Files
pytorch/torch/_inductor/codegen/common.py
PyTorch MergeBot 7f796eb8b7 Revert "[inductor] Add typing to common.KernelArgs (#145916)"
This reverts commit 68cf36d5ab6165372160f65eb84e13d0f8dbc5dc.

Reverted https://github.com/pytorch/pytorch/pull/145916 on behalf of https://github.com/atalman due to Failing internally, please see associated diff ([comment](https://github.com/pytorch/pytorch/pull/145916#issuecomment-2632715678))
2025-02-04 03:07:12 +00:00

2385 lines
84 KiB
Python

# mypy: allow-untyped-defs
from __future__ import annotations
import contextlib
import dataclasses
import enum
import functools
import itertools
import logging
import math
import operator
import re
from enum import auto, Enum
from itertools import chain
from typing import Any, Callable, ClassVar, NamedTuple, Optional, TYPE_CHECKING, Union
import sympy
import torch
import torch.fx
from torch._inductor.dtype_propagation import DtypePropagationOpsHandler
from torch._prims_common import ELEMENTWISE_TYPE_PROMOTION_KIND
from torch.utils import _pytree as pytree
from torch.utils._ordered_set import OrderedSet
from torch.utils._sympy.numbers import int_oo
from torch.utils._sympy.printers import PythonPrinter as _PythonPrinter
from torch.utils._sympy.symbol import free_symbol_is_type, symbol_is_type, SymT
from torch.utils._sympy.value_ranges import bound_sympy, ValueRangeAnalysis, ValueRanges
from .. import config, metrics
from ..utils import (
boolean_ops,
DeferredLineBase,
generate_assert,
IndentedBuffer,
ir_dataclass,
sympy_dot,
sympy_subs,
unique,
)
from ..virtualized import ops, OpsHandler, OpsValue, ReductionType, StoreMode, V
if TYPE_CHECKING:
from typing import Never
from ..ir import FixedLayout
from ..loop_body import LoopBody
from ..scheduler import BaseScheduling, Scheduler
from .wrapper import PythonWrapperCodegen
SchedulingConstructor = Callable[[Optional[Scheduler]], BaseScheduling]
WrapperConstructor = type[PythonWrapperCodegen]
SymbolLike = Union[str, sympy.Symbol]
# OpVarT should really be Union[CSEVariable, str], however this
# causes typing errors in subclasses (defined in other files).
OpVarT = str
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
log = logging.getLogger(__name__)
def data_type_logger(msg: str) -> None:
if schedule_log.isEnabledFor(logging.DEBUG):
schedule_log.debug("Data type propagation: %s", msg)
class WorkspaceZeroMode(enum.Enum):
UNINITIALIZED = 0
ZERO_ON_CALL = 1 # kernel may leave workspace dirty
ZERO_PER_GRAPH = 2 # must be re-zeroed by kernel
@staticmethod
def combine(a: WorkspaceZeroMode, b: WorkspaceZeroMode) -> WorkspaceZeroMode:
if a == b or b == WorkspaceZeroMode.UNINITIALIZED:
return a
if a == WorkspaceZeroMode.UNINITIALIZED:
return b
raise NotImplementedError(f"WorkspaceZeroMode.combine({a!r}, {b!r})")
@staticmethod
def from_bool(zero_fill: bool) -> WorkspaceZeroMode:
if zero_fill:
return WorkspaceZeroMode.ZERO_ON_CALL
return WorkspaceZeroMode.UNINITIALIZED
@ir_dataclass(frozen=True)
class WorkspaceArg:
"""A temporary buffer used for a single kernel, then discarded.
Not registered as a traditional buffer since there are no users,
so it would be dead code eliminated.
Args:
nbytes: The size of the buffer in bytes.
zero_fill: Whether the buffer should be initialized to zero.
"""
count: sympy.Expr
zero_mode: WorkspaceZeroMode
device: torch.device
outer_name: str
inner_name: str = "ws_ptr"
dtype: torch.dtype = torch.uint8
@staticmethod
def unique_name(prefix="workspace_") -> str:
return f"{prefix}{next(V.graph.workspace_id)}"
@staticmethod
def can_join(a: WorkspaceArg, b: WorkspaceArg) -> bool:
return (
a.inner_name == b.inner_name and a.dtype == b.dtype and a.device == b.device
)
@staticmethod
def join(a: WorkspaceArg, b: WorkspaceArg) -> WorkspaceArg:
return WorkspaceArg(
count=a.count + b.count,
zero_mode=WorkspaceZeroMode.combine(a.zero_mode, b.zero_mode),
dtype=a.dtype,
device=a.device,
inner_name=a.inner_name,
outer_name=a.outer_name,
)
@staticmethod
def maximum(a: WorkspaceArg, b: WorkspaceArg) -> WorkspaceArg:
assert (
a.dtype == b.dtype and a.device == b.device and a.inner_name == b.inner_name
)
return WorkspaceArg(
count=sympy.Max(a.count, b.count),
zero_mode=WorkspaceZeroMode.combine(a.zero_mode, b.zero_mode),
dtype=a.dtype,
device=a.device,
inner_name=a.inner_name,
outer_name=a.outer_name,
)
# These methods let WorkspaceArg pretend it is a buffer to reuse allocation code
def get_device(self) -> torch.device:
return self.device
get_device_or_error = get_device
def get_dtype(self) -> torch.dtype:
return self.dtype
def get_layout(self) -> FixedLayout:
from ..ir import FixedLayout
return FixedLayout(
device=self.device,
dtype=self.dtype,
size=[self.count],
stride=[1],
)
@property
def layout(self) -> FixedLayout:
return self.get_layout()
get_output_spec = get_layout
maybe_get_output_spec = get_layout
maybe_get_layout = get_layout
def get_size(self) -> list[sympy.Expr]:
return [self.count]
def get_stride(self) -> list[sympy.Expr]:
return [sympy.S.One]
def get_name(self) -> str:
return self.outer_name
def get_inputs_that_alias_output(self) -> list[str]:
return []
@dataclasses.dataclass
class TensorArg:
name: str
buffer: str
dtype: torch.dtype
offset: sympy.Expr = sympy.S.Zero # c++ only
alias_of: Optional[str] = None # halide only
@dataclasses.dataclass
class SizeArg:
name: str
expr: sympy.Expr
@property
def alias_of(self) -> Optional[str]:
return None
@dataclasses.dataclass
class ConstexprArg:
name: str
@dataclasses.dataclass
class TMADescriptorArg:
name: str
@dataclasses.dataclass
class DeviceCodegen:
scheduling: SchedulingConstructor
wrapper_codegen: WrapperConstructor
cpp_wrapper_codegen: Optional[WrapperConstructor] = None
KernelArgType = Union[WorkspaceArg, TensorArg, SizeArg, TMADescriptorArg, ConstexprArg]
device_codegens: dict[str, DeviceCodegen] = {}
class DeviceOpOverrides:
def import_get_raw_stream_as(self, name: str) -> str:
raise NotImplementedError
def set_device(self, device_idx: int) -> str:
raise NotImplementedError
def synchronize(self) -> str:
raise NotImplementedError
def device_guard(self, device_idx: int) -> str:
raise NotImplementedError
def cpp_device_guard(self) -> str:
raise NotImplementedError
def cpp_aoti_device_guard(self) -> str:
raise NotImplementedError
def cpp_stream_guard(self) -> str:
raise NotImplementedError
def cpp_aoti_stream_guard(self) -> str:
raise NotImplementedError
def cpp_getStreamFromExternal(self) -> str:
raise NotImplementedError
def kernel_header(self) -> str:
raise NotImplementedError
def kernel_driver(self) -> str:
raise NotImplementedError
def cpp_stream_type(self) -> str:
raise NotImplementedError
def aoti_get_stream(self) -> str:
raise NotImplementedError
def cpp_kernel_type(self) -> str:
raise NotImplementedError
def cpp_device_ptr(self) -> str:
raise NotImplementedError
def tma_descriptor_helpers(self) -> str:
