(qemb._packed_params._packed_weight),
|
|
embedding_unpack(loaded_qemb._packed_params._packed_weight))
|
|
|
|
|
|
# Test JIT serialization
|
|
self.checkScriptable(qemb, [inputs], check_save_load=True)
|
|
|
|
# Test from_float call
|
|
if is_emb_bag:
|
|
float_embedding = torch.nn.EmbeddingBag(num_embeddings=num_embeddings, embedding_dim=embedding_dim,
|
|
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
|
|
else:
|
|
float_embedding = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
|
|
|
|
if set_qconfig:
|
|
float_qparams_observer = PerChannelMinMaxObserver.with_args(dtype=dtype,
|
|
qscheme=torch.per_channel_affine_float_qparams,
|
|
ch_axis=0)
|
|
float_embedding.qconfig = QConfig(activation=default_dynamic_quant_observer,
|
|
weight=float_qparams_observer)
|
|
|
|
prepare_dynamic(float_embedding)
|
|
|
|
float_embedding(*inputs)
|
|
if is_emb_bag:
|
|
q_embeddingbag = nnq.EmbeddingBag.from_float(float_embedding)
|
|
expected_name = "QuantizedEmbeddingBag"
|
|
else:
|
|
q_embeddingbag = nnq.Embedding.from_float(float_embedding)
|
|
expected_name = "QuantizedEmbedding"
|
|
|
|
q_embeddingbag(*inputs)
|
|
|
|
self.assertTrue(expected_name in str(q_embeddingbag))
|
|
|
|
class QuantizationLiteTestCase(QuantizationTestCase):
|
|
def _create_quantized_model(self, model_class: Type[torch.nn.Module], **kwargs):
|
|
# Creates quantized model for testing mobile script modules
|
|
qengine = "qnnpack"
|
|
with override_quantized_engine(qengine):
|
|
# FIXME(rec): shouldn't qconfig be passed to quantize?
|
|
qconfig = torch.ao.quantization.get_default_qconfig(qengine) # noqa: F841
|
|
model = model_class(**kwargs)
|
|
model = quantize(model, test_only_eval_fn, [self.calib_data])
|
|
|
|
return model
|
|
|
|
def _compare_script_and_mobile(self,
|
|
model: torch.nn.Module,
|
|
input: torch.Tensor):
|
|
# Compares the numerical outputs for script and lite modules
|
|
qengine = "qnnpack"
|
|
with override_quantized_engine(qengine):
|
|
script_module = torch.jit.script(model)
|
|
script_module_result = script_module(input)
|
|
|
|
max_retry = 5
|
|
for retry in range(1, max_retry + 1):
|
|
# retries `max_retry` times; breaks iff succeeds else throws exception
|
|
try:
|
|
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
|
|
buffer.seek(0)
|
|
mobile_module = _load_for_lite_interpreter(buffer)
|
|
|
|
mobile_module_result = mobile_module(input)
|
|
|
|
torch.testing.assert_close(script_module_result, mobile_module_result)
|
|
mobile_module_forward_result = mobile_module.forward(input)
|
|
torch.testing.assert_close(script_module_result, mobile_module_forward_result)
|
|
|
|
mobile_module_run_method_result = mobile_module.run_method("forward", input)
|
|
torch.testing.assert_close(script_module_result, mobile_module_run_method_result)
|
|
except AssertionError as e:
|
|
if retry == max_retry:
|
|
raise e
|
|
else:
|
|
continue
|
|
break
|
|
|
|
|
|
class PT2EQuantizationTestCase(QuantizationTestCase):
|
|
"""
|
|
Base QuantizationTestCase for PT2 with some helper methods.
|
|
"""
|
|
_MAP_TO_FX_TRACED_OPS = {
|
|
torch.ops.quantized_decomposed.quantize_per_tensor: torch.ops.quantized_decomposed.quantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor: torch.ops.quantized_decomposed.dequantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.quantize_per_channel: torch.ops.quantized_decomposed.quantize_per_channel.default,
|
|
torch.ops.quantized_decomposed.dequantize_per_channel: torch.ops.quantized_decomposed.dequantize_per_channel.default,
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor: torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor: torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
|
|
}
|
|
|
|
def _test_quantizer(
|
|
self,
|
|
model,
|
|
example_inputs,
|
|
quantizer,
|
|
expected_node_occurrence,
|
|
expected_node_list=None,
|
|
check_against_fx_quant=False,
|
|
fx_qconfig_mapping=None,
|
|
export_with_dynamic_shape=False,
|
|
is_qat=False,
|
|
is_debug_mode=False,
|
|
training_ir_node_occurrence=None,
|
|
):
|
|
# resetting dynamo cache
|
|
torch._dynamo.reset()
|
|
m_eager = model.eval()
|
|
|
|
# program capture
|
|
m = copy.deepcopy(m_eager)
|
|
dynamic_shapes = tuple(
|
|
{0: torch.export.Dim("dim")} if i == 0 else None
|
|
for i in range(len(example_inputs))
|
|
)
|
|
m = export_for_training(
|
|
m,
|
|
example_inputs,
|
|
dynamic_shapes=dynamic_shapes if export_with_dynamic_shape else None,
|
|
).module()
|
|
|
|
if is_qat:
|
|
m = prepare_qat_pt2e(m, quantizer)
|
|
else:
|
|
m = prepare_pt2e(m, quantizer)
|
|
# Calibrate
|
|
m(*example_inputs)
|
|
m = convert_pt2e(m)
|
|
if is_debug_mode:
|
|
print("quantized model", m)
|
|
|
|
pt2_quant_output = m(*example_inputs)
|
|
ns = NodeSpec
|
|
node_occurrence = {
|
|
ns.call_function(k): v for k, v in expected_node_occurrence.items()
|
|
}
|
|
if expected_node_list is None:
|
|
expected_node_list = []
|
|
node_list = [ns.call_function(n) for n in expected_node_list]
|
|
self.checkGraphModuleNodes(
|
|
m, expected_node_occurrence=node_occurrence, expected_node_list=node_list
|
|
)
|
|
if check_against_fx_quant:
|
|
qconfig_mapping = fx_qconfig_mapping
|
|
backend_config = get_executorch_backend_config()
|
|
m_copy = copy.deepcopy(m_eager)
|
|
m_fx = prepare_fx(
|
|
m_copy, qconfig_mapping, example_inputs, backend_config=backend_config
|
|
)
|
|
m_fx(*example_inputs)
|
|
m_fx = _convert_to_reference_decomposed_fx(
|
|
m_fx, backend_config=backend_config
|
|
)
|
|
m_fx = export_for_training(
|
|
m_fx,
|
|
example_inputs,
|
|
dynamic_shapes=dynamic_shapes if export_with_dynamic_shape else None,
|
|
).module()
|
|
node_occurrence = {}
|
|
for k, v in PT2EQuantizationTestCase._MAP_TO_FX_TRACED_OPS.items():
|
|
if k in expected_node_occurrence:
|
|
node_occurrence[ns.call_function(v)] = expected_node_occurrence[k]
|
|
if training_ir_node_occurrence is not None:
|
|
node_occurrence = {
|
|
ns.call_function(k): v for k, v in training_ir_node_occurrence.items()
|
|
}
|
|
self.checkGraphModuleNodes(m_fx, expected_node_occurrence=node_occurrence)
|
|
fx_quant_output = m_fx(*example_inputs)
|
|
self.assertEqual(fx_quant_output, pt2_quant_output)
|
|
return m
|
|
|
|
def _quantize(self, m, quantizer, example_inputs, is_qat: bool = False):
|
|
# resetting dynamo cache
|
|
torch._dynamo.reset()
|
|
|
|
m = export_for_training(
|
|
m,
|
|
example_inputs,
|
|
).module()
|
|
if is_qat:
|
|
m = prepare_qat_pt2e(m, quantizer)
|
|
else:
|
|
m = prepare_pt2e(m, quantizer)
|
|
m(*example_inputs)
|
|
m = convert_pt2e(m)
|
|
