mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Prereqs: - https://github.com/pytorch/pytorch/pull/152708 Features: 1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses. 1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`. 1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`. 1. Extends Triton `torch.profiler` logging to `DebugAutotuner`. 1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side: ```python Device(NVIDIA H100, 0): Kernel Name | resnet Kernel Count | resnet FLOPS | resnet bw gbps | resnet Dur (ms) | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS | newresnet bw gbps | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth % --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- triton_poi_fused__native_batch_norm_legi | 24 | 0 | 0.11395268248131513 | 2.5919166666666666 | 0 | 0.003401572611382541 | 24 | 0 | 0.11395268248131513 | 2.5919166666666666 | 0 | 0.003401572611382541 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142 | 16932673552.422373 | 0.2585007824198784 | 12.441619718309857 | 0.08683422334575583 | 0.007716441266265022 | 142 | 16932673552.422373 | 0.2585007824198784 | 12.441619718309857 | 0.08683422334575583 | 0.007716441266265022 triton_red_fused__native_batch_norm_legi | 39 | 0 | 0.13990024992108846 | 5.752589743589743 | 0 | 0.004176126863316074 | 39 | 0 | 0.13990024992108846 | 5.752589743589743 | 0 | 0.004176126863316074 triton_poi_fused__native_batch_norm_legi | 25 | 0 | 0.31824055917536503 | 2.5291999999999994 | 0 | 0.009499718184339253 | 25 | 0 | 0.31824055917536503 | 2.5291999999999994 | 0 | 0.009499718184339253 void cutlass::Kernel2<cutlass_80_tensoro | 98 | 16211056473.596165 | 0.42972434051025826 | 7.130408163265306 | 0.08313362294151874 | 0.012827592254037562 | 98 | 16211056473.596165 | 0.42972434051025826 | 7.130408163265306 | 0.08313362294151874 | 0.012827592254037562 triton_red_fused__native_batch_norm_legi | 73 | 0 | 0.3225381327611705 | 9.987068493150682 | 0 | 0.009628003963020014 | 73 | 0 | 0.3225381327611705 | 9.987068493150682 | 0 | 0.009628003963020014 triton_poi_fused__native_batch_norm_legi | 15 | 0 | 1.4491211346487216 | 4.439333333333333 | 0 | 0.043257347302946926 | 15 | 0 | 1.4491211346487216 | 4.439333333333333 | 0 | 0.043257347302946926 void cutlass::Kernel2<cutlass_80_tensoro | 186 | 14501701145.337954 | 0.2667131401910989 | 7.873865591397849 | 0.07436769818122027 | 0.007961586274361157 | 186 | 14501701145.337954 | 0.2667131401910989 | 7.873865591397849 | 0.07436769818122027 | 0.007961586274361157 triton_poi_fused__native_batch_norm_legi | 33 | 0 | 1.4924556538193923 | 4.3101515151515155 | 0 | 0.044550915039384846 | 33 | 0 | 1.4924556538193923 | 4.3101515151515155 | 0 | 0.044550915039384846 triton_red_fused__native_batch_norm_legi | 29 | 0 | 0.25562590522631107 | 6.296275862068965 | 0 | 0.007630624036606301 | 29 | 0 | 0.25562590522631107 | 6.296275862068965 | 0 | 0.007630624036606301 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.5870562174192726 | 2.7397692307692307 | 0 | 0.01752406619162008 | 13 | 0 | 0.5870562174192726 | 2.7397692307692307 | 0 | 0.01752406619162008 triton_poi_fused__native_batch_norm_legi | 34 | 0 | 0.41409928846284 | 2.853588235294117 | 0 | 0.012361172789935523 | 34 | 0 | 0.41409928846284 | 2.853588235294117 | 0 | 0.012361172789935523 triton_per_fused__native_batch_norm_legi | 34 | 0 | 0.11705315007018151 | 3.460647058823529 | 0 | 0.0034941238826919864 | 34 | 0 | 0.11705315007018151 | 3.460647058823529 | 0 | 0.0034941238826919864 triton_poi_fused__native_batch_norm_legi | 16 | 0 | 0.17207853197124584 | 2.3459375000000002 | 0 | 