raise NotImplementedError
device_op_overrides_dict: dict[str, DeviceOpOverrides] = {}
# The code generated by Inductor consists of two main parts: kernel code and wrapper code.
# For any new backend looking to integrate with Inductor, customization of these two main
# parts are necessary to generate its specific code.
#
# Kernel code generation is determined by different Scheduling. Consequently, a new
# backend needs to provide a custom Scheduling for its unique kernel code generation. Currently,
# CppScheduling and TritonScheduling serve the C++/OpenMP and Triton backends, respectively.
#
# For the Wrapper, Inductor provides a PythonWrapperCodegen class to generate the Python wrapper code
# that bridges kernels. This allows out-of-tree backends to inherit from PythonWrapperCodegen,
# and override specific member functions to create backend-specific Python wrapper code.
#
# Other classes, such as CppKernel and TritonKernel, used for code generation, typically form part
# of the logic for either Scheduling or PythonWrapperCodegen. So the Scheduling and PythonWrapperCodegen interfaces
# provide flexibility to the backend. A backend can choose to implement these classes from scratch,
# or reuse them by extending and overriding as necessary. And Inductor provides the registration API,
# register_backend_for_device, to equip a new backend at runtime.
#
# Intel has developed a new backend on top of Triton to support Intel GPUs, leveraging these interfaces.
# This backend can be used as a reference:
# https://github.com/intel/intel-extension-for-pytorch/blob/5dcc9d57e5422cf295e1a1ee97896d6b6a554a85/intel_extension_for_pytorch/_inductor/__init__.py#L9
def register_backend_for_device(
device: str,
device_scheduling: SchedulingConstructor,
device_wrapper_codegen: WrapperConstructor,
device_cpp_wrapper_codegen: Optional[WrapperConstructor] = None,
) -> None:
device_codegens[device] = DeviceCodegen(
device_scheduling, device_wrapper_codegen, device_cpp_wrapper_codegen
)
class BackendFeature(Enum):
FOREACH = auto()
BUCKETIZE = auto()
INPLACE_BUFFERS = auto()
MASKED_SCATTER_WITH_INDEX = auto()
SCAN = auto()
SORT = auto()
TUPLE_REDUCTION = auto()
PREFER_STORE_LOOP_ORDER = auto()
TRITON_TEMPLATES = auto()
REDUCE_TO_SINGLE_ELEMENT = auto()
def get_backend_features(
device: Union[torch.device, str, None]
) -> OrderedSet[BackendFeature]:
if device is None:
return OrderedSet()
init_backend_registration()
if isinstance(device, torch.device):
device_type = device.type
else:
assert isinstance(device, str)
device_type = device
device = torch.device(device_type)
scheduling_ctor = get_scheduling_for_device(device_type)
assert scheduling_ctor
scheduling = scheduling_ctor(None)
return scheduling.get_backend_features(device)
def has_backend_feature(
device: Union[torch.device, str, None], feature: BackendFeature
) -> bool:
"""See also V.graph.has_feature"""
assert isinstance(feature, BackendFeature)
return feature in get_backend_features(device)
def get_scheduling_for_device(device: str) -> Optional[SchedulingConstructor]:
return device_codegens[device].scheduling if device in device_codegens else None
def get_wrapper_codegen_for_device(
device: str, cpp_wrapper: bool = False
) -> Optional[WrapperConstructor]:
if device in device_codegens:
wrapper_codegen_obj: DeviceCodegen = device_codegens[device]
return (
wrapper_codegen_obj.cpp_wrapper_codegen
if cpp_wrapper
else wrapper_codegen_obj.wrapper_codegen
)
return None
@functools.lru_cache(None)
def init_backend_registration() -> None:
from .cpp import CppScheduling
from .cpp_wrapper_cpu import CppWrapperCpu
from .cpp_wrapper_cpu_array_ref import CppWrapperCpuArrayRef
from .cpp_wrapper_gpu import CppWrapperGpu
from .cuda_combined_scheduling import CUDACombinedScheduling
from .halide import HalideScheduling
from .mps import MetalScheduling
from .triton import TritonScheduling
from .wrapper import PythonWrapperCodegen
if get_scheduling_for_device("cpu") is None:
cpu_backends = {
"cpp": CppScheduling,
"halide": HalideScheduling,
"triton": TritonScheduling,
}
register_backend_for_device(
"cpu",
lambda scheduling: cpu_backends[config.cpu_backend](scheduling),
PythonWrapperCodegen,
CppWrapperCpuArrayRef
if config.aot_inductor.allow_stack_allocation
else CppWrapperCpu,
)
if get_scheduling_for_device("cuda") is None:
# CUDACombinedScheduling combines Triton and CUDA C++ scheduling for CUDA devices via delegation
cuda_backends = {
"triton": CUDACombinedScheduling,
"halide": HalideScheduling,
}
register_backend_for_device(
"cuda",
lambda scheduling: cuda_backends[config.cuda_backend](scheduling),
PythonWrapperCodegen,
CppWrapperGpu,
)
if get_scheduling_for_device("xpu") is None:
register_backend_for_device(
"xpu",
TritonScheduling,
PythonWrapperCodegen,
CppWrapperGpu,
)
if get_scheduling_for_device("mps") is None:
register_backend_for_device(
"mps",
MetalScheduling,
PythonWrapperCodegen,
CppWrapperGpu,
)
private_backend = torch._C._get_privateuse1_backend_name()
if (
private_backend != "privateuseone"
and get_scheduling_for_device(private_backend) is None
):
from torch.utils.backend_registration import _get_custom_mod_func
try:
device_scheduling = _get_custom_mod_func("Scheduling")
wrapper_codegen = _get_custom_mod_func("PythonWrapperCodegen")
cpp_wrapper_codegen = _get_custom_mod_func("CppWrapperCodegen")
if device_scheduling and wrapper_codegen and cpp_wrapper_codegen:
register_backend_for_device(
private_backend,
device_scheduling,
wrapper_codegen,
cpp_wrapper_codegen,
)
except RuntimeError:
pass
def index_prevent_reordering(
index: list[sympy.Expr], index_vars, sizes
) -> list[sympy.Expr]:
from ..ir import FlexibleLayout
# added contiguous index prevents reordering
return [*index, sympy_dot(index_vars, FlexibleLayout.contiguous_strides(sizes))]
def register_device_op_overrides(
device: str, device_op_overrides: DeviceOpOverrides
) -> None:
device_op_overrides_dict[device] = device_op_overrides
def get_device_op_overrides(device: str) -> DeviceOpOverrides:
assert isinstance(device, str)
if not device_op_overrides_dict:
from . import cpu_device_op_overrides, mps_device_op_overrides # noqa: F401
from .cuda import device_op_overrides # noqa: F401
from .xpu import device_op_overrides as xpu_op_overrides # noqa: F401
return device_op_overrides_dict[device]
DTYPE_TO_COMPUTATION_DTYPE: dict[torch.dtype, torch.dtype] = {
torch.bfloat16: torch.float,
torch.float16: torch.float,
**{
dtype: dtype
for dtype in [
torch.bool,
torch.float32,
torch.float64,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.uint8,
torch.uint16,
torch.uint32,
torch.uint64,
]
},
}
def deduce_output_dtype_by_name(
op_name: str,
*args: Any,
**kwargs: Any,
) -> Optional[torch.dtype]:
"""
Given op name and a list of input dtypes, deduce the output dtype
"""
if op_name in boolean_ops():
return torch.bool
elif op_name in (
"to_dtype",
"index_expr",
):
return kwargs["dtype"] if "dtype" in kwargs else args[-1]
elif op_name in (
"rand",
"randn",
):
return torch.float
elif op_name in (
"get_index",
"randint64",
"load_seed",
):
return torch.int64
elif op_name == "reduction":
return kwargs["dtype"] if "dtype" in kwargs else args[1]
elif op_name == "constant":
dtype = kwargs["dtype"] if "dtype" in kwargs else args[-1]
return DTYPE_TO_COMPUTATION_DTYPE[dtype] # type: ignore[index]
elif op_name in (
"load",
"store",
"store_reduction",
):
buf_name = args[1]
return V.graph.get_dtype(buf_name) # type: ignore[arg-type]
elif op_name == "to_dtype_bitcast":
return kwargs["dtype"] if "dtype" in kwargs else args[-2]
return None
class DataTypePropagation:
def __init__(self, body: LoopBody) -> None:
self.body = body
self.graphs: dict[Union[Callable[..., Any], str], Any] = {
"root": body.root_block.graph
}
for k, v in body.subblocks.items():
self.graphs[k] = v.graph
def deduce_node_dtype_by_inputs(self, node: torch.fx.Node) -> Optional[torch.dtype]:
inputs = node.all_input_nodes
input_nodes = [
n for n in inputs if isinstance(n, torch.fx.Node) and n.op != "placeholder"
]
if len(input_nodes) == 0:
return None
all_input_nodes_propagated = all(
OptimizationContext.key in n.meta
and n.meta[OptimizationContext.key].dtype is not None
for n in input_nodes
)
if not all_input_nodes_propagated:
return None
return functools.reduce(
torch.promote_types,
[n.meta[OptimizationContext.key].dtype for n in input_nodes],
)
def deduce_node_dtype_by_subgraph(self, node: torch.fx.Node) -> torch.dtype:
sub_graph = self.graphs[node.target]
dtype = self.propagate_graph(sub_graph)
assert dtype
return dtype
