Files
pytorch/torch/_inductor/codegen/cpp_utils.py
leslie-fang-intel 81322aee74 [Inductor][CPP] Support more than one LocalBuffer (#129121)
**Summary**
Support more than 1 Local Buffer in an outer loop fused node and also the case when multi global buffers sharing usage of same local buffer.

**TestPlan**
```
python -u -m pytest -s -v inductor/test_cpu_repro.py -k test_two_local_buffers_in_outer_loop_fusion
python -u -m pytest -s -v inductor/test_cpu_repro.py -k test_share_local_buffers_in_outer_loop_fusion
```

**Next Step**

- [✓] Support more than one Local Buffer/Global Buffer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129121
Approved by: https://github.com/jgong5, https://github.com/peterbell10
ghstack dependencies: #126967
2024-07-14 11:31:14 +00:00

544 lines
19 KiB
Python

# mypy: allow-untyped-defs
import contextlib
import copy
import math
from collections import namedtuple
from typing import Any, Callable, Dict, List, Optional, Tuple
from unittest.mock import patch
import sympy
import torch
from torch.utils._sympy.symbol import symbol_is_type, SymT
from .. import ir
from ..utils import IndentedBuffer, sympy_index_symbol_with_prefix, sympy_subs
from ..virtualized import V
from .common import CSEVariable, ExprPrinter, Kernel, KernelArgs
DTYPE_TO_CPP = {
torch.float32: "float",
torch.float64: "double",
torch.float16: "half",
torch.int64: "int64_t",
torch.int32: "int32_t",
torch.int16: "int16_t",
torch.int8: "int8_t",
torch.uint64: "uint64_t",
torch.uint32: "uint32_t",
torch.uint16: "uint16_t",
torch.uint8: "uint8_t",
torch.bool: "bool",
torch.bfloat16: "bfloat16",
torch.complex64: "complex64",
torch.float8_e4m3fn: "float8_e4m3fn",
torch.float8_e5m2: "float8_e5m2",
}
DTYPE_TO_ATEN = {
torch.float32: "at::kFloat",
torch.float64: "at::kDouble",
torch.float16: "at::kHalf",
torch.int64: "at::kLong",
torch.int32: "at::kInt",
torch.int16: "at::kShort",
torch.int8: "at::kChar",
torch.uint64: "at::kUInt64",
torch.uint32: "at::kUInt32",
torch.uint16: "at::kUInt16",
torch.uint8: "at::kByte",
torch.uint32: "at::kUInt32",
torch.uint64: "at::kUInt64",
torch.bool: "at::kBool",
torch.bfloat16: "at::kBFloat16",
torch.complex32: "at::kComplexHalf",
torch.complex64: "at::kComplexFloat",
torch.complex128: "at::kComplexDouble",
torch.float8_e4m3fn: "at::kFloat8_e4m3fn",
torch.float8_e5m2: "at::kFloat8_e5m2",
torch.float8_e4m3fnuz: "at::kFloat8_e4m3fnuz",
torch.float8_e5m2fnuz: "at::kFloat8_e5m2fnuz",
}
DEVICE_TO_ATEN = {
"cpu": "at::kCPU",
"cuda": "at::kCUDA",
}
LAYOUT_TO_ATEN = {
torch.strided: "at::kStrided",
torch._mkldnn: "at::kMkldnn", # type: ignore[attr-defined]
}
INDEX_TYPE = "long"
GemmBlocking = namedtuple("GemmBlocking", ["block_m", "block_n", "block_k"])
class CppPrinter(ExprPrinter):
def _print_Integer(self, expr):
return f"{int(expr)}L"
def _print_Where(self, expr):
c = self.paren(self.doprint(expr.args[0]))
p = self.paren(self.doprint(expr.args[1]))
q = self.paren(self.doprint(expr.args[2]))
return f"{c} ? {p} : {q}"
def _print_ModularIndexing(self, expr):
x, div, mod = expr.args
x = self.paren(self.doprint(x))
if div != 1:
div = self.paren(self.doprint(div))
if expr.is_integer:
x = f"c10::div_floor_integer({x}, {div})"
else:
x = f"c10::div_floor_floating(static_cast<double>({x}), static_cast<double>({div}))"
mod = self.paren(self.doprint(mod))
return f"static_cast<{INDEX_TYPE}>({x}) % static_cast<{INDEX_TYPE}>({mod})"
def _print_FloorDiv(self, expr):
x, div = expr.args
x = self.paren(self.doprint(x))
div = self.paren(self.doprint(div))
if expr.is_integer:
return f"c10::div_floor_integer({x}, {div})"
return f"c10::div_floor_floating(static_cast<double>({x}), static_cast<double>({div}))"
def _print_floor(self, expr):
assert len(expr.args) == 1
r = f"std::floor({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_FloorToInt(self, expr):
assert len(expr.args) == 1
r = f"std::floor({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_TruncToInt(self, expr):
assert len(expr.args) == 1
r = f"std::trunc({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})"
def _print_TruncToFloat(self, expr):
assert len(expr.args) == 1
return f"std::trunc({self._print(expr.args[0])})"
def _print_ToFloat(self, expr):
assert len(expr.args) == 1
return f"static_cast<double>({self._print(expr.args[0])})"