return m
|
|
|
|
def _get_pt2e_quantized_linear(self, is_per_channel=False) -> torch.fx.GraphModule:
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(2, 2)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
quantizer = XNNPACKQuantizer()
|
|
operator_config = get_symmetric_quantization_config(is_per_channel=is_per_channel)
|
|
quantizer.set_global(operator_config)
|
|
example_inputs = (torch.randn(2, 2),)
|
|
m = M().eval()
|
|
return self._quantize(m, quantizer, example_inputs)
|
|
|
|
# Below are a series of toy models to use in testing quantization
|
|
|
|
class SingleLayerLinearModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class AnnotatedSingleLayerLinearModel(torch.nn.Module):
|
|
def __init__(self, qengine='fbgemm'):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
|
|
self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class SingleLayerLinearDynamicModel(torch.nn.Module):
|
|
def __init__(self, qengine='fbgemm'):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
|
|
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class LinearAddModel(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
|
|
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = torch.add(x, 5)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class RNNDynamicModel(torch.nn.Module):
|
|
def __init__(self, mod_type):
|
|
super().__init__()
|
|
self.qconfig = default_dynamic_qconfig
|
|
if mod_type == 'GRU':
|
|
self.mod = torch.nn.GRU(2, 2).to(dtype=torch.float)
|
|
if mod_type == 'LSTM':
|
|
self.mod = torch.nn.LSTM(2, 2).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.mod(x)
|
|
return x
|
|
|
|
class RNNCellDynamicModel(torch.nn.Module):
|
|
def __init__(self, mod_type):
|
|
super().__init__()
|
|
self.qconfig = default_dynamic_qconfig
|
|
if mod_type == 'GRUCell':
|
|
self.mod = torch.nn.GRUCell(2, 2).to(dtype=torch.float)
|
|
if mod_type == 'LSTMCell':
|
|
self.mod = torch.nn.LSTMCell(2, 2).to(dtype=torch.float)
|
|
if mod_type == 'RNNReLU':
|
|
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='relu').to(dtype=torch.float)
|
|
if mod_type == 'RNNTanh':
|
|
self.mod = torch.nn.RNNCell(2, 2, nonlinearity='tanh').to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.mod(x)
|
|
return x
|
|
|
|
class LSTMwithHiddenDynamicModel(torch.nn.Module):
|
|
def __init__(self, qengine='fbgemm'):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
|
|
self.lstm = torch.nn.LSTM(2, 2).to(dtype=torch.float)
|
|
|
|
def forward(self, x, hid):
|
|
x, hid = self.lstm(x, hid)
|
|
return x, hid
|
|
|
|
class ConvModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class ConvTransposeModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class AnnotatedConvModel(torch.nn.Module):
|
|
def __init__(self, qengine):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
|
|
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class AnnotatedConvTransposeModel(torch.nn.Module):
|
|
def __init__(self, qengine):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
|
|
self.conv = torch.nn.ConvTranspose2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class ConvBnModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class AnnotatedConvBnModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.qconfig = default_qconfig
|
|
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class ConvBnReLUModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
x = self.relu(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class AnnotatedConvBnReLUModel(torch.nn.Module):
|
|
def __init__(self, qengine='fbgemm'):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
|
|
self.conv = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
self.bn = torch.nn.BatchNorm2d(5).to(dtype=torch.float)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
x = self.relu(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
def fuse_model(self):
|
|
# TODO: remove this check and define two fuse_modules function on this module
|
|
if self.training:
|
|
torch.ao.quantization.fuse_modules_qat(self, [['conv', 'bn', 'relu']], inplace=True)
|
|
else:
|
|
torch.ao.quantization.fuse_modules(self, [['conv', 'bn', 'relu']], inplace=True)
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class TwoLayerConvModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = torch.nn.Conv2d(3, 5, 3, bias=False).to(dtype=torch.float)
|
|
self.conv2 = torch.nn.Conv2d(5, 5, 1, bias=False).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class TwoLayerLinearModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
|
|
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class LinearModelWithSubmodule(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.subm = TwoLayerLinearModel()
|
|
self.fc = nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
x = self.subm(x)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.subm.get_example_inputs()
|
|
|
|
class AnnotatedTwoLayerLinearModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
|
|
self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float))
|
|
self.fc2.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm")
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class ActivationsTestModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig("fbgemm")
|
|
self.quant = torch.ao.quantization.QuantStub()
|
|
self.hardswish = torch.nn.Hardswish().to(dtype=torch.float)
|
|
self.elu = torch.nn.ELU().to(dtype=torch.float)
|
|
self.dequant = torch.ao.quantization.DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.hardswish(x)
|
|
x = self.elu(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
class LinearReluModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.relu(self.fc(x))
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
|
|
class LinearReluLinearModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
|
|
self.relu = torch.nn.ReLU()
|
|
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class LinearReluAddModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
self.relu = torch.nn.ReLU()
|
|
self.fc2 = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = torch.add(x, 5)
|
|
x = self.fc2(x)
|
|
self.relu = torch.nn.ReLU()
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class LinearBnLeakyReluModel(torch.nn.Module):
|
|
def __init__(self, with_bn=True):
|
|
super().__init__()
|
|
self.linear = nn.Linear(5, 5)
|
|
self.bn1d = nn.BatchNorm1d(5)
|
|
self.leaky_relu = nn.LeakyReLU(0.01)
|
|
self.with_bn = with_bn
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