def deduce_node_dtype(self, node: torch.fx.Node) -> Optional[torch.dtype]:
if node.op == "placeholder":
return None
if node.target == "output" and len(node.args) != 1:
# we can infer output node if it only have 1 arg
return None
if node.target == operator.getitem:
return self.deduce_node_dtype(node.args[0]) # type: ignore[arg-type]
assert isinstance(node.target, str)
if node.target.startswith("masked_subblock"):
return self.deduce_node_dtype_by_subgraph(node)
if (
output_dtype := deduce_output_dtype_by_name(
node.target,
*node.args,
**node.kwargs,
)
) is not None:
return output_dtype
return self.deduce_node_dtype_by_inputs(node)
def propagate_graph(self, graph: torch.fx.Graph) -> Optional[torch.dtype]:
assert graph.nodes
graph_dtype: Optional[torch.dtype] = None
# For masked_subblock, we use output's dtype to represent
# the dtype of this subgraph. For other cases, graph_dtype
# might be None
for node in graph.nodes:
if OptimizationContext.key in node.meta:
opt_ctx = node.meta[OptimizationContext.key]
else:
opt_ctx = OptimizationContext()
opt_ctx.dtype = self.deduce_node_dtype(node)
node.meta[OptimizationContext.key] = opt_ctx
if node.target == "output":
graph_dtype = opt_ctx.dtype
return graph_dtype
def propagate(self) -> Optional[torch.dtype]:
return self.propagate_graph(self.graphs["root"])
@classmethod
def propagate_loopbody(cls, body) -> Optional[torch.dtype]:
return cls(body).propagate()
@classmethod
def propagate_scheduler_node(cls, node) -> Optional[torch.dtype]:
from ..loop_body import LoopBody
from ..scheduler import SchedulerNode
assert isinstance(node, SchedulerNode)
assert isinstance(node._body, LoopBody)
return DataTypePropagation.propagate_loopbody(node._body)
class PythonPrinter(_PythonPrinter):
def doprint(
self, expr: sympy.Expr, *, simplify: bool = True, p: bool = True
) -> str:
# TODO: why are people passing strings to the printer here :think:
if simplify and isinstance(expr, sympy.Expr) and hasattr(V.graph, "sizevars"):
expr = V.graph.sizevars.simplify(expr)
return super().doprint(expr)
class OpDecompositions:
"""
Decomposes inductor ops
"""
@staticmethod
def identity(value: OpVarT) -> OpVarT:
# used to trigger cse
return value
@staticmethod
def reciprocal(x: OpVarT) -> OpVarT:
return ops.truediv(ops.constant(1, torch.int32), x)
@staticmethod
def square(x: OpVarT) -> OpVarT:
return ops.mul(x, x)
@staticmethod
def erfc(x: OpVarT):
return ops.sub(ops.constant(1, torch.float32), ops.erf(x))
@staticmethod
def erfcx(x: OpVarT) -> OpVarT:
return ops.mul(ops.exp(ops.square(x)), ops.erfc(x))
@staticmethod
def expm1(x: OpVarT) -> OpVarT:
return ops.sub(ops.exp(x), ops.constant(1, torch.float32))
@staticmethod
def log10(x: OpVarT) -> OpVarT:
return ops.mul(ops.log(x), ops.constant(1 / math.log(10), torch.float32))
@staticmethod
def log2(x: OpVarT) -> OpVarT:
return ops.mul(ops.log(x), ops.constant(1 / math.log(2), torch.float32))
@staticmethod
def exp2(x: OpVarT) -> OpVarT:
return ops.exp(ops.mul(x, ops.constant(math.log(2), torch.float32)))
@staticmethod
def log1p(x: OpVarT) -> OpVarT:
return ops.log(ops.add(x, ops.constant(1, torch.int32)))
@staticmethod
def sigmoid(x: OpVarT) -> OpVarT:
one = ops.constant(1, torch.int32)
return ops.truediv(one, ops.add(one, ops.exp(ops.neg(x))))
@staticmethod
def relu(x: OpVarT) -> OpVarT:
return ops.maximum(x, ops.constant(0, torch.int32))
@staticmethod
def fma(x: OpVarT, y: OpVarT, z: OpVarT) -> OpVarT:
# for backends that don't override this (halide)
return ops.add(ops.mul(x, y), z)
@staticmethod
def floor_to_int(a: OpVarT, dtype: torch.dtype) -> OpVarT:
return ops.to_dtype(ops.floor(a), dtype)
@staticmethod
def ceil_to_int(a: OpVarT, dtype: torch.dtype) -> OpVarT:
return ops.to_dtype(ops.ceil(a), dtype)
@staticmethod
def trunc_to_int(a: OpVarT, dtype: torch.dtype) -> OpVarT:
return ops.to_dtype(ops.trunc(a), dtype)
@staticmethod
def remainder(a: OpVarT, b: OpVarT) -> OpVarT:
r = ops.mod(a, b)
cond = ops.and_(
ops.ne(r, ops.constant(0, torch.int32)),
ops.ne(ops.signbit(r), ops.signbit(b)),
)
return ops.where(cond, ops.add(r, b), r)
@staticmethod
def round_to_int(a: OpVarT, dtype: torch.dtype) -> OpVarT:
return ops.to_dtype(ops.round(a), dtype)
_RE_PAREN_NOT_NEEDED = re.compile(r"[a-z0-9_.]+|\([^)]*\)|", flags=re.IGNORECASE)
def _all_in_parens(string: str) -> bool:
if string[0] != "(" or len(string) < 2:
return False
count = 1
for i, char in enumerate(string[1:]):
if char == "(":
count += 1
elif char == ")":
count -= 1
if count == 0 and i != len(string) - 2:
return False
assert count == 0
return True
class OpOverrides(OpDecompositions):
def __init__(self, parent):
super().__init__()
self._parent = parent
@staticmethod
def paren(string: OpVarT) -> OpVarT:
if (
isinstance(string, CSEVariable)
or _RE_PAREN_NOT_NEEDED.fullmatch(string)
or _all_in_parens(string)
):
# don't put extra parens for strings that are already wrapped in parens
return string
return f"({string})"
def __getattr__(self, item: str) -> Callable[..., Any]:
return getattr(self._parent, item)
@staticmethod
def constant(value: Union[bool, float, int], dtype: torch.dtype) -> OpVarT:
return repr(value)
@staticmethod
def libdevice_sigmoid(x: OpVarT) -> OpVarT:
one = ops.constant(1, torch.int32)
return ops.truediv(one, ops.add(one, ops.libdevice_exp(ops.neg(x))))
@staticmethod
def libdevice_abs(x: OpVarT) -> OpVarT:
return ops.abs(x)
@staticmethod
def libdevice_sqrt(x: OpVarT) -> OpVarT:
return ops.sqrt(x)
@staticmethod
def libdevice_cos(x: OpVarT) -> OpVarT:
return ops.cos(x)
@staticmethod
def libdevice_sin(x: OpVarT) -> OpVarT:
return ops.sin(x)
@staticmethod
def libdevice_log(x: OpVarT) -> OpVarT:
return ops.log(x)
@staticmethod
def libdevice_exp(x: OpVarT) -> OpVarT:
return ops.exp(x)
@staticmethod
def bitwise_not(x: OpVarT) -> OpVarT:
return f"~{OpOverrides.paren(x)}"
@staticmethod
def logical_not(a: OpVarT) -> OpVarT:
return f"{OpOverrides.paren(a)} == 0"
@staticmethod
def bitwise_and(x: OpVarT, y: OpVarT) -> OpVarT:
return f"{OpOverrides.paren(x)} & {OpOverrides.paren(y)}"
@staticmethod
def bitwise_or(x: OpVarT, y: OpVarT) -> OpVarT:
return f"{OpOverrides.paren(x)} | {OpOverrides.paren(y)}"
@staticmethod
def bitwise_xor(x: OpVarT, y: OpVarT) -> OpVarT:
return f"{OpOverrides.paren(x)} ^ {OpOverrides.paren(y)}"
@staticmethod
def bitwise_left_shift(x: OpVarT, y: OpVarT) -> OpVarT:
return f"{OpOverrides.paren(x)} << {OpOverrides.paren(y)}"
@staticmethod
def bitwise_right_shift(x: OpVarT, y: OpVarT) -> OpVarT:
return f"{OpOverrides.paren(x)} >> {OpOverrides.paren(y)}"
@staticmethod
def int_truediv(a: OpVarT, b: OpVarT) -> OpVarT:
# TODO: this is wrong
# TODO: an easy bandaid is to generate runtime asserts that it's
# <= 2**53, which is when this equation is correct
return ops.truediv(a, b)
@staticmethod
def load_seed(name: str, offset: OpVarT) -> OpVarT:
return ops.load(name, sympy.Integer(offset))
@classmethod
def _initialize_pointwise_overrides(cls, target: str) -> None:
assert target in ("triton", "cpp", "cppvec"), target
for funcname, data in pointwise_overrides_data.items():
impl = getattr(data, target)
if impl is None:
continue
setattr(cls, funcname, staticmethod(impl))
@dataclasses.dataclass
class OverridesData:
name: str
cpp: Callable[..., str]
# None when not impl in libdevice/triton
triton: Optional[Callable[..., str]] = None
# None when not impl in aten/.../vec
cppvec: Optional[Callable[..., str]] = None
type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND = (
ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
)
# NB: if you add a new special function, don't forget to update
# torch._inductor.ops_handler too
pointwise_overrides_data: dict[str, OverridesData] = dict(
airy_ai=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"airy_ai_forward({x})",
name="special_airy_ai",
),
bessel_j0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"bessel_j0_forward({x})",
triton=lambda x: f"libdevice.j0({x})",
name="special_bessel_j0",
),
bessel_j1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"bessel_j1_forward({x})",
triton=lambda x: f"libdevice.j1({x})",
name="special_bessel_j1",
),
bessel_y0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"bessel_y0_forward({x})",
triton=lambda x: f"libdevice.y0({x})",
name="special_bessel_y0",
),
bessel_y1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"bessel_y1_forward({x})",
triton=lambda x: f"libdevice.y1({x})",
name="special_bessel_y1",
),
digamma=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_digamma({x})",
cppvec=lambda x: f"{x}.digamma()",
name="digamma",
),
