Files
pytorch/torch/_inductor/autoheuristic/autoheuristic_utils.py
Alnis Murtovi 7f1cda1533 Autoheuristic: Do not store choices as metadata (#130304)
While for optimizations like pad_mm, there are always only two possible choices, for other decision procedures, like kernel choice selection, the set of "available" choices depends on the input. Instead of storing the choices as metadata, we can instead take a look at all choices for which we have collected data (i.e. `df[CHOICE_COL].unique()`).

In this PR, I also try to replace "choice" and "feedback" with global constants CHOICE_COL and FEEDBACK_COL.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130304
Approved by: https://github.com/eellison
2024-07-18 21:39:42 +00:00

269 lines
8.8 KiB
Python

import functools
from typing import Any, Callable, Dict, List, Tuple
Feedback = float
Choice = str
Value = Any
CHOICE_COL = "choice"
FEEDBACK_COL = "feedback"
class AHFeature:
"""
The context, that AutoHeuristic stores, is a list of features. AutoHeuristic needs to know whether a feature is
categorical (i.e., not a continuous variable) to learn a machine learning model.
"""
def __init__(self, name: str, value: Value, is_categorical: bool = False) -> None:
self.name = name
self.value = value
self.is_categorical = is_categorical
class AHOperation:
"""
AHOperation can be used to augment the data collected by AutoHeuristic.
One might for example store features like m, k, n, but also want to use
features like m*n, or k*n, to learn a heuristic. Instead of storing features
that can be created from the collected data, one can use AHOperation to
create new features from the collected data.
"""
def __init__(
self, name: str, func: Callable[[Any], Value], is_categorical: bool = False
):
self.name = name
self.func = func
self.is_categorical = is_categorical
def apply_operation(self, data: Any) -> None:
data[self.name] = self.func(data)
class AHContext:
"""
This class is used to specify which information AutoHeuristic should store. For each choice, AutoHeursitic will
store the context and the collected feedback. The context could be something like the shape of a tensor, i.e.,
information that will help to learn a heuristic.
"""
features: List[AHFeature]
context_dict: Dict[str, Value]
def __init__(self) -> None:
self.features = []
self.context_dict = {}
def add_feature(
self, name: str, value: Value, is_categorical: bool = False
) -> None:
self.features.append(AHFeature(name, value, is_categorical=is_categorical))
self.context_dict[name] = value
def get_numerical_and_categorical_features(self) -> Tuple[List[str], List[str]]:
numerical_features = []
categorical_features = []
for feature in self.features:
if feature.is_categorical:
categorical_features.append(feature.name)
else:
numerical_features.append(feature.name)
return numerical_features, categorical_features
def get_feature_names_csv(self) -> str:
return ",".join(feature.name for feature in self.features)
def get_feature_values_csv(self) -> str:
return ",".join(str(feature.value) for feature in self.features)
def get_value(self, name: str) -> Value:
return self.context_dict[name]
def apply_operations(self, operations: List[AHOperation]) -> None:
for op in operations:
op.apply_operation(self.context_dict)
class AHMetadata:
def __init__(
self,
shared_memory: Any,
device_capa: Tuple[int, int],
choices: List[Choice],
name: str,
) -> None:
# use amount of shared_memory and device_capability to identify GPU
# TODO(AlnisM): there might be a better way to do this
self.shared_memory = shared_memory
self.device_capa = device_capa
self.choices = choices
self.name = name
def to_dict(self) -> Dict[str, Value]:
return {
"shared_memory": self.shared_memory,
"device_capa": self.device_capa,
"name": self.name,
}
def check_minsize(context: AHContext, minsize: int) -> bool:
return (
context.get_value("m") >= minsize
and context.get_value("k") >= minsize
and context.get_value("n") >= minsize
)
def pad_mm_precondition(metadata: AHMetadata, context: AHContext) -> bool:
if metadata.shared_memory == 166912 and metadata.device_capa == (8, 0):
# A100 precondition
return check_minsize(context, 512)