if self.with_bn:
|
|
x = self.bn1d(x)
|
|
x = self.leaky_relu(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class LinearTanhModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = nn.Linear(5, 5)
|
|
self.tanh = nn.Tanh()
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
x = self.tanh(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class ConvBnAddReluModel(torch.nn.Module):
|
|
def __init__(self,
|
|
with_bn=True,
|
|
with_relu=True,
|
|
left_conv=True,
|
|
two_conv=True,
|
|
use_torch_add=True):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(5, 5, (2, 2))
|
|
self.conv2 = nn.Conv2d(5, 5, (2, 2))
|
|
self.bn = nn.BatchNorm2d(5)
|
|
self.relu = nn.ReLU()
|
|
self.with_bn = with_bn
|
|
self.with_relu = with_relu
|
|
self.two_conv = two_conv
|
|
self.left_conv = left_conv
|
|
self.use_torch_add = use_torch_add
|
|
|
|
def forward(self, x1, x2):
|
|
if self.two_conv:
|
|
if self.use_torch_add:
|
|
if self.with_bn:
|
|
x = torch.add(self.bn(self.conv(x1)), self.conv2(x1))
|
|
else:
|
|
x = torch.add(self.conv(x1), self.conv2(x1))
|
|
else:
|
|
if self.with_bn:
|
|
x = self.bn(self.conv(x1)) + self.conv2(x1)
|
|
else:
|
|
x = self.conv(x1) + self.conv2(x1)
|
|
else:
|
|
if self.use_torch_add:
|
|
if self.left_conv:
|
|
if self.with_bn:
|
|
x = torch.add(self.bn(self.conv(x1)), x2)
|
|
else:
|
|
x = torch.add(self.conv(x1), x2)
|
|
else:
|
|
if self.with_bn:
|
|
x = torch.add(x2, self.bn(self.conv(x1)))
|
|
else:
|
|
x = torch.add(x2, self.conv(x1))
|
|
else:
|
|
if self.left_conv:
|
|
if self.with_bn:
|
|
x = self.bn(self.conv(x1)) + x2
|
|
else:
|
|
x = self.conv(x1) + x2
|
|
else:
|
|
if self.with_bn:
|
|
x = x2 + self.bn(self.conv(x1))
|
|
else:
|
|
x = x2 + self.conv(x1)
|
|
if self.with_relu:
|
|
x = self.relu(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5, 3, 3), torch.rand(1, 5, 2, 2))
|
|
|
|
# TODO: self.fc should be self.conv
|
|
class ConvReluModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float)
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.relu(self.fc(x))
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
# TODO: self.fc should be self.conv
|
|
class ConvReluConvModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float)
|
|
self.relu = torch.nn.ReLU()
|
|
self.fc2 = torch.nn.Conv2d(5, 5, 1).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
# TODO: self.fc should be self.conv
|
|
class ConvReluAddModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Conv2d(3, 5, 3).to(dtype=torch.float)
|
|
self.relu = torch.nn.ReLU()
|
|
self.fc2 = torch.nn.Conv2d(5, 5, 1).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = torch.add(x, 5)
|
|
x = self.fc2(x)
|
|
self.relu = torch.nn.ReLU()
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class NormalizationTestModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.quant = torch.ao.quantization.QuantStub()
|
|
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
|
|
self.layer_norm = torch.nn.LayerNorm(8)
|
|
self.group_norm = torch.nn.GroupNorm(2, 8)
|
|
self.instance_norm1d = torch.nn.InstanceNorm1d(8)
|
|
self.instance_norm2d = torch.nn.InstanceNorm2d(8)
|
|
self.instance_norm3d = torch.nn.InstanceNorm3d(8)
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.fc1(x)
|
|
x = self.layer_norm(x)
|
|
x = self.group_norm(x.unsqueeze(-1).repeat(1, 1, 3))
|
|
x = self.instance_norm1d(x)
|
|
x = self.instance_norm2d(x.unsqueeze(-1))
|
|
x = self.instance_norm3d(x.unsqueeze(-1))
|
|
return x
|
|
|
|
class NestedModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.sub1 = LinearReluModel()
|
|
self.sub2 = TwoLayerLinearModel()
|
|
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.sub1(x)
|
|
x = self.sub2(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
class AnnotatedNestedModel(torch.nn.Module):
|
|
def __init__(self, qengine):
|
|
super().__init__()
|
|
self.sub1 = LinearReluModel()
|
|
self.sub2 = TwoLayerLinearModel()
|
|
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
|
|
self.fc3.qconfig = default_qconfig
|
|
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
|
|
if qengine == 'fbgemm':
|
|
self.sub2.fc1.qconfig = default_per_channel_qconfig
|
|
else:
|
|
self.sub2.fc1.qconfig = default_qconfig
|
|
|
|
def forward(self, x):
|
|
x = self.sub1(x)
|
|
x = self.sub2(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
class AnnotatedSubNestedModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.sub1 = LinearReluModel()
|
|
self.sub2 = QuantWrapper(TwoLayerLinearModel())
|
|
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
|
|
self.fc3.qconfig = default_qconfig
|
|
self.sub2.qconfig = default_qconfig
|
|
|
|
def forward(self, x):
|
|
x = self.sub1(x)
|
|
x = self.sub2(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
class AnnotatedCustomConfigNestedModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.sub1 = LinearReluModel()
|
|
self.sub2 = TwoLayerLinearModel()
|
|
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
|
|
self.fc3.qconfig = default_qconfig
|
|
self.sub2.qconfig = default_qconfig
|
|
|
|
custom_options = {
|
|
'dtype': torch.quint8,
|
|
'qscheme': torch.per_tensor_affine
|
|
}
|
|
custom_qconfig = QConfig(activation=default_observer.with_args(**custom_options),
|
|
weight=default_weight_observer)
|
|
self.sub2.fc1.qconfig = custom_qconfig
|
|
|
|
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
|
|
self.sub2.fc2 = QuantWrapper(self.sub2.fc2)
|
|
|
|
def forward(self, x):
|
|
x = self.sub1(x)
|
|
x = self.sub2(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
class QuantSubModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.sub1 = LinearReluModel()
|
|
self.sub2 = QuantWrapper(TwoLayerLinearModel())
|
|
self.sub2.qconfig = default_qconfig
|
|
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
self.fc3.qconfig = default_qconfig
|
|
|
|
def forward(self, x):
|
|
x = self.sub1(x)
|
|
x = self.sub2(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
class InnerModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
|
|
self.relu1 = torch.nn.ReLU()
|
|
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
|
|
self.relu2 = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
return self.relu2(self.fc2(self.relu1(self.fc1(x))))
|
|
|
|
def fuse_modules(self):
|
|
fusable_layers = []
|
|
named_children = list(self.named_children())
|
|
for idx, (current_name, layer) in enumerate(named_children):
|
|
if isinstance(layer, torch.nn.Linear):
|
|
if idx >= len(named_children) - 1:
|
|
break
|
|
if isinstance(named_children[idx + 1][1], torch.nn.ReLU):