# no cpp nor triton implementation for entr, it is defined as decomposition
# erf, erfc
erfcx=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_erfcx({x})",
triton=lambda x: f"libdevice.erfcx({x})",
name="special_erfcx",
),
fma=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y, z: f"std::fma({x}, {y}, {z})",
cppvec=lambda x, y, z: f"fmadd({x}, {y}, {z})",
triton=lambda x, y, z: f"libdevice.fma({x}, {y}, {z})",
name="fma",
),
# erfinv, exp2, expit, gammaln
igamma=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_igamma({x}, {y})",
name="igamma",
),
igammac=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_igammac({x}, {y})",
name="igammac",
),
gammainc=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_igamma({x}, {y})",
name="special_gammainc",
),
gammaincc=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"calc_igammac({x}, {y})",
name="special_gammaincc",
),
i0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_i0({x})",
triton=lambda x: f"libdevice.cyl_bessel_i0({x})",
cppvec=lambda x: f"{x}.i0()",
name="i0",
),
i0e=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_i0e({x})",
cppvec=lambda x: f"{x}.i0e()",
name="special_i0e",
),
i1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_i1({x})",
triton=lambda x: f"libdevice.cyl_bessel_i1({x})",
name="special_i1",
),
i1e=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_i1e({x})",
name="special_i1e",
),
log_ndtr=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_log_ndtr({x})",
name="special_log_ndtr",
),
# logit
modified_bessel_i0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"modified_bessel_i0_forward({x})",
triton=lambda x: f"libdevice.cyl_bessel_i0({x})",
name="special_modified_bessel_i0",
),
modified_bessel_i1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"modified_bessel_i1_forward({x})",
triton=lambda x: f"libdevice.cyl_bessel_i1({x})",
name="special_modified_bessel_i1",
),
modified_bessel_k0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"modified_bessel_k0_forward({x})",
name="special_modified_bessel_k0",
),
modified_bessel_k1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"modified_bessel_k1_forward({x})",
name="special_modified_bessel_k1",
),
# multigamma
ndtr=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_ndtr({x})",
name="special_ndtr",
),
ndtri=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"calc_ndtri({x})",
name="special_ndtri",
),
polygamma=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"{x} == 0 ? calc_digamma({y}) : calc_polygamma({y}, {x})",
name="polygamma",
),
# psi - alias to digamma
# round
scaled_modified_bessel_k0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"scaled_modified_bessel_k0_forward({x})",
name="special_scaled_modified_bessel_k0",
),
scaled_modified_bessel_k1=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"scaled_modified_bessel_k1_forward({x})",
name="special_scaled_modified_bessel_k1",
),
# sinc
spherical_bessel_j0=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x: f"spherical_bessel_j0_forward({x})",
name="special_spherical_bessel_j0",
),
zeta=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"zeta({x}, {y})",
name="special_zeta",
),
chebyshev_polynomial_t=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"chebyshev_polynomial_t_forward({x}, {y})",
name="special_chebyshev_polynomial_t",
),
chebyshev_polynomial_u=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"chebyshev_polynomial_u_forward({x}, {y})",
name="special_chebyshev_polynomial_u",
),
chebyshev_polynomial_v=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"chebyshev_polynomial_v_forward({x}, {y})",
name="special_chebyshev_polynomial_v",
),
chebyshev_polynomial_w=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"chebyshev_polynomial_w_forward({x}, {y})",
name="special_chebyshev_polynomial_w",
),
legendre_polynomial_p=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"legendre_polynomial_p_forward({x}, {y})",
name="special_legendre_polynomial_p",
),
shifted_chebyshev_polynomial_t=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"shifted_chebyshev_polynomial_t_forward({x}, {y})",
name="special_shifted_chebyshev_polynomial_t",
),
shifted_chebyshev_polynomial_u=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"shifted_chebyshev_polynomial_u_forward({x}, {y})",
name="special_shifted_chebyshev_polynomial_u",
),
shifted_chebyshev_polynomial_v=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"shifted_chebyshev_polynomial_v_forward({x}, {y})",
name="special_shifted_chebyshev_polynomial_v",
),
shifted_chebyshev_polynomial_w=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"shifted_chebyshev_polynomial_w_forward({x}, {y})",
name="special_shifted_chebyshev_polynomial_w",
),
hermite_polynomial_h=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"hermite_polynomial_h_forward({x}, {y})",
name="special_hermite_polynomial_h",
),
hermite_polynomial_he=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"hermite_polynomial_he_forward({x}, {y})",
name="special_hermite_polynomial_he",
),
laguerre_polynomial_l=OverridesData(
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
cpp=lambda x, y: f"laguerre_polynomial_l_forward({x}, {y})",
name="special_laguerre_polynomial_l",
),
)
# Use mypy to check protocol implemented correctly
def _typecheck_OpOverrides(h: OpOverrides) -> OpsHandler[OpVarT]:
return h
class DeferredLine(DeferredLineBase):
"""A line that can be 'unwritten' by adding name to V.graph.removed_buffers"""
def __init__(self, name, line):
super().__init__(line)
self.name = name
assert not isinstance(line, DeferredLineBase)
def __call__(self):
if all(
self.name not in x
for x in (
V.graph.removed_buffers,
V.kernel.removed_buffers,
V.graph.inplaced_to_remove,
V.kernel.inplaced_to_remove,
)
):
return self.line
return None
def _new_line(self, line):
return DeferredLine(self.name, line)
class BracesBuffer(IndentedBuffer):
def indent(self, offset=1) -> contextlib.AbstractContextManager[None]:
@contextlib.contextmanager
def ctx():
for _ in range(offset):
self.writeline("{")
self._indent += 1
for _ in range(-offset):
self._indent -= 1
self.writeline("}")
yield
for _ in range(-offset):
self.writeline("{")
self._indent += 1
for _ in range(offset):
self._indent -= 1
self.writeline("}")
return ctx()
class InplacedBuffer(NamedTuple):
inner_name: str
other_names: list[str]
@dataclasses.dataclass
class ArgName:
name: str
# is_constexpr=True is used to attach a " : tl.constexpr" into the argument list
is_constexpr: bool = False
def full_name(self):
return f"{self.name}{' : tl.constexpr' if self.is_constexpr else ''}"
class KernelArgs:
@staticmethod
def _lookup(prefix: str, odict: dict[SymbolLike, str], name: SymbolLike) -> str:
assert isinstance(name, (str, sympy.Symbol))
if name not in odict:
odict[name] = f"{prefix}{len(odict)}"
return odict[name]
def __init__(self, sizevars=None):
self.input_buffers = {}
self.output_buffers = {}
self.inplace_buffers = {}
self.sizevars = sizevars or {}
self.workspace_args = []
def __repr__(self) -> str:
return "KernelArgs({})".format(
", ".join(
map(
repr,
[
self.input_buffers,
self.output_buffers,
self.inplace_buffers,
self.sizevars,
],
)
)
)
def _buffer_is_marked_removed(self, name):
return isinstance(name, str) and name.startswith("REMOVED")
def input(self, name):
if V.graph.scheduler:
name = V.graph.scheduler.mutation_real_name.get(name, name)
assert name not in V.graph.removed_buffers, name
if name in self.output_buffers:
return self.output_buffers[name]
if name in self.inplace_buffers:
return self.inplace_buffers[name].inner_name
if name.startswith("seed"):
return self._lookup("seed", self.input_buffers, name)
return self._lookup("in_ptr", self.input_buffers, name)
def output(self, name):
if V.graph.scheduler:
name = V.graph.scheduler.mutation_real_name.get(name, name)
assert name not in V.graph.removed_buffers, name
if name in self.inplace_buffers:
return self.inplace_buffers[name].inner_name
return self._lookup("out_ptr", self.output_buffers, name)
def make_inplace(self, input_name, output_name):
assert output_name not in self.inplace_buffers
if input_name in self.inplace_buffers:
buf = self.inplace_buffers[input_name]
buf.other_names.append(output_name)
self.inplace_buffers[output_name] = buf
else:
buf = InplacedBuffer(
f"in_out_ptr{len(unique(self.inplace_buffers.values()))}",
[input_name, output_name],
)
self.inplace_buffers[input_name] = buf
self.inplace_buffers[output_name] = buf
def workspace(self, nbytes: sympy.Expr, zero_fill: bool) -> tuple[str, int]:
"""
Allocate or extend a workspace buffer of nbytes bytes.