# TODO: This is wrong if one of the inputs is negative. This is hard to
# tickle though, as the inputs are typically positive (and if we can prove
# they are positive, we will have used Mod instead, for which this codegen
# is right).
def _print_PythonMod(self, expr):
return " % ".join(map(self.paren, map(self._print, expr.args)))
def _print_CMod(self, expr):
return " % ".join(map(self.paren, map(self._print, expr.args)))
def _print_IntTrueDiv(self, expr):
lhs, rhs = expr.args
# TODO: This is only accurate up to 2**53
return f"static_cast<double>({self._print(lhs)}) / static_cast<double>({self._print(rhs)})"
# TODO: PowByNatural: we need to implement our own int-int pow. Do NOT
# use std::pow, that operates on floats
def _print_PowByNatural(self, expr):
raise NotImplementedError(
f"_print_PowByNatural not implemented for {type(self)}"
)
def _print_FloatTrueDiv(self, expr):
lhs, rhs = expr.args
return f"{self.paren(self._print(lhs))} / {self.paren(self._print(rhs))}"
def _print_FloatPow(self, expr):
base, exp = expr.args
return f"std::pow({self._print(base)}, {self._print(exp)})"
def _print_Pow(self, expr):
# Uses float constants to perform FP div
base, exp = expr.args
base = self._print(base)
if exp == 0.5 or exp == -0.5:
return f"std::sqrt({base})" if exp == 0.5 else f"1.0/std::sqrt({base})"
if exp.is_integer:
exp = int(exp)
if exp > 0:
r = "*".join([self.paren(base)] * exp)
elif exp < 0:
r = "1.0/" + self.paren("*".join([self.paren(base)] * abs(exp)))
else: # exp == 0
r = "1.0"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
else:
# TODO: float vs double
return f"std::pow({base}, {float(exp)})"
def _print_Rational(self, expr):
# Uses float constants to perform FP div
if expr.q == 1:
r = f"{expr.p}"
else:
r = f"{expr.p}.0/{expr.q}.0"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_ceiling(self, expr):
assert len(expr.args) == 1
r = f"std::ceil({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_CeilToInt(self, expr):
assert len(expr.args) == 1
r = f"std::ceil({self._print(expr.args[0])})"
return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r
def _print_Min(self, expr):
args = [self._print(a) for a in expr.args]
if len(args) == 2:
return f"std::min({args[0]}, {args[1]})"
else:
# Initializer list overload
il = "{" + ", ".join(args) + "}"
return f"std::min({il})"
def _print_Max(self, expr):
args = [self._print(a) for a in expr.args]
if len(args) == 2:
return f"std::max({args[0]}, {args[1]})"
else:
# Initializer list overload
il = "{" + ", ".join(args) + "}"
return f"std::max({il})"
def _print_Abs(self, expr):
assert len(expr.args) == 1
return f"std::abs({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_cos(self, expr):
assert len(expr.args) == 1
return f"std::cos({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_cosh(self, expr):
assert len(expr.args) == 1
return f"std::cosh({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_acos(self, expr):
assert len(expr.args) == 1
return f"std::acos({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_sin(self, expr):
assert len(expr.args) == 1
return f"std::sin({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_sinh(self, expr):
assert len(expr.args) == 1
return f"std::sinh({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_asin(self, expr):
assert len(expr.args) == 1
return f"std::asin({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_tan(self, expr):
assert len(expr.args) == 1
return f"std::tan({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_tanh(self, expr):
assert len(expr.args) == 1
return f"std::tanh({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_atan(self, expr):
assert len(expr.args) == 1
return f"std::atan({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_sqrt(self, expr):
return f"std::sqrt({self._print(expr.args[0])})"
def _print_RoundToInt(self, expr):
assert len(expr.args) == 1
# TODO: dispatch to llrint depending on index type
return f"std::lrint({self._print(expr.args[0])})"
def _print_RoundDecimal(self, expr):
assert len(expr.args) == 2
number, ndigits = expr.args
if number.is_integer:
# ndigits < 0 should have been filtered by the sympy function
assert ndigits < 0
raise ValueError(
f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
)
return f"static_cast<double>(std::nearbyint(1e{ndigits} * {self.paren(self._print(number))}) * 1e{-ndigits})"
def _print_BooleanTrue(self, expr):
return "true"
def _print_BooleanFalse(self, expr):
return "false"