|
|
fusable_layers.append([current_name,
|
|
named_children[idx + 1][0]])
|
|
# TODO: remove this check and define two fuse_modules function on this module
|
|
if self.training:
|
|
torch.ao.quantization.fuse_modules_qat(self, fusable_layers, inplace=True)
|
|
else:
|
|
torch.ao.quantization.fuse_modules(self, fusable_layers, inplace=True)
|
|
|
|
class FunctionalLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.rand((5, 5))
|
|
self.bias = torch.zeros(5)
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight, self.bias)
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 5),)
|
|
|
|
class SingleLayerFunctionalLinearModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear1 = FunctionalLinear()
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.linear1.get_example_inputs()
|
|
|
|
class TwoLayerFunctionalLinearModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear1 = FunctionalLinear()
|
|
self.linear2 = FunctionalLinear()
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.linear1.get_example_inputs()
|
|
|
|
class FunctionalLinearAddModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear1 = FunctionalLinear()
|
|
self.linear2 = FunctionalLinear()
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = torch.add(x, 5)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.linear1.get_example_inputs()
|
|
|
|
class FunctionalLinearReluModel(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = FunctionalLinear()
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
x = F.relu(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.linear.get_example_inputs()
|
|
|
|
class FunctionalLinearReluLinearModel(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear1 = FunctionalLinear()
|
|
self.relu = nn.ReLU()
|
|
self.linear2 = FunctionalLinear()
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.relu(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.linear1.get_example_inputs()
|
|
|
|
class FunctionalConv2d(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.weight = torch.rand(3, 3, 3, 3)
|
|
self.bias = torch.rand(3)
|
|
self.stride = (1, 1)
|
|
self.padding = (0, 0)
|
|
self.dilation = (1, 1)
|
|
self.groups = 1
|
|
|
|
def forward(self, x):
|
|
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return (torch.rand(1, 3, 5, 5),)
|
|
|
|
class SingleLayerFunctionalConvModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = FunctionalConv2d()
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.conv1.get_example_inputs()
|
|
|
|
class TwoLayerFunctionalConvModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = FunctionalConv2d()
|
|
self.conv2 = FunctionalConv2d()
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.conv1.get_example_inputs()
|
|
|
|
class FunctionalConvReluModel(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = FunctionalConv2d()
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = F.relu(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.conv.get_example_inputs()
|
|
|
|
class FunctionalConvReluConvModel(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = FunctionalConv2d()
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = FunctionalConv2d()
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.conv2(x)
|
|
return x
|
|
|
|
def get_example_inputs(self) -> Tuple[Any, ...]:
|
|
return self.conv1.get_example_inputs()
|
|
|
|
class SkipQuantModel(torch.nn.Module):
|
|
r"""We can skip quantization by explicitly
|
|
setting qconfig of a submodule to None
|
|
"""
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.sub = InnerModule()
|
|
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
return self.fc(self.sub(x))
|
|
|
|
def fuse_modules(self):
|
|
self.sub.fuse_modules()
|
|
|
|
class AnnotatedSkipQuantModel(torch.nn.Module):
|
|
r"""We can skip quantization by explicitly
|
|
setting qconfig of a submodule to None
|
|
"""
|
|
def __init__(self, qengine):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
|
|
self.sub = QuantWrapper(InnerModule())
|
|
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
# don't quantize this fc
|
|
self.fc.qconfig = None
|
|
|
|
def forward(self, x):
|
|
return self.fc(self.sub(x))
|
|
|
|
def fuse_modules(self):
|
|
self.sub.module.fuse_modules()
|
|
|
|
class QuantStubModel(torch.nn.Module):
|
|
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
|
|
"""
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qconfig("qnnpack")
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.fc(x)
|
|
return self.dequant(x)
|
|
|
|
class ManualLinearQATModel(torch.nn.Module):
|
|
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
|
|
"""
|
|
def __init__(self, qengine):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine)
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
|
|
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.fc1(x)
|
|
x = self.fc2(x)
|
|
return self.dequant(x)
|
|
|
|
class ManualDropoutQATModel(torch.nn.Module):
|
|
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
|
|
"""
|
|
def __init__(self, qengine):
|
|
super().__init__()
|
|
self.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine)
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
|
|
self.dropout = torch.nn.Dropout(0.5)
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.fc1(x)
|
|
x = self.dropout(x)
|
|
return self.dequant(x)
|
|
|
|
class ManualLinearDynamicQATModel(torch.nn.Module):
|
|
r"""A Module that uses a dynamic QAT by default.
|
|
"""
|
|
def __init__(self, qconfig=None):
|
|
super().__init__()
|
|
self.qconfig = qconfig or default_dynamic_qat_qconfig
|
|
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
|
|
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
class ManualConvLinearQATModel(torch.nn.Module):
|
|
r"""A module with manually inserted `QuantStub` and `DeQuantStub`
|
|
and contains both linear and conv modules
|
|
"""
|
|
def __init__(self, qconfig=None):
|
|
super().__init__()
|
|
self.qconfig = qconfig if qconfig else torch.ao.quantization.get_default_qat_qconfig("qnnpack")
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float)
|
|
self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float)
|
|
self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv(x)
|
|
x = x.view(-1, 64).contiguous()
|
|
x = self.fc1(x)
|
|
x = self.fc2(x)
|
|
return self.dequant(x)
|
|
|
|
class ManualConvLinearSymmQATModel(ManualConvLinearQATModel):
|
|
r"""Same as ManualConvLinearQATModule but with Symmetric Quantization.
|
|
Supported only with qnnpack.