This function manages the allocation of a workspace buffer. It either creates
a new WorkspaceArg or extends an existing one.
Note:
- Calling this function will in-place mutate the args by adding or updating
a WorkspaceArg.
- The codegen for generating the Python argdefs and call_defs will check
this field and allocate the buffer accordingly.
- A new argument "ws_ptr" will be present in the generated code.
Args:
nbytes (sympy.Expr): The number of bytes to allocate.
zero_fill (bool): Whether to initialize the buffer to zero.
Returns:
Tuple[str, int]: A tuple containing:
- "ws_ptr": A string identifier for the workspace pointer.
- offset: An integer representing the byte offset in the workspace.
"""
arg = WorkspaceArg(
count=nbytes,
zero_mode=WorkspaceZeroMode.from_bool(zero_fill),
device=V.graph.get_current_device_or_throw(),
outer_name=WorkspaceArg.unique_name(),
)
for i, existing_arg in enumerate(self.workspace_args):
if WorkspaceArg.can_join(existing_arg, arg):
offset = existing_arg.count
self.workspace_args[i] = WorkspaceArg.join(existing_arg, arg)
return existing_arg.inner_name, offset
assert (
existing_arg.inner_name != arg.inner_name
and existing_arg.outer_name != arg.outer_name
)
self.workspace_args.append(arg)
return arg.inner_name, 0
def semaphores(self, min_size: sympy.Expr) -> str:
"""
Lazily allocate a graph-wide semaphores buffer with at least min_size. This is a single buffer shared by
all kernels and zero initialized once at graph start. Each kernel must leave the buffer zeroed on exit.
Warning: multiple calls to this function will return the same buffer.
Args:
min_size: the number of int32 semaphores required
Returns:
name of the semaphores buffer
"""
current_device = V.graph.get_current_device_or_throw()
arg = WorkspaceArg(
count=min_size,
zero_mode=WorkspaceZeroMode.ZERO_PER_GRAPH,
dtype=torch.uint32,
inner_name="sem_ptr",
outer_name=f"semaphores_{current_device.type}_{current_device.index}",
device=current_device,
)
for existing_arg in self.workspace_args:
if existing_arg.inner_name == arg.inner_name:
assert arg == existing_arg
self.workspace_args.append(arg)
return arg.inner_name
def seed_offset(self, name, value):
if value in self.sizevars:
return self.sizevars[value]
if name in self.sizevars.values():
name = (
f"{name}{sum(1 for v in self.sizevars.values() if v.startswith(name))}"
)
self.sizevars[value] = name
return name
def size(self, name):
if str(name) == "seed":
self.sizevars["seed"] = "seed"
return "seed"
return self._lookup("ks", self.sizevars, name)
def call_names(self):
return chain(
self.input_buffers.keys(), self.output_buffers.keys(), self.sizevars.keys()
)
def wrap_ptr_arg(self, buf, dtype):
return buf
def wrap_size_arg(self, size):
return str(size)
def cpp_argdefs(self):
from .cpp_utils import DTYPE_TO_CPP, INDEX_TYPE
call_args = []
arg_defs = []
arg_types = []
for inplaced in unique(self.inplace_buffers.values()):
if self._buffer_is_marked_removed(inplaced):
continue
outer = inplaced.other_names[-1]
inner = inplaced.inner_name
dtype = V.graph.get_dtype(outer)
cpp_dtype = DTYPE_TO_CPP[dtype]
arg_defs.append(f"{cpp_dtype}* {inner}")
call_args.append(self.wrap_ptr_arg(outer, dtype))
arg_types.append(f"{cpp_dtype}*")
for outer, inner in self.input_buffers.items():
if outer in self.inplace_buffers:
continue
dtype = V.graph.get_dtype(outer)
cpp_dtype = DTYPE_TO_CPP[dtype]
arg_defs.append(f"const {cpp_dtype}* {inner}")
call_args.append(self.wrap_ptr_arg(outer, dtype))
arg_types.append(f"const {cpp_dtype}*")
for outer, inner in self.output_buffers.items():
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
continue
dtype = V.graph.get_dtype(outer)
cpp_dtype = DTYPE_TO_CPP[dtype]
arg_defs.append(f"{cpp_dtype}* {inner}")
call_args.append(self.wrap_ptr_arg(outer, dtype))
arg_types.append(f"{cpp_dtype}*")
for outer, inner in self.sizevars.items():
arg_defs.append(f"const {INDEX_TYPE} {inner}")
call_args.append(self.wrap_size_arg(outer))
arg_types.append(f"const {INDEX_TYPE}")
if V.graph.wrapper_code:
V.graph.wrapper_code.ensure_size_computed(outer)
assert not self.workspace_args, "Workspace not supported on CPU "
return arg_defs, call_args, arg_types
def python_argdefs(
self,
) -> tuple[list[ArgName], list[str], list[KernelArgType], list[torch.dtype]]:
arg_defs: list[ArgName] = []
call_args: list[str] = []
arg_types: list[torch.dtype] = []
precompile_args: list[KernelArgType] = []
for inplaced in unique(self.inplace_buffers.values()):
if self._buffer_is_marked_removed(inplaced):
continue
arg_defs.append(ArgName(inplaced.inner_name))
call_args.append(inplaced.other_names[-1])
arg_types.append(V.graph.get_dtype(inplaced.other_names[-1]))
precompile_args.append(
TensorArg(
name=inplaced.inner_name,
buffer=inplaced.other_names[-1],
dtype=V.graph.get_dtype(inplaced.other_names[-1]),
)
)
for outer, inner in chain(
self.input_buffers.items(), self.output_buffers.items()
):
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
continue
arg_defs.append(ArgName(inner))
call_args.append(outer)
arg_types.append(V.graph.get_dtype(outer))
precompile_args.append(
TensorArg(
name=inner,
buffer=outer,
dtype=V.graph.get_dtype(outer),
)
)
for outer, inner in self.sizevars.items():
arg_defs.append(ArgName(inner))
call_args.append(outer)
arg_types.append(type(outer)) # type: ignore[arg-type]
precompile_args.append(SizeArg(inner, outer))
if V.graph.wrapper_code:
V.graph.wrapper_code.ensure_size_computed(outer)
for arg in self.workspace_args:
arg_defs.append(ArgName(arg.inner_name))
call_args.append(arg.outer_name)
precompile_args.append(arg)
arg_types.append(arg.dtype)
return arg_defs, call_args, precompile_args, arg_types
def aliases(self):
for inplaced in unique(self.inplace_buffers.values()):
if self._buffer_is_marked_removed(inplaced):
continue
for other in inplaced.other_names:
if (
other in V.graph.inplaced_to_remove
or other in V.kernel.inplaced_to_remove
):
continue
if other in self.input_buffers:
yield self.input_buffers[other], inplaced.inner_name
if other in self.output_buffers:
yield self.output_buffers[other], inplaced.inner_name
def is_removed(self, name):
def _is_removed(name, buffers):
return name not in buffers or self._buffer_is_marked_removed(buffers[name])
return _is_removed(name, self.output_buffers) and _is_removed(
name, self.inplace_buffers
)
# Includes inplace buffers, excludes removed buffers. Essentially,
# after you do a call into this kernel, which buffers actually contain
# updated data? Modeled off of python_argdefs.
def live_output_buffers(self):
live_outs = OrderedSet() # type: ignore[var-annotated]
for inplaced in unique(self.inplace_buffers.values()):
if self._buffer_is_marked_removed(inplaced):
continue
live_outs.add(inplaced.other_names[-1])
for outer, inner in self.output_buffers.items():
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
continue
live_outs.add(outer)
return live_outs
class CSEVariable:
"""A CSEVariable is just a name for an expression but it is useful to be able to annotate them on a backend dependent basis.