# A function to print, useful for printing sympy symbols.
cexpr = CppPrinter().doprint
def cexpr_index(index):
return f"static_cast<{INDEX_TYPE}>({cexpr(index)})"
def value_to_cpp(value, cpp_type):
if value == float("-inf"):
return f"-std::numeric_limits<{cpp_type}>::infinity()"
elif value == float("inf"):
return f"std::numeric_limits<{cpp_type}>::infinity()"
elif isinstance(value, bool):
return f"static_cast<{cpp_type}>({str(value).lower()})"
elif math.isnan(value):
return f"std::numeric_limits<{cpp_type}>::quiet_NaN()"
else:
return f"static_cast<{cpp_type}>({repr(value)})"
def rewrite_index_for_function(
localize_buffer_handler: "LocalizeBufferHandler",
index: sympy.Expr,
global_buf_name: str,
):
# Local buffer at the inner dimensions
snode = V.graph.scheduler.name_to_node.get(global_buf_name)
local_buf = localize_buffer_handler.global_to_local[global_buf_name]
assert snode is not None
scheduler_nodes = snode.get_nodes()
_, (group, reduction_group) = max(
scheduler_nodes, key=lambda x: int(x.is_reduction())
).group
call_ranges = tuple(group) + tuple(reduction_group)
indices_to_keep = [
f"x{len(call_ranges) - (idx + 1)}"
for idx in range(len(local_buf.get_layout().size))
]
sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name) # type: ignore[attr-defined]
replacements = {}
for x in sorted_symbols:
if x.name.startswith("x") and x.name not in indices_to_keep: # type: ignore[attr-defined]
# Only keep index used by local buffer
replacements[x] = sympy.core.numbers.Zero()
index = sympy_subs(index, replacements) # type: ignore[arg-type]
return index
def rewrite_index_for_nodes(
localize_buffer_handler: "LocalizeBufferHandler",
index: sympy.Expr,
global_buf_name: str,
):
used_vars = {s for s in index.free_symbols if symbol_is_type(s, SymT.INDEX)}
index_vars = []
local_buf = localize_buffer_handler.global_to_local[global_buf_name]
for i in range(len(local_buf.get_size())):
var = sympy_index_symbol_with_prefix(SymT.INDEX, i)
index_vars.append(var if var in used_vars else 0)
index = local_buf.layout.make_indexer()(index_vars)
return index
class LocalizeBufferHandler(V.WrapperHandler): # type: ignore[name-defined]
def __init__(
self,
inner,
global_to_local: Dict[str, ir.Buffer],
rewrite_index: Callable[["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr],
):
super().__init__(inner)
self.global_to_local = global_to_local
self.rewrite_index = rewrite_index
def localize(self, name: str, index: sympy.Expr):
if self.global_to_local and name in self.global_to_local:
assert self.rewrite_index is not None
index = self.rewrite_index(self, index, name)
name = self.global_to_local[name].get_name()
return name, index
def load(self, name: str, index: sympy.Expr):
return self._inner.load(*self.localize(name, index))
def store(self, name, index, value, mode=None):
local_buffer_name, local_buffer_index = self.localize(name, index)
res = self._inner.store(local_buffer_name, local_buffer_index, value, mode)
if (
self.global_to_local
and name in self.global_to_local
and isinstance(V.kernel, Kernel)
):
# Remove name of local buffer from Kernel.store_buffer_names
# local_buffer_name is added to Kernel.store_buffer_names in Kernel.CSEProxy.store.
V.kernel.store_buffer_names.discard(local_buffer_name)
return res
def store_reduction(self, name, index, value):
return self._inner.store_reduction(*self.localize(name, index), value)
class LocalBufferContext:
"""
This class creates a context that helps to generate code involving Inductor IR with
function local buffers. These buffers are constructed during the codegen process and
are used to store intermediate results such as local accumulators. We do not want to
add them to `V.graph` since they are not global and we do not want to add them as
function arguments either. So we patch the codegen processes under this scope to support
these buffers without exposure to the outside world.