|
|
"""
|
|
def __init__(self) -> None:
|
|
super().__init__(default_symmetric_qnnpack_qat_qconfig)
|
|
|
|
class ManualEmbeddingBagLinear(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.emb = nn.EmbeddingBag(num_embeddings=10, embedding_dim=12, mode='sum')
|
|
self.emb.qconfig = default_embedding_qat_qconfig
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
self.linear = nn.Linear(12, 1).to(dtype=torch.float)
|
|
self.qconfig = get_default_qat_qconfig("qnnpack")
|
|
|
|
def forward(self, input: torch.Tensor, offsets: Optional[torch.Tensor] = None,
|
|
per_sample_weights: Optional[torch.Tensor] = None):
|
|
x = self.emb(input, offsets, per_sample_weights)
|
|
x = self.quant(x)
|
|
x = self.linear(x)
|
|
return self.dequant(x)
|
|
|
|
class DeFusedEmbeddingBagLinear(nn.Module):
|
|
r"""A module to simulate QAT embedding bag with a linear layer,
|
|
this module uses a separate embedding and bagging op, similar
|
|
to that which is described in the EmbeddingBag documentation.
|
|
|
|
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html
|
|
"""
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.emb = nn.Embedding(num_embeddings=10, embedding_dim=12)
|
|
self.emb.qconfig = default_embedding_qat_qconfig
|
|
self.bagging_op = torch.sum
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
self.linear = nn.Linear(12, 1).to(dtype=torch.float)
|
|
self.qconfig = get_default_qat_qconfig("qnnpack")
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
x = self.bagging_op(self.emb(input), dim=1)
|
|
x = self.quant(x)
|
|
x = self.linear(x)
|
|
return self.dequant(x)
|
|
|
|
class SubModelForFusion(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
|
|
self.bn = nn.BatchNorm2d(2).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
|
|
class SubModelWithoutFusion(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
|
|
self.relu = nn.ReLU(inplace=False).to(dtype=torch.float)
|
|
|
|
def forward(self, x):
|
|
return self.relu(self.conv(x))
|
|
|
|
class ModelForFusion(nn.Module):
|
|
def __init__(self, qconfig):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(3, 2, 1, bias=None).to(dtype=torch.float)
|
|
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
|
|
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
|
|
self.sub1 = SubModelForFusion()
|
|
self.sub2 = SubModelWithoutFusion()
|
|
self.fc = nn.Linear(36, 10).to(dtype=torch.float)
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
self.qconfig = qconfig
|
|
self.conv2 = nn.Conv3d(3, 2, (1, 1, 1), bias=None).to(dtype=torch.float)
|
|
self.relu2 = nn.ReLU(inplace=False).to(dtype=torch.float)
|
|
self.bn2 = nn.BatchNorm3d(2).to(dtype=torch.float)
|
|
self.relu3 = nn.ReLU(inplace=True).to(dtype=torch.float)
|
|
self.conv3 = nn.Conv1d(3, 3, 2).to(dtype=torch.float)
|
|
self.bn3 = nn.BatchNorm1d(3).to(dtype=torch.float)
|
|
self.relu4 = nn.ReLU(inplace=True).to(dtype=torch.float)
|
|
# don't quantize sub2
|
|
self.sub2.qconfig = None
|
|
self.fc.qconfig = None
|
|
|
|
def forward(self, x):
|
|
x = x.squeeze(2)
|
|
x = self.quant(x)
|
|
x = self.conv3(x)
|
|
x = self.bn3(x)
|
|
x = self.relu4(x)
|
|
x = x.unsqueeze(2)
|
|
y = x.unsqueeze(2)
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu1(x)
|
|
x = self.sub1(x)
|
|
x = self.dequant(x)
|
|
x = self.sub2(x)
|
|
x = x.reshape(-1, 36).contiguous()
|
|
x = self.fc(x)
|
|
y = self.conv2(y)
|
|
y = self.relu2(y)
|
|
y = self.bn2(y)
|
|
y = self.relu3(y)
|
|
y = self.dequant(y)
|
|
return x
|
|
|
|
class ConvBNReLU(nn.Sequential):
|
|
def __init__(self) -> None:
|
|
super().__init__(
|
|
nn.Conv2d(3, 3, 1, 1, bias=False),
|
|
nn.BatchNorm2d(3),
|
|
nn.ReLU(inplace=False)
|
|
)
|
|
|
|
class ModelWithSequentialFusion(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(3, 3, 1)
|
|
self.relu1 = nn.ReLU(inplace=False)
|
|
layers = [ConvBNReLU() for _ in range(3)]
|
|
self.features = nn.Sequential(*layers)
|
|
head = [nn.Linear(300, 10), nn.ReLU(inplace=False)]
|
|
self.classifier = nn.Sequential(*head)
|
|
self.seq = nn.Sequential()
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv1(x)
|
|
x = self.relu1(x)
|
|
x = self.features(x)
|
|
x = torch.reshape(x, (-1, 3 * 10 * 10))
|
|
x = self.classifier(x)
|
|
x = self.seq(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
class ModelForFusionWithBias(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(3, 2, 5, bias=True).to(dtype=torch.float)
|
|
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
|
|
self.relu1 = nn.ReLU(inplace=True).to(dtype=torch.float)
|
|
self.conv2 = nn.Conv2d(2, 2, 1, bias=True).to(dtype=torch.float)
|
|
self.bn2 = nn.BatchNorm2d(2).to(dtype=torch.float)
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu1(x)
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
class ModelForLinearBNFusion(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc = nn.Linear(20, 10)
|
|
self.bn = nn.BatchNorm1d(10)
|
|
nn.init.uniform_(self.bn.weight)
|
|
nn.init.uniform_(self.bn.bias)
|
|
|
|
def forward(self, x):
|
|
return self.bn(self.fc(x))
|
|
|
|
class DummyObserver(torch.nn.Module):
|
|
def calculate_qparams(self):
|
|
return 1.0, 0
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
|
|
class ModelForConvTransposeBNFusion(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = nn.ConvTranspose1d(3, 3, 1)
|
|
self.bn1 = nn.BatchNorm1d(3)
|
|