To do so, the backends can simply overload `Kernel.create_cse_var`
The "CSEVariable.update_on_args" method gives you a hook for annotations
See example of TritonCSEVariable in triton.py
"""
def __init__(
self,
name,
bounds: ValueRanges[Any],
dtype: Optional[torch.dtype] = None,
):
assert isinstance(bounds, ValueRanges)
self.name = name
self.bounds = bounds
self.use_count = 1 # track how many times this expression is used
self.dtype = dtype
def __str__(self):
return self.name
def __hash__(self) -> int:
return hash(self.name)
def __eq__(self, other) -> bool:
return type(other) == type(self) and other.name == self.name
def update_on_args(self, name, args, kwargs):
pass
def __repr__(self):
return f"{self.__class__.__name__}({self.name!r})"
class CppWrapperKernelArgs(KernelArgs):
def wrap_size_arg(self, size):
return f"{size}"
class CSE:
"""Common subexpression elimination"""
def __init__(
self,
prefix="",
suffix="",
name_prefix="tmp",
iter_buffers=None,
store_cache=None,
reduction_cache=None,
varname_map=None,
):
self.prefix = prefix
self.suffix = suffix
self._cache = {}
self.name_prefix = name_prefix
self.store_cache = store_cache or {}
self.reduction_cache = reduction_cache or {}
self.iter_buffer_ids = iter_buffers or itertools.count()
self.invalidated_stores = OrderedSet[str]()
self.varname_map = varname_map or {}
def invalidate(self, keep_vars: Union[OrderedSet[str], OrderedSet[Never]]):
for name, tmp in list(self.store_cache.items()):
if tmp not in keep_vars:
del self.store_cache[name]
self.invalidated_stores.add(name)
self._cache = {k: v for k, v in self._cache.items() if v in keep_vars}
def clone(self):
# Note(fdrocha): reduction_cache is not being cloned, not sure if this is intentional
return type(self)(
prefix=self.prefix,
suffix=self.suffix,
name_prefix=self.name_prefix,
iter_buffers=self.iter_buffer_ids,
store_cache=self.store_cache,
varname_map=self.varname_map,
)
def augment_key(self, cache_key: object) -> object:
"Override this method to augment cache key with backend specifics"
return cache_key
def put(self, cache_key: object, val: CSEVariable) -> None:
self._cache[self.augment_key(cache_key)] = val
def contains(self, cache_key) -> bool:
return self.augment_key(cache_key) in self._cache
def try_get(self, cache_key: object) -> Optional[CSEVariable]:
return self._cache.get(self.augment_key(cache_key), None)
def get(self, cache_key: object) -> CSEVariable:
return self._cache[self.augment_key(cache_key)]
def generate(
self,
buffer: IndentedBuffer,
expr: Union[str, CSEVariable, OpsValue, IndentedBuffer, DeferredLineBase],
*,
bounds: ValueRanges[Any] = ValueRanges.unknown(),
write=True,
assignment=True,
dtype: Optional[torch.dtype] = None,
) -> CSEVariable:
if isinstance(expr, OpsValue):
expr = expr.value
assert write or assignment
if isinstance(expr, CSEVariable):
# If the expressions were always created with all the information, we could
# assert expr.bounds == bounds, but sometimes the expression is created
# with the loose ValueRanges.unknown(), so we need to tighten the bounds
expr.bounds = expr.bounds.tighten(bounds)
expr.use_count += 1
return expr
elif isinstance(expr, IndentedBuffer):
cache_key = expr.getvalue()
elif isinstance(expr, DeferredLineBase):
cache_key = expr.line
else:
assert isinstance(expr, str)
cache_key = expr
var = self.try_get(cache_key)
if not var:
var = self.newvar(bounds, dtype)
self.put(cache_key, var)
if write:
if V.kernel.current_node:
V.kernel.current_node.codegen_originating_info(
buffer, only_once=True
)
if isinstance(expr, IndentedBuffer):
if assignment:
buffer.writeline(f"{self.prefix}{var} =")
buffer.splice(expr)
buffer.writeline(self.suffix)
elif isinstance(expr, DeferredLineBase):
assert assignment
buffer.writeline(
expr._new_line(f"{self.prefix}{var} = {expr.line}{self.suffix}")
)
else:
if assignment:
line = f"{self.prefix}{var} = {expr}{self.suffix}"
else:
line = f"{expr}{self.suffix}"
buffer.writeline(line)
else:
var.bounds = var.bounds.tighten(bounds)
var.use_count += 1
return var
def newvar(
self,
bounds: ValueRanges[Any] = ValueRanges.unknown(),
dtype: Optional[torch.dtype] = None,
) -> CSEVariable:
var_name = f"{self.name_prefix}{next(self.iter_buffer_ids)}"
var = V.kernel.create_cse_var(var_name, bounds, dtype)
self.varname_map[var_name] = var
return var
def namedvar(
self,
name: str,
bounds: ValueRanges[Any] = ValueRanges.unknown(),
dtype: Optional[torch.dtype] = None,
) -> CSEVariable:
torch._check_value(
name not in self.varname_map, lambda: f"duplicate name: {name}"
)
var = V.kernel.create_cse_var(name, bounds, dtype)
self.varname_map[name] = var
return var
class CodeGen:
def __init__(self) -> None:
super().__init__()
self.exit_stack = contextlib.ExitStack()
def __enter__(self):
self.exit_stack.__enter__()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
class ScopedDict:
def __init__(self, original_dict):
self.original_dict = original_dict
self.new_items = {}
def __getitem__(self, key):
if key in self.new_items:
return self.new_items[key]
return self.original_dict[key]
def __setitem__(self, key, value):
self.new_items[key] = value
def __contains__(self, key):
return key in self.new_items or key in self.original_dict
def get(self, key, default=None):
if key in self.new_items:
return self.new_items[key]
return self.original_dict.get(key, default)
class Kernel(CodeGen):
newvar_prefix = ""
suffix = ""
overrides: Optional[Callable[[OpsHandler[Any]], OpsHandler[Any]]] = None
# TODO: these look dead, but with all the getattr it's hard to tell...
load_format: None = None
store_format: None = None
def __init__(self, args=None, increase_kernel_count=True):
super().__init__()
if increase_kernel_count:
metrics.generated_kernel_count += 1
self.args = args or KernelArgs()
self.loads = IndentedBuffer()
self.compute = IndentedBuffer()
self.stores = IndentedBuffer()
self.num_load = 0
self.num_reduction = 0
self.cse: CSE = CSE(self.newvar_prefix, self.suffix)
self.must_keep_buffers = OrderedSet[str]()
self.store_buffer_names = OrderedSet[str]()
self._load_mask = None
self._load_other = None
# OrderedSet in set_current_node
self.current_node = None
self.node_to_bounds: Optional[dict[torch.fx.Node, ValueRanges[Any]]] = None
self.removed_buffers = OrderedSet[str]()
self.inplaced_to_remove = OrderedSet[str]()
# key: the buffer to write
# value: the buffer to read and whose memory can be reused for
# the buffer specified by key
self.inplace_update_buffers = {}
# Set minimum number of elements processed per thread.
self.min_elem_per_thread = 1
self.kernel_name = None
@contextlib.contextmanager
def set_current_node(self, node):
prior = self.current_node
self.current_node = node
self.node_to_bounds = node._body.bounds().get_bounds()
try:
yield
finally:
self.current_node = prior
@contextlib.contextmanager
def swap_buffers(self, lb, cb=None, sb=None):
def scope_cse(cse):
new_cse = cse.clone()
new_cse._cache = ScopedDict(cse._cache)
new_cse.reduction_cache = ScopedDict(cse.reduction_cache)
new_cse.store_cache = ScopedDict(cse.store_cache)
return new_cse
if cb is None:
cb = lb
loads = self.loads
compute = self.compute
stores = self.stores
cse = self.cse
self.loads = lb
self.compute = cb
self.stores = sb
self.cse = scope_cse(cse)
try:
yield
finally:
self.loads = loads
self.compute = compute
self.stores = stores
self.cse = cse
def load(self, name: str, index: sympy.Expr) -> CSEVariable:
raise NotImplementedError
def indirect_load(self, name: str, index: sympy.Expr):
"""A load the depends on an index we have read"""
prior = self.loads
try:
# put the load in the compute section as it might have deps
self.loads = self.compute
return self.load(name, index)
finally:
self.loads = prior
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable):
raise NotImplementedError
def store(
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
) -> None:
raise NotImplementedError
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, tuple[CSEVariable, ...]],
) -> Union[CSEVariable, tuple[CSEVariable, ...]]:
raise NotImplementedError
def scan(
self,
dtypes: tuple[torch.dtype, ...],
combine_fn: Callable[
[tuple[CSEVariable, ...], tuple[CSEVariable, ...]], tuple[CSEVariable, ...]