elif metadata.shared_memory == 232448 and metadata.device_capa == (9, 0):
# H100 precondition
return check_minsize(context, 768)
return True
def pad_mm_operations() -> List[AHOperation]:
m_times_k_op = AHOperation("m*k", lambda data: data["m"] * data["k"])
m_times_n_op = AHOperation("m*n", lambda data: data["m"] * data["n"])
k_times_n_op = AHOperation("k*n", lambda data: data["k"] * data["n"])
k_div_m_times_n_op = AHOperation(
"k/(m*n)", lambda data: data["k"] / (data["m"] * data["n"])
)
def bfloat_perf_hit(data: Any) -> bool:
m = data["m"]
k = data["k"]
n = data["n"]
is_bfloat = str(data["mat1_dtype"]) == "torch.bfloat16"
return k > (m * 1024) and k > (n * 1024) and is_bfloat
bfloat_perf_hit_op = AHOperation(
"bfloat_perf_hit", bfloat_perf_hit, is_categorical=True
)
def get_arith_intensity(data: Any) -> float:
m = data["m"]
k = data["k"]
n = data["n"]
return m * k * n / (m * k + k * n + m * n)
arith_intensity_op = AHOperation("arith_intensity", get_arith_intensity)
dims_need_padding_ops = get_dims_need_padding_ops()
dims_multiple_ops = get_dims_multiple_ops()
is_contig_ops = get_is_contig_ops()
ah_operations = [
m_times_k_op,
m_times_n_op,
k_times_n_op,
k_div_m_times_n_op,
bfloat_perf_hit_op,
arith_intensity_op,
]
ah_operations.extend(dims_need_padding_ops)
ah_operations.extend(dims_multiple_ops)
ah_operations.extend(is_contig_ops)
return ah_operations
def is_multiple(data: Any, dim: str, mult: int) -> bool:
return data[dim] % mult == 0
def get_dims_multiple_ops() -> List[AHOperation]:
multiples = [2, 4, 8, 16, 32]
dims = ["m", "k", "n"]
dims_multiple_ops = []
for dim in dims:
for mult in multiples:
is_multiple_fn = functools.partial(is_multiple, dim=dim, mult=mult)
dims_multiple_op = AHOperation(
f"{dim}_multiple_{mult}", is_multiple_fn, is_categorical=True
)
dims_multiple_ops.append(dims_multiple_op)
return dims_multiple_ops
def get_dims_need_padding_ops() -> List[AHOperation]:
def mat1_innermost_needs_padding_fn(data: Any) -> bool:
mat1_stride_0 = data["mat1_stride_0"]
mat1_stride_1 = data["mat1_stride_1"]
m_padded_length = data["m_padded_length"]
k_padded_length = data["k_padded_length"]
mat1_innermost_needs_padding = False
if mat1_stride_0 == 1 and m_padded_length != 0:
mat1_innermost_needs_padding = True
if mat1_stride_1 == 1 and k_padded_length != 0:
mat1_innermost_needs_padding = True
return mat1_innermost_needs_padding
mat1_innermost_op = AHOperation(
"mat1_innermost_needs_padding",
mat1_innermost_needs_padding_fn,
is_categorical=True,
)
def mat2_innermost_needs_padding_fn(data: Any) -> bool:
mat2_stride_0 = data["mat2_stride_0"]
mat2_stride_1 = data["mat2_stride_1"]
k_padded_length = data["k_padded_length"]
n_padded_length = data["n_padded_length"]
mat2_innermost_needs_padding = False
if mat2_stride_0 == 1 and k_padded_length != 0:
mat2_innermost_needs_padding = True
if mat2_stride_1 == 1 and n_padded_length != 0:
mat2_innermost_needs_padding = True
return mat2_innermost_needs_padding
mat2_innermost_op = AHOperation(
"mat2_innermost_needs_padding",
mat2_innermost_needs_padding_fn,
is_categorical=True,
)
def num_dims_needs_padding_fn(data: Any) -> int:
m_padded_length = data["m_padded_length"]
k_padded_length = data["k_padded_length"]
n_padded_length = data["n_padded_length"]
num_dims_needs_padding = 0
if m_padded_length != 0:
num_dims_needs_padding += 1
if k_padded_length != 0:
num_dims_needs_padding += 1
if n_padded_length != 0:
num_dims_needs_padding += 1
return num_dims_needs_padding
num_dims_op = AHOperation("num_dims_needs_padding", num_dims_needs_padding_fn)
return [mat1_innermost_op, mat2_innermost_op, num_dims_op]
def get_is_contig_ops() -> List[AHOperation]:
def mat1_is_contig_fn(data: Any) -> bool:
stride_0 = data["mat1_stride_0"]
stride_1 = data["mat1_stride_1"]
k = data["k"]
return stride_0 == k and stride_1 == 1
mat1_is_contig_op = AHOperation(
"mat1_iscontig", mat1_is_contig_fn, is_categorical=True
)
def mat2_is_contig_fn(data: Any) -> bool:
stride_0 = data["mat2_stride_0"]
stride_1 = data["mat2_stride_1"]
n = data["n"]
return stride_0 == n and stride_1 == 1
mat2_is_contig_op = AHOperation(
"mat2_iscontig", mat2_is_contig_fn, is_categorical=True
)
return [mat1_is_contig_op, mat2_is_contig_op]