self.conv2 = nn.ConvTranspose2d(3, 3, 1)
|
|
self.bn2 = nn.BatchNorm2d(3)
|
|
self.conv3 = nn.ConvTranspose3d(3, 3, 1)
|
|
self.bn3 = nn.BatchNorm3d(3)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = x.unsqueeze(2)
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = x.unsqueeze(2)
|
|
x = self.conv3(x)
|
|
x = self.bn3(x)
|
|
return x
|
|
|
|
|
|
class ModelWithFunctionals(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.mycat = nnq.FloatFunctional()
|
|
self.myadd = nnq.FloatFunctional()
|
|
self.myadd_relu = nnq.FloatFunctional()
|
|
self.mymatmul = nnq.FloatFunctional()
|
|
# Tracing doesnt work yet for c10 ops with scalar inputs
|
|
# https://github.com/pytorch/pytorch/issues/27097
|
|
# self.my_scalar_add = nnq.FloatFunctional()
|
|
# self.my_scalar_mul = nnq.FloatFunctional()
|
|
|
|
def forward(self, x):
|
|
y = self.mycat.cat([x, x, x])
|
|
z = self.myadd.add(y, y)
|
|
w = self.myadd_relu.add_relu(z, z)
|
|
u = self.mymatmul.matmul(w, w.T)
|
|
# Tracing doesnt work yet for c10 ops with scalar inputs
|
|
# https://github.com/pytorch/pytorch/issues/27097
|
|
# w = self.my_scalar_add.add_scalar(w, -0.5)
|
|
# w = self.my_scalar_mul.mul_scalar(w, 0.5)
|
|
return u
|
|
|
|
|
|
class ResNetBase(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
norm_layer = nn.BatchNorm2d
|
|
inplanes = 3
|
|
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
|
|
self.bn1 = norm_layer(inplanes)
|
|
self.relu1 = nn.ReLU()
|
|
self.relu2 = nn.ReLU()
|
|
self.downsample = torch.nn.Identity()
|
|
self.myop = nn.quantized.FloatFunctional()
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
|
self.fc = torch.nn.Linear(inplanes, 1)
|
|
|
|
def forward(self, x):
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu1(out)
|
|
identity = self.downsample(x)
|
|
out = self.myop.add(out, identity)
|
|
out = self.relu2(out)
|
|
out = self.avgpool(out)
|
|
out = torch.flatten(out, 1)
|
|
out = self.fc(out)
|
|
return out
|
|
|
|
def fuse_model(self):
|
|
# TODO: remove this check and define two fuse_model function on this module
|
|
if self.training:
|
|
torch.ao.quantization.fuse_modules_qat(self, [['conv1', 'bn1', 'relu1']], inplace=True)
|
|
else:
|
|
torch.ao.quantization.fuse_modules(self, [['conv1', 'bn1', 'relu1']], inplace=True)
|
|
|
|
class ModelMultipleOps(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
norm_layer = nn.BatchNorm2d
|
|
inplanes = 3
|
|
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
|
|
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
|
|
self.bn1 = norm_layer(inplanes)
|
|
self.relu1 = nn.ReLU()
|
|
self.relu2 = nn.ReLU()
|
|
self.downsample = torch.nn.Identity()
|
|
self.skip_add = nn.quantized.FloatFunctional()
|
|
self.cat = nn.quantized.FloatFunctional()
|
|
self.avgpool = nn.AdaptiveAvgPool2d((4, 4))
|
|
self.fc = nn.Linear(12, 6)
|
|
|
|
def forward(self, x):
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu1(out)
|
|
identity = self.downsample(x)
|
|
out = self.skip_add.add(out, identity)
|
|
out = self.relu2(out)
|
|
out = self.avgpool(out)
|
|
out = self.conv2(out)
|
|
out = torch.nn.functional.max_pool2d(out, 2, 2)
|
|
out = self.cat.cat([out, out])
|
|
out = out.reshape(-1, 3 * 2 * 2)
|
|
out = self.fc(out)
|
|
return out
|
|
|
|
# Model to ensure consistency of fake quant with true quant
|
|
# Average pooling and mean operations are not modelled
|
|
# accurately with fake-quant so this model does not
|
|
# contain those operations
|
|
class ModelMultipleOpsNoAvgPool(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
norm_layer = nn.BatchNorm2d
|
|
inplanes = 3
|
|
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
|
|
self.conv2 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
|
|
self.bn1 = norm_layer(inplanes)
|
|
self.relu1 = nn.ReLU()
|
|
self.relu2 = nn.ReLU()
|
|
self.skip_add = nn.quantized.FloatFunctional()
|
|
self.cat = nn.quantized.FloatFunctional()
|
|
self.maxpool = nn.MaxPool2d((4, 4))
|
|
self.fc = nn.Linear(12, 6)
|
|
|
|
def forward(self, x):
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu1(out)
|
|
skip = self.conv2(x)
|
|
out = self.skip_add.add(out, skip)
|
|
out = self.relu2(out)
|
|
out = self.maxpool(out)
|
|
out = self.conv2(out)
|
|
out = torch.nn.functional.max_pool2d(out, 2, 2)
|
|
out = self.cat.cat([out, out])
|
|
out = out.reshape(-1, 3 * 2 * 2)
|
|
out = self.fc(out)
|
|
return out
|
|
|
|
class EmbeddingBagModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
|
|
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
|
|
|
|
def forward(self, indices, offsets, per_sample_weights):
|
|
return self.emb(indices, offsets, per_sample_weights)
|
|
|
|
class EmbeddingModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12)
|
|
|
|
def forward(self, indices):
|
|
return self.emb(indices)
|
|
|
|
class EmbeddingWithStaticLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.emb = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12)
|
|
self.fc = torch.nn.Linear(4, 2)
|
|
self.emb.qconfig = float_qparams_weight_only_qconfig
|
|
self.qconfig = default_qconfig
|
|
self.quant = QuantStub()
|
|
self.dequant = DeQuantStub()
|
|
|
|
def forward(self, indices, offsets, linear_in):
|
|
emb = self.emb(indices, offsets)
|
|
q_x = self.quant(linear_in)
|
|
fc = self.fc(q_x)
|
|
fc = self.dequant(fc)
|
|
features = torch.cat([fc] + [emb], dim=1)
|
|