],
values: tuple[CSEVariable, ...],
) -> tuple[CSEVariable, ...]:
raise NotImplementedError
def sort(
self,
dtypes: tuple[torch.dtype, ...],
values: tuple[CSEVariable, ...],
stable: bool,
descending: bool,
) -> tuple[CSEVariable, ...]:
raise NotImplementedError
def var_ranges(self):
raise NotImplementedError
def bucketize(
self,
values: CSEVariable,
boundaries: tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: CSEVariable,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[CSEVariable] = None,
) -> CSEVariable:
"""
See [Note: Inductor bucketize op]
"""
raise NotImplementedError
@property
def assert_function(self) -> str:
raise NotImplementedError
def indirect_assert(
self,
var: Union[CSEVariable, str],
lower: Optional[str],
upper: Optional[str],
mask: Optional[Union[CSEVariable, str]] = None,
) -> str:
if isinstance(var, CSEVariable):
var = str(var)
assert isinstance(var, str)
assert lower is None or isinstance(lower, str)
assert upper is None or isinstance(upper, str)
if lower and upper:
# The conditions need to be in parens because of Python's operator precedence.
# It'd be less error-prone to use and/or/not, which is suported by triton
cond = f"({lower} <= {var}) & ({var} < {upper})"
cond_print = f"{lower} <= {var} < {upper}"
elif lower:
cond = f"{lower} <= {var}"
cond_print = cond
else:
assert upper
cond = f"{var} < {upper}"
cond_print = cond
if mask:
cond = f"({cond}) | ~({mask})"
return f'{self.assert_function}({cond}, "index out of bounds: {cond_print}")'
def check_bounds(
self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
):
raise NotImplementedError
def index_to_str(self, index: sympy.Expr) -> str:
raise NotImplementedError
def __enter__(self):
# TODO: hoist this to top level
class CSEProxy:
self.name = "CSEProxy"
vr_analysis = ValueRangeAnalysis()
@staticmethod
def __getattr__(name: str) -> Callable[..., CSEVariable]: # type: ignore[misc]
def inner(*args, **kwargs):
bounds = CSEProxy._bound_variable(name, *args, **kwargs)
value = getattr(parent_handler, name)(*args, **kwargs) # type: ignore[has-type]
dtype_handler = DtypePropagationOpsHandler()
output_idx = 0
def do_cse(v):
# cpp backend doesnt set current device - TODO: fix
if V.graph.current_device is not None:
device_str = V.graph.get_current_device_or_throw().type
triton_backend = (
config.cpu_backend == "triton"
if device_str == "cpu"
else config.cuda_backend == "triton"
if device_str != "mps"
else False
)
else:
triton_backend = False
# only triton backend tracks dtype currently
if triton_backend:
if name == "masked":
output_dtype = value.dtype
else:
output_dtype = getattr(
dtype_handler,
name,
)(*args, **kwargs)
else:
# cpp backend doesnt track dtype yet
output_dtype = None
csevar = V.kernel.cse.generate(
V.kernel.compute,
v,
bounds=bounds,
dtype=output_dtype,
)
nonlocal output_idx
if (
config.test_configs.runtime_triton_dtype_assert
and triton_backend
):
from torch._inductor.codegen.triton import triton_type
# we tree_map over the output, so we need to fetch corresponding dtype
if isinstance(output_dtype, (list, tuple)):
output_dtype = output_dtype[output_idx]
V.kernel.compute.writeline(
f"tl.static_assert({csevar}.dtype == {triton_type(output_dtype)})"
)
output_idx += 1
csevar.update_on_args(name, args, kwargs)
return csevar
return pytree.tree_map(do_cse, value)
return inner
@staticmethod
def _bound_variable(name, *args, **kwargs):
"""
If the variable comes from an FX node, we forward the bound we have already computed
Else, if the variable when codegen'ing another op, we try to compute its bounds
"""
from ..select_algorithm import TritonTemplateKernel
if isinstance(V.kernel, TritonTemplateKernel):
return ValueRanges.unknown()
fx_node = V.interpreter.current_node
if fx_node.target == name and self.node_to_bounds is not None:
assert isinstance(self.node_to_bounds, dict)
return self.node_to_bounds.get(fx_node, ValueRanges.unknown())
elif config.compute_all_bounds and hasattr(ValueRangeAnalysis, name):
# These create lots of inner strings. We would need to compute the bounds at the ops
# We will also likely not get much from computing VRs on these nodes
if any(
s in fx_node.target
for s in ("set_indirect", "reduction", "scan")
):
return ValueRanges.unknown()
# We assume that the inputs come from `ops.` and are not strings. If you want to generate
# intermediary strings, wrap them in CSE variables with properly initialised bounds.
# If there is no FX bound but we know how to compute one we do so
assert not kwargs
def arg_to_bound(x):
if isinstance(x, CSEVariable):
return x.bounds
elif isinstance(x, sympy.Expr):
return bound_sympy(x)
else:
return x
arg_bounds = list(map(arg_to_bound, args))
return getattr(CSEProxy.vr_analysis, name)(*arg_bounds)
return ValueRanges.unknown()
@staticmethod
def indirect_indexing(
var: CSEVariable,
size: Union[sympy.Expr, int],
check: bool = True,
wrap_neg=True,
):
if isinstance(size, int):
size = sympy.Integer(size)
assert isinstance(size, sympy.Expr), size
# Skip CSE since this doesn't return an expression
if var.bounds.lower < 0: # type: ignore[operator]
if wrap_neg:
stm = ops.add(var, ops.index_expr(size, torch.long))
# Mixed negative and non-negative
if var.bounds.upper >= 0: # type: ignore[operator]
lt = ops.lt(var, 0)
stm = ops.where(lt, stm, var)
else:
stm = var
# Propagate bounds as we know how to compute them properly
new_bounds = ValueRanges.unknown()
if var.bounds != ValueRanges.unknown() and isinstance(
size, sympy.Number
):
# Take the negative part of the bound and add size to it
# Then take union of that and the positive part
# This is a tighter bound than that of a generic ops.where, as we have info on the cond
neg_bounds = var.bounds & ValueRanges(-int_oo, -1)
new_bounds = ValueRanges(
neg_bounds.lower + size, neg_bounds.upper + size
)
# We don't have a good way of representing the empty range
if var.bounds.upper >= 0: # type: ignore[operator]
pos = var.bounds & ValueRanges(0, int_oo)
new_bounds = new_bounds | pos
var = self.cse.generate(self.compute, stm, bounds=new_bounds)
sympy_var = parent_handler.indirect_indexing(var, size, check)
if generate_assert(check):
assert_lower = not (var.bounds.lower >= 0)
# value ranges cannot x < s when x and s are symbols
assert_upper = not isinstance(size, sympy.Number) or not (
var.bounds.upper < size
)
self.check_bounds(sympy_var, size, assert_lower, assert_upper)
return sympy_var
@staticmethod
def check_bounds(
expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool
):
return self.check_bounds(expr, size, lower, upper)
@staticmethod
def load(name: str, index: sympy.Expr) -> CSEVariable:
if name in self.cse.invalidated_stores:
# A load from an invalidated store requires us to
# keep the actual buffer around
V.kernel.must_keep_buffers.add(name)
if free_symbol_is_type(index, SymT.TMP):
return self.indirect_load(name, index)
store_cache = self.cse.store_cache
if name in store_cache:
return store_cache[name]
out = self.load(name, index)
# count load that is not in the store_cache, and also not in the
# cse cache.
if out.use_count == 1:
self.num_load += 1
return out
@staticmethod
def _update_store_cache(name: str, value: CSEVariable):
self.cse.store_cache[name] = value
if self.current_node and name in V.graph.name_to_buffer:
buf = self.current_node.get_output(name)
for other_name in buf.get_mutations():
self.cse.store_cache[other_name] = value
@staticmethod
def store(
name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
) -> None:
self.store_buffer_names.add(name)
if mode is None:
CSEProxy._update_store_cache(name, value)
if name not in V.graph.removed_buffers:
return self.store(name, index, value, mode=mode)
return None # type: ignore[return-value]
@staticmethod
def store_reduction(name: str, index: sympy.Expr, value: CSEVariable):
self.store_buffer_names.add(name)
CSEProxy._update_store_cache(name, value)
if name not in V.graph.removed_buffers:
return self.store_reduction(name, index, value)
@staticmethod
def reduction(
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, tuple[CSEVariable, ...]],
) -> Union[CSEVariable, tuple[CSEVariable, ...]]:
self.num_reduction += 1
return self.reduction(dtype, src_dtype, reduction_type, value)
@staticmethod
def scan(
dtypes: tuple[torch.dtype, ...],
combine_fn: Callable[
[tuple[CSEVariable, ...], tuple[CSEVariable, ...]],
tuple[CSEVariable, ...],
],
values: tuple[CSEVariable, ...],
) -> tuple[CSEVariable, ...]:
return self.scan(dtypes, combine_fn, values)
@staticmethod
def sort(
dtypes: tuple[torch.dtype, ...],
values: tuple[CSEVariable, ...],
stable: bool,
descending: bool,
) -> tuple[CSEVariable, ...]:
return self.sort(dtypes, values, stable, descending)
@staticmethod
def bucketize(
values: CSEVariable,
boundaries: tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: CSEVariable,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[CSEVariable] = None,
) -> CSEVariable:
"""
[Note: Inductor bucketize op]
Inputs:
-------
values: the values to be bucketized.