"""
def __init__(self, kernel_args: KernelArgs):
self.kernel_args = kernel_args
self.exit_stack = contextlib.ExitStack()
# map local buffer name to local buffer
self.local_buffers: Dict[str, ir.Buffer] = {}
# map global buffer name to global buffer
self.global_buffers: Dict[str, ir.Buffer] = {}
# map global buffer name to local buffer
self.global_to_local: Dict[str, ir.Buffer] = {}
def __enter__(self):
self.exit_stack.__enter__()
original_get_dtype = V.graph.get_dtype
def get_dtype(name):
if name in self.local_buffers:
return self.local_buffers[name].get_dtype()
return original_get_dtype(name)
self.exit_stack.enter_context(patch.object(V.graph, "get_dtype", get_dtype))
original_input = self.kernel_args.input
def input(name):
if name in self.local_buffers:
return name
return original_input(name)
self.exit_stack.enter_context(patch.object(self.kernel_args, "input", input))
original_output = self.kernel_args.output
def output(name):
if name in self.local_buffers:
return name
return original_output(name)
self.exit_stack.enter_context(patch.object(self.kernel_args, "output", output))
# Set current LocalBufferContext into V
self.exit_stack.enter_context(V.set_local_buffer_context(self))
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.local_buffers.clear()
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
def add_local_buffer(
self, local_buffer: ir.Buffer, global_buffers: Optional[List[ir.Buffer]] = None
):
assert local_buffer.get_name() not in self.local_buffers
self.local_buffers[local_buffer.get_name()] = local_buffer
if global_buffers:
for global_buffer in global_buffers:
global_buffer_name = global_buffer.get_name()
assert (
global_buffer_name not in self.global_buffers
and global_buffer_name not in self.global_to_local
)
self.global_buffers[global_buffer_name] = global_buffer
self.global_to_local[global_buffer_name] = local_buffer
V.graph.removed_buffers.add(global_buffer_name)
def localize_function(
self,
fn: Callable[..., Any],
rewrite_index: Callable[
["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr
] = rewrite_index_for_function,
):
def inner(node, *index_vars):
with V.set_ops_handler(
LocalizeBufferHandler(
V.get_ops_handler(),
global_to_local=self.global_to_local,
rewrite_index=rewrite_index,
)
):
return fn(node, *index_vars)
return inner
def localize_nodes(
self,
nodes: List[ir.IRNode],
rewrite_index: Callable[
["LocalizeBufferHandler", sympy.Expr, str], sympy.Expr
] = rewrite_index_for_nodes,
) -> List[ir.IRNode]:
"""
Given `local_buf` and `global_buf` registered in current `LocalBufferContext`
though the method of `add_local_buffer`, localizes the `global_buf` to `local_buf`
for the given `nodes` and returns a new list of IR nodes that work on `local_buf`
instead of `global_buf`, i.e., all the loads and stores are redirected to
`local_buf`. This helps the fused loops to work on smaller-sized local buffers
for better data locality.
The the data access of `local_buf` is assumed to be contiguous with the
same order as the `global_buf`.
"""
assert len(nodes) > 0
def wrap_inner_fn_for_node(node: ir.IRNode):
loops = node.data if isinstance(node, ir.ComputedBuffer) else node
assert isinstance(loops, ir.Loops)
new_loops = copy.copy(loops)
if isinstance(node, ir.ComputedBuffer):
new_node = ir.ComputedBuffer(
node.get_name(), node.get_layout(), new_loops
)
else:
new_node = new_loops # type: ignore[assignment]
new_loops.inner_fn = self.localize_function(
new_loops.inner_fn,
rewrite_index,
)
return new_node
return [wrap_inner_fn_for_node(node) for node in nodes]
def unify_mask_base_type(
buffer: IndentedBuffer,
vars: Tuple[CSEVariable, ...],
dtype=torch.float,
):
"""
Given list of cse variables,
Cast each to new mask base dtype and return casted cse variable.
"""
new_vars = (
V.kernel.cse.generate(
buffer,
f"{V.kernel._get_mask_cast(var, dtype)}",
)
for var in vars
)
return new_vars
def get_gemm_template_output_and_compute_dtype(input_dtype):
if input_dtype == torch.uint8:
return (torch.int32, torch.int32)
else:
return (torch.float32, torch.float32)