return features
|
|
|
|
class DenseTopMLP(nn.Module):
|
|
|
|
def __init__(self, dense_dim, dense_out, embedding_dim, top_out_in, top_out_out) -> None:
|
|
super().__init__()
|
|
|
|
self.dense_mlp = nn.Sequential(
|
|
nn.Linear(dense_dim, dense_out),
|
|
)
|
|
self.top_mlp = nn.Sequential(
|
|
nn.Linear(dense_out + embedding_dim, top_out_in),
|
|
nn.Linear(top_out_in, top_out_out),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
sparse_feature: torch.Tensor,
|
|
dense: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
dense_feature = self.dense_mlp(dense)
|
|
features = torch.cat([dense_feature] + [sparse_feature], dim=1)
|
|
|
|
out = self.top_mlp(features)
|
|
return out
|
|
|
|
# thin wrapper around embedding bag, because tracing inside nn.Embedding
|
|
# bag is not supported at the moment and this is top level
|
|
class EmbBagWrapper(nn.Module):
|
|
def __init__(self, num_embeddings, embedding_dim):
|
|
super().__init__()
|
|
self.emb_bag = nn.EmbeddingBag(num_embeddings, embedding_dim, mode='sum')
|
|
|
|
def forward(self, indices, offsets):
|
|
return self.emb_bag(indices, offsets)
|
|
|
|
class SparseNNModel(nn.Module):
|
|
_NUM_EMBEDDINGS = 10
|
|
_EMBEDDING_DIM = 5
|
|
_DENSE_DIM = 4
|
|
_DENSE_OUTPUT = 2
|
|
_TOP_OUT_IN = 2
|
|
_TOP_OUT_OUT = 2
|
|
_TOP_MLP_DIM = 1
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
self.model_sparse = EmbBagWrapper(self._NUM_EMBEDDINGS, self._EMBEDDING_DIM)
|
|
self.dense_top = DenseTopMLP(
|
|
self._DENSE_DIM, self._DENSE_OUTPUT, self._EMBEDDING_DIM, self._TOP_OUT_IN,
|
|
self._TOP_OUT_OUT)
|
|
|
|
def forward(
|
|
self,
|
|
sparse_indices: torch.Tensor,
|
|
sparse_offsets: torch.Tensor,
|
|
dense: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
|
|
sparse_feature = self.model_sparse(sparse_indices, sparse_offsets)
|
|
out = self.dense_top(sparse_feature, dense)
|
|
|
|
return out
|
|
|
|
class TestHelperModules:
|
|
class ControlFlow(torch.nn.Module):
|
|
def forward(
|
|
self,
|
|
xs: torch.Tensor,
|
|
pred1: torch.Tensor,
|
|
pred2: torch.Tensor,
|
|
y: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
|
|
def true_nested(y: torch.Tensor) -> torch.Tensor:
|
|
y = y + y
|
|
y = torch.mm(y, y)
|
|
return y
|
|
|
|
def false_nested(y: torch.Tensor) -> torch.Tensor:
|
|
return torch.mm(y, y)
|
|
|
|
def true_fn(x: torch.Tensor, pred2: torch.Tensor) -> torch.Tensor:
|
|
z = control_flow.cond(pred2, true_nested, false_nested, [x])
|
|
return x + z
|
|
|
|
def false_fn(x: torch.Tensor, _) -> torch.Tensor:
|
|
return x.cos()
|
|
|
|
def map_fn(
|
|
x: torch.Tensor, pred1: torch.Tensor, pred2: torch.Tensor, y: torch.Tensor
|
|
) -> torch.Tensor:
|
|
x = x.cos()
|
|
y = control_flow.cond(pred1, true_fn, false_fn, [y, pred2])
|
|
x = x + y
|
|
return x.sin()
|
|
|
|
y = torch.mm(y, y)
|
|
return control_flow.map(map_fn, xs, pred1, pred2, y)
|
|
|
|
def example_inputs(self):
|
|
return (torch.ones(2, 2), torch.tensor([False]), torch.tensor([False]), torch.ones(2, 2),)
|
|
|
|
class Conv2dPropAnnotaton(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 3, 3)
|
|
self.linear = torch.nn.Linear(3, 3)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = x.view(-1, 3)
|
|
x = torch.nn.functional.hardtanh(x, -0.5, 0.5)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
class Conv2dWithObsSharingOps(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 3, 3)
|
|
self.hardtanh = torch.nn.Hardtanh()
|
|
self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.adaptive_avg_pool2d(x)
|
|
x = self.hardtanh(x)
|
|
x = torch.mean(x)
|
|
return x
|
|
|
|
class Conv2dWithTwoLinearPermute(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 16, 3)
|
|
self.linear1 = torch.nn.Linear(16, 8, bias=False)
|
|
self.linear2 = torch.nn.Linear(8, 8)
|
|
|
|
def forward(self, x):
|
|
conv_out = self.conv(x)
|
|
permute_out = torch.permute(conv_out, (0, 2, 3, 1))
|
|
return self.linear2(self.linear1(permute_out))
|
|
|
|
class Conv2dWithTwoLinear(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 16, 3)
|
|
self.linear1 = torch.nn.Linear(64, 8, bias=False)
|
|
self.linear2 = torch.nn.Linear(8, 8)
|
|
|
|
def forward(self, x):
|
|
conv_out = self.conv(x)
|
|
reshape_out = torch.reshape(conv_out, (2, 64))
|
|
return self.linear2(self.linear1(reshape_out))
|
|
|
|
class ConvLinearWPermute(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 8, 3)
|
|
self.linear1 = torch.nn.Linear(8, 8)
|
|
|
|
def forward(self, x):
|
|
conv_out = self.conv(x)
|
|
permute_out = torch.permute(conv_out, (0, 2, 3, 1))
|
|
return self.linear1(permute_out)
|
|
|
|
class TwoLinearModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear1 = torch.nn.Linear(8, 16, bias=False)
|
|
self.linear2 = torch.nn.Linear(16, 8)
|
|
|
|
def forward(self, x):
|
|
return self.linear2(self.linear1(x))
|
|
|
|
def example_inputs(self):
|
|
return (torch.randn(2, 8),)
|
|
|
|
class ConvMaxPool2d(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(2, 2, 1)
|
|
self.pool = torch.nn.MaxPool2d(1, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.pool(x)
|
|
return x
|
|
|
|
class ConvWithAdaptiveAvgPool2d(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(3, 3, 3)
|
|
self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1))
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.adaptive_avg_pool2d(x)
|
|
return x
|
|
|
|