boundaries: a tuple containing
(a) the name of the boundaries tensor (which must be sorted, unless
the sorting tensor is present),
(b) the length of the tensor in the last dimension (i.e. the length of
one set of boundaries),
(c) the number of elements in the underlying storage (i.e. the length
of the flattened tensor, ignoring striding), and
(d) the stride of the tensor in the last dimension.
boundary_indices: indices into a flattened version of the boundaries
tensor, of the same size and shape as "values". Each index points to
the first element in the set of boundaries to be used for the
corresponding value.
indexing_dtype: the dtype to use when indexing into the boundaries
tensor. This must be int64 or int32. This additionally specifies the
dtype of the return value.
right: see "Details" below.
sorter: an optional tuple containing
(a) the name of an optional sorting tensor, used to access unsorted
boundaries without reordering the boundaries tensor, and
(b) the stride of the tensor in the last dimension.
The values in the sorting tensor are used as indices into the *last*
dimension of the boundaries tensor, with all other indices matching.
The size of the sorting and boundaries tensors must be equivalent.
sorter_indices: must be present if the sorting array is present; see
"boundary_indices" for the equivalent definition for the boundaries
tensor.
Output:
-------
The buckets each value belongs in, within a given set of boundaries. 0
indicates a position before the first boundary, and len(boundaries_set)
represents a position after the last boundary.
Details:
--------
Given a value and a set of boundaries, calculate the bucket that each
value belongs to. This works differently in 1-D and N-D cases.
for values [[-1, 0, 1, 2], [3, 4, 5, 9]], boundaries [0, 4, 4, 8], right=True
return = [[ 0, 1, 1, 1], [1, 3, 3, 4]].
for values [[-1, 0, 1, 2], [3, 4, 5, 9]], boundaries [[0, 4], [4, 8]], right=True
return = [[ 0, 1, 1, 1], [0, 1, 1, 2]]
Note that in the N-D boundaries case, the shape of "values" and
"boundaries" must match in every dimension _except_ the last.
When right == False, bucket i refers to range (boundaries[i], boundaries[i+1]].
When right == True, bucket i refers to range [boundaries[i], boundaries[i+1]).
Boundaries must be non-decreasing, or a sorter must be provided which
would re-index offsets in a non-decreasing order (e.g. the second output
of torch.sort(offsets)). Otherwise, the result is undefined.
"""
return self.bucketize(
values,
boundaries,
boundary_indices,
indexing_dtype,
right,
sorter,
sorter_indices,
)
# Use mypy to check protocol implemented correctly
def _typecheck_CSEProxy(h: CSEProxy) -> OpsHandler[CSEVariable]:
return h
super().__enter__()
assert self.overrides
parent_handler = self.overrides(V.get_ops_handler())
self.exit_stack.enter_context(V.set_ops_handler(CSEProxy()))
self.exit_stack.enter_context(V.set_kernel_handler(self))
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.remove_kernel_local_buffers()
super().__exit__(exc_type, exc_val, exc_tb)
def remove_kernel_local_buffers(self) -> None:
"""
Any buffers that are both created and have a last use in the
same kernel can be removed.
Note that V.graph.scheduler can be None when codegening triton template
kernels.
"""
scheduler = V.graph.scheduler
if not scheduler:
return
fused_node_names = OrderedSet(
scheduler.name_to_buf[buf].defining_op_name()
for buf in self.store_buffer_names
if buf in scheduler.name_to_buf
)
names_to_remove = OrderedSet[str]()
for name in self.store_buffer_names:
if (
name not in self.must_keep_buffers
and name not in self.args.input_buffers
and scheduler.can_buffer_be_removed_through_fusion(
name, fused_node_names
)
):
names_to_remove.add(name)
for name in names_to_remove:
if name in self.args.inplace_buffers:
buf = self.args.inplace_buffers[name]
if isinstance(buf, str) and buf.startswith("REMOVED"):
continue
remove = all(n in names_to_remove for n in buf.other_names)
if remove:
self.remove_inplace_buffer(name)
self.inplaced_to_remove.add(name)
else:
self.remove_buffer(name)
def remove_buffer(self, name: str) -> None:
# Assign a special value instead of deleting the entry
# because we still rely on output_buffers's length to
# generate unique arg name.
log.debug("remove_buffer(%r)", name)
self.args.output_buffers[name] = "REMOVED"
self.removed_buffers.add(name)
def remove_inplace_buffer(self, name: str) -> None:
log.debug("removing_inplace_buffer(%r)", name)
inner_name = self.args.inplace_buffers[name].inner_name
self.args.inplace_buffers[name] = inner_name.replace("in_out_ptr", "REMOVED")
self.removed_buffers.add(name)
def rename_indexing(self, index) -> sympy.Expr:
# adds the necessary kernel args for index expressions
# and renames variables in index expressions to kernel arg names
if isinstance(index, (list, tuple)):
return [self.rename_indexing(x) for x in index] # type: ignore[return-value]
index = V.graph.sizevars.simplify(index)
sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name)
replacements = {
x: self.args.size(x)
for x in sorted_symbols
if symbol_is_type(
x,
(
SymT.UNBACKED_INT,
SymT.SIZE,
SymT.PRECOMPUTED_SIZE,
),
)
}
return sympy_subs(index, replacements)
def create_cse_var(self, *args, **kwargs):
return CSEVariable(*args, **kwargs)
@dataclasses.dataclass
class OptimizationContext:
key: ClassVar[str] = "opt_ctx"
dtype: Optional[torch.dtype] = None
ops_name: str = ""
@functools.lru_cache(None)
def jinja2_env():
try:
import jinja2
return jinja2.Environment(
undefined=jinja2.StrictUndefined,
)
except ImportError:
return None
class KernelTemplate:
"""
Base class for defining kernel templates.
Children classes: TritonTemplate, CUDATemplate
"""
@staticmethod
def indent_except_first(source: str, num_indents: int, indents_spacing=4):
lines = source.splitlines(True)
if len(lines) > 1:
lines[1:] = [
(" " * indents_spacing * num_indents) + line for line in lines[1:]
]
return "".join(lines)
@staticmethod
def _template_from_string(source):
env = jinja2_env()
if env is None:
return None
env.filters["indent_except_first"] = KernelTemplate.indent_except_first
from jinja2 import TemplateSyntaxError
class DetailedTemplateSyntaxError(TemplateSyntaxError):
def __init__(self, original_error):
super().__init__(
original_error.message,
original_error.lineno,
original_error.name,
original_error.filename,
)
self.original_error = original_error
def __str__(self):
error_info = f"Error in template at line {self.lineno}\n"
error_info += f"Error message: {self.message}\n"
if hasattr(self.original_error, "source"):
lines = self.original_error.source.split("\n")
error_info += "Context:\n"
start = max(0, self.lineno - 2)
end = min(len(lines), self.lineno + 2)
for i in range(start, end):
if i == self.lineno - 1:
error_info += f"{i + 1}: --> {lines[i]}\n"
if hasattr(self.original_error, "column"):
error_info += (
" "
+ " " * (self.original_error.column - 1)
+ "^\n"
)
else:
error_info += f"{i + 1}: {lines[i]}\n"
return error_info
try:
return env.from_string(source)
except TemplateSyntaxError as e:
raise DetailedTemplateSyntaxError(e) from e
@staticmethod
def _fake_get_dtype(fake_out):
_get_dtype_real = V.graph.get_dtype
def get_dtype(name):
if name == fake_out.get_name():
return fake_out.get_dtype()
return _get_dtype_real(name)
return get_dtype
def __init__(self, name: str):
self.name = name
def maybe_append_choice(self, choices, **kwargs):
"""
Maybe generates a new ChoiceCaller and appends it into existing choices.
Returns None if success, otherwise returns the error.
choices: A list of ChoiceCallers.
kwargs: Additional kwargs to be passed to self.generate() to generate a new ChoiceCaller.
"""
try:
choices.append(self.generate(**kwargs))
return None
except NotImplementedError as e:
return e
def generate(self, **kwargs) -> torch._inductor.ir.ChoiceCaller:
"""
Generates a ChoiceCaller instance from the given arguments.
"""
raise NotImplementedError