class ConvWithBNRelu(torch.nn.Module):
|
|
def __init__(self, relu, dim=2, bn=True, bias=True):
|
|
super().__init__()
|
|
convs = {1: torch.nn.Conv1d, 2: torch.nn.Conv2d}
|
|
bns = {1: torch.nn.BatchNorm1d, 2: torch.nn.BatchNorm2d}
|
|
self.conv = convs[dim](3, 3, 3, bias=bias)
|
|
|
|
if bn:
|
|
self.bn = bns[dim](3)
|
|
else:
|
|
self.bn = torch.nn.Identity()
|
|
if relu:
|
|
self.relu = torch.nn.ReLU()
|
|
else:
|
|
self.relu = torch.nn.Identity()
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return self.relu(x)
|
|
|
|
class ConvTWithBNRelu(torch.nn.Module):
|
|
def __init__(self, relu, dim=2, bn=True, bias=True):
|
|
super().__init__()
|
|
convts = {1: torch.nn.ConvTranspose1d, 2: torch.nn.ConvTranspose2d}
|
|
bns = {1: torch.nn.BatchNorm1d, 2: torch.nn.BatchNorm2d}
|
|
self.convt = convts[dim](3, 3, 3, bias=bias)
|
|
|
|
if bn:
|
|
self.bn = bns[dim](3)
|
|
else:
|
|
self.bn = torch.nn.Identity()
|
|
if relu:
|
|
self.relu = torch.nn.ReLU()
|
|
else:
|
|
self.relu = torch.nn.Identity()
|
|
|
|
def forward(self, x):
|
|
x = self.convt(x)
|
|
x = self.bn(x)
|
|
return self.relu(x)
|
|
|
|
class Conv2dThenConv1d(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1d = torch.nn.Conv1d(3, 3, 3)
|
|
self.conv2d = torch.nn.Conv2d(3, 3, 3)
|
|
|
|
def forward(self, x):
|
|
x = self.conv2d(x)
|
|
x = x.squeeze(0)
|
|
x = self.conv1d(x)
|
|
return x
|
|
|
|
def example_inputs(self):
|
|
return (torch.randn(1, 3, 5, 5),)
|
|
|
|
class Conv2dWithCat(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = torch.nn.Conv2d(3, 3, 3)
|
|
self.conv2 = torch.nn.Conv2d(3, 3, 3)
|
|
|
|
def forward(self, x, y):
|
|
x = self.conv1(x)
|
|
y = self.conv2(y)
|
|
z = torch.cat([x, y], dim=1)
|
|
return z
|
|
|
|
class Conv2dWithTwoCat(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = torch.nn.Conv2d(3, 3, 3)
|
|
self.conv2 = torch.nn.Conv2d(3, 3, 3)
|
|
|
|
def forward(self, x1, x2, x3, x4):
|
|
x1 = self.conv1(x1)
|
|
x2 = self.conv2(x2)
|
|
y = torch.cat([x1, x2], dim=1)
|
|
z = x3 + x4
|
|
w = torch.cat([z, y])
|
|
return w
|
|
|
|
class ThreeAdd(torch.nn.Module):
|
|
def forward(self, x1, x2, x3, x4):
|
|
y = x1 + x2
|
|
z = x3 + x4
|
|
w = y + z
|
|
return w
|
|
|
|
class EmbeddingModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=12)
|
|
|
|
def forward(self, indices):
|
|
return self.emb(indices)
|
|
|
|
class EmbeddingConvLinearModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.emb = torch.nn.Embedding(num_embeddings=10, embedding_dim=8)
|
|
self.conv = torch.nn.Conv2d(8, 16, (1, 3))
|
|
self.linear = torch.nn.Linear(16, 8)
|
|
|
|
def forward(self, indices):
|
|
embeddings = self.emb(indices)
|
|
embeddings = torch.unsqueeze(embeddings, dim=0)
|
|
embeddings = torch.permute(embeddings, (0, 3, 1, 2))
|
|
conv_out = self.conv(embeddings)
|
|
conv_out = torch.permute(conv_out, (0, 2, 3, 1))
|
|
conv_out = torch.squeeze(conv_out, dim=0)
|
|
return self.linear(conv_out)
|
|
|
|
class AddInplaceAdd(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
x = x + y
|
|
x += y
|
|
return x
|
|
|
|
class MulInplaceMul(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
x = x * y
|
|
x *= y
|
|
return x
|
|
|
|
class AddMulScalar(torch.nn.Module):
|
|
def forward(self, x):
|
|
x = x + 3
|
|
x = x * 3
|
|
x += 3
|
|
x *= 3
|
|
return x
|
|
|
|
class ConvBnReLU2dAndLinearReLU(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv_bn_relu = TestHelperModules.ConvWithBNRelu(relu=True)
|
|
self.linear = torch.nn.Linear(3, 8, bias=False)
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.conv_bn_relu(x)
|
|
permute_out = torch.permute(x, (0, 2, 3, 1))
|
|
linear_out = self.linear(permute_out)
|
|
return linear_out
|
|
|
|
class GroupwiseConv2d(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(4, 4, 3, groups=2)
|
|
|
|
def forward(self, x):
|
|
return self.conv(x)
|
|
|
|
def example_inputs(self):
|
|
return (torch.randn(2, 4, 10, 10),)
|
|
|
|
class LinearReluModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.relu(self.fc(x))
|
|
return x
|
|
|
|
def _generate_qdq_quantized_model(
|
|
mod, inputs, is_qat=False, is_dynamic=False, quantizer=None
|
|
):
|
|
|
|
def get_default_quantizer(is_qat, is_dynamic, inputs):
|
|
has_xpu = any(isinstance(input, torch.Tensor) and input.device.type == "xpu"
|
|
for input in inputs)
|
|
if has_xpu:
|
|
quantizer = XPUInductorQuantizer()
|
|
assert (not is_qat) and (not is_dynamic), "QAT and dynamic quantization is not supported at XPU backend currently"
|
|
quantizer.set_global(xpuiq.get_default_xpu_inductor_quantization_config())
|
|
else:
|
|
quantizer = X86InductorQuantizer()
|
|
quantizer.set_global(
|
|
xiq.get_default_x86_inductor_quantization_config(
|
|
is_qat=is_qat, is_dynamic=is_dynamic
|
|
)
|
|
)
|
|
return quantizer
|
|
|
|
maybe_no_grad = contextlib.nullcontext() if is_qat else torch.no_grad()
|
|
with maybe_no_grad:
|
|
export_model = export_for_training(
|
|
mod,
|
|
inputs,
|
|
).module()
|
|
quantizer = (
|
|
quantizer if quantizer else get_default_quantizer(is_qat, is_dynamic, inputs)
|
|
)
|
|
prepare_model = (
|
|
prepare_qat_pt2e(export_model, quantizer)
|
|
if is_qat
|
|
else prepare_pt2e(export_model, quantizer)
|
|
)
|
|
prepare_model(*inputs)
|
|
torch.ao.quantization.move_exported_model_to_eval(prepare_model)
|
|
convert_model = convert_pt2e(prepare_model)
|
|
return convert_model
|