0.005136672596156592 | 16 | 0 | 0.17207853197124584 | 2.3459375000000002 | 0 | 0.005136672596156592 triton_per_fused__native_batch_norm_legi | 30 | 0 | 0.2639714322022256 | 6.131199999999999 | 0 | 0.007879744244842555 | 30 | 0 | 0.2639714322022256 | 6.131199999999999 | 0 | 0.007879744244842555 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100 | 11875430356.891787 | 0.19494470869421385 | 16.36534 | 0.06089964285585531 | 0.005819245035648175 | 100 | 11875430356.891787 | 0.19494470869421385 | 16.36534 | 0.06089964285585531 | 0.005819245035648175 triton_poi_fused__native_batch_norm_legi | 8 | 0 | 0.9854096626224687 | 3.2757500000000004 | 0 | 0.029415213809625928 | 8 | 0 | 0.9854096626224687 | 3.2757500000000004 | 0 | 0.029415213809625928 void cublasLt::splitKreduce_kernel<32, 1 | 56 | 34377923395.147064 | 0.8310300045762317 | 3.4199999999999986 | 0.17629704305203628 | 0.024806865808245714 | 56 | 34377923395.147064 | 0.8310300045762317 | 3.4199999999999986 | 0.17629704305203628 | 0.024806865808245714 triton_poi_fused__native_batch_norm_legi | 23 | 0 | 0.9944002965861103 | 3.2431304347826084 | 0 | 0.02968359094286896 | 23 | 0 | 0.9944002965861103 | 3.2431304347826084 | 0 | 0.02968359094286896 triton_per_fused__native_batch_norm_legi | 10 | 0 | 0.1826801058931057 | 4.428800000000001 | 0 | 0.00545313748934644 | 10 | 0 | 0.1826801058931057 | 4.428800000000001 | 0 | 0.00545313748934644 triton_poi_fused__native_batch_norm_legi | 10 | 0 | 0.3168973585366449 | 2.5471999999999997 | 0 | 0.009459622642884923 | 10 | 0 | 0.3168973585366449 | 2.5471999999999997 | 0 | 0.009459622642884923 triton_poi_fused__native_batch_norm_legi | 34 | 0 | 1.1463614897015777 | 4.124323529411764 | 0 | 0.03421974596124114 | 34 | 0 | 1.1463614897015777 | 4.124323529411764 | 0 | 0.03421974596124114 void cask_plugin_cudnn::xmma_cudnn::init | 44 | 44045510816.64277 | 2.0661232850348643 | 3.6887499999999993 | 0.22587441444432194 | 0.06167532194133924 | 44 | 44045510816.64277 | 2.0661232850348643 | 3.6887499999999993 | 0.22587441444432194 | 0.06167532194133924 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95 | 7876855400.165316 | 0.4694941555946739 | 18.224315789473682 | 0.04039413025725802 | 0.014014750913273854 | 95 | 7876855400.165316 | 0.4694941555946739 | 18.224315789473682 | 0.04039413025725802 | 0.014014750913273854 triton_per_fused__native_batch_norm_legi | 41 | 0 | 0.06825669875995298 | 3.0384146341463416 | 0 | 0.002037513395819492 | 41 | 0 | 0.06825669875995298 | 3.0384146341463416 | 0 | 0.002037513395819492 triton_poi_fused__native_batch_norm_legi | 23 | 0 | 0.08808154712430301 | 2.3275652173913044 | 0 | 0.0026292999141582997 | 23 | 0 | 0.08808154712430301 | 2.3275652173913044 | 0 | 0.0026292999141582997 triton_per_fused__native_batch_norm_legi | 40 | 0 | 0.18179321034952417 | 4.556825 | 0 | 0.005426662995508183 | 40 | 0 | 0.18179321034952417 | 4.556825 | 0 | 0.005426662995508183 triton_poi_fused__native_batch_norm_legi | 15 | 0 | 0.5887415155454232 | 2.783866666666667 | 0 | 0.017574373598370836 | 15 | 0 | 0.5887415155454232 | 2.783866666666667 | 0 | 0.017574373598370836 void cutlass::Kernel2<cutlass_80_tensoro | 38 | 14242013806.264643 | 0.256592404353939 | 7.217631578947369 | 0.0730359682372546 | 0.007659474756834 | 38 | 14242013806.264643 | 0.256592404353939 | 7.217631578947369 | 0.0730359682372546 | 0.007659474756834 triton_poi_fused__native_batch_norm_legi | 21 | 0 | 0.5842860973430516 | 2.7779047619047623 | 0 | 0.017441376040091088 | 21 | 0 | 0.5842860973430516 | 2.7779047619047623 | 0 | 0.017441376040091088 triton_per_fused__native_batch_norm_legi | 16 | 0 | 0.11509365173486417 | 3.5959375000000002 | 0 | 0.0034356313950705724 | 16 | 0 | 0.11509365173486417 | 3.5959375000000002 | 0 | 0.0034356313950705724 triton_poi_fused__native_batch_norm_legi | 14 | 0 | 0.1704672000243914 | 2.4044285714285714 | 0 | 0.00508857313505646 | 14 | 0 | 0.1704672000243914 | 2.4044285714285714 | 0 | 0.00508857313505646 triton_poi_fused__native_batch_norm_legi | 58 | 0 | 2.307520779930795 | 8.190706896551722 | 0 | 0.06888121731136704 | 58 | 0 | 2.307520779930795 | 8.190706896551722 | 0 | 0.06888121731136704 triton_per_fused__native_batch_norm_legi | 29 | 0 | 0.037243248971881276 | 3.0277586206896556 | 0 | 0.001111738775280038 | 29 | 0 | 0.037243248971881276 | 3.0277586206896556 | 0 | 0.001111738775280038 triton_poi_fused__native_batch_norm_legi | 20 | 0 | 0.04741699795428918 | 2.2911500000000005 | 0 | 0.0014154327747549007 | 20 | 0 | 0.04741699795428918 | 2.2911500000000005 | 0 | 0.0014154327747549007 triton_per_fused__native_batch_norm_legi | 25 | 0 | 0.13357016893727824 | 3.37536 | 0 | 0.003987169222008305 | 25 | 0 | 0.13357016893727824 | 3.37536 | 0 | 0.003987169222008305 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.3089862268300253 | 2.8111538461538457 | 0 | 0.009223469457612694 | 13 | 0 | 0.3089862268300253 | 2.8111538461538457 | 0 | 0.009223469457612694 triton_poi_fused__native_batch_norm_legi | 17 | 0 | 0.3129385387909844 | 2.673 | 0 | 0.009341448919133863 | 17 | 0 | 0.3129385387909844 | 2.673 | 0 | 0.009341448919133863 triton_per_fused__native_batch_norm_legi | 19 | 0 | 0.2215568162533158 | 3.8837368421052636 | 0 | 0.0066136363060691275 | 19 | 0 | 0.2215568162533158 | 3.8837368421052636 | 0 | 0.0066136363060691275 std::enable_if<!(false), void>::type int | 23 | 504916805.19297093 | 1.0118296096314707 | 8.113913043478261 | 0.0025893169497075447 | 0.030203868944223014 | 23 | 504916805.19297093 | 1.0118296096314707 | 8.113913043478261 | 0.0025893169497075447 | 0.030203868944223014 triton_poi_fused_add_copy__38 | 56 | 0 | 0 | 2.132482142857143 | 0 | 0 | 56 | 0 | 0 | 2.132482142857143 | 0 | 0 triton_poi_fused_convolution_0 | 18 | 0 | 0.43458610794936897 | 2.773333333333334 | 0 | 0.012972719640279667 | 18 | 0 | 0.43458610794936897 | 2.773333333333334 | 0 | 0.012972719640279667 triton_poi_fused_convolution_1 | 17 | 0 | 0.028816312469162712 | 2.6145882352941174 | 0 | 0.0008601884319153051 | 17 | 0 | 0.028816312469162712 | 2.6145882352941174 | 0 | 0.0008601884319153051 void convolve_common_engine_float_NHWC<f | 44 | 8641868995.31118 | 0.024730540008465626 | 25.87327272727273 | 0.04431727689903169 | 0.0007382250748795709 | 44 | 8641868995.31118 | 0.024730540008465626 | 25.87327272727273 | 0.04431727689903169 | 0.0007382250748795709 triton_per_fused__native_batch_norm_legi | 12 | 0 | 0.6809930918986744 | 4.82675 | 0 | 0.020328151996975356 | 12 | 0 | 0.6809930918986744 | 4.82675 | 0 | 0.020328151996975356 triton_per_fused__native_batch_norm_legi | 14 | 0 | 0.02883030597936608 | 2.6651428571428575 | 0 | 0.0008606061486377935 | 14 | 0 | 0.02883030597936608 | 2.6651428571428575 | 0 | 0.0008606061486377935 triton_per_fused__native_batch_norm_legi | 16 | 0 | 0.0014658988233201874 | 2.098 | 0 | 4.375817383045335e-05 | 16 | 0 | 0.0014658988233201874 | 2.098 | 0 | 4.375817383045335e-05 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.9926297180284697 | 3.2367692307692306 | 0 | 0.02963073785159611 | 13 | 0 | 0.9926297180284697 | 3.2367692307692306 | 0 | 0.02963073785159611 triton_poi_fused__native_batch_norm_legi | 9 | 0 | 1.3008817095666507 | 3.0863333333333336 | 0 | 0.03883228983781048 | 9 | 0 | 1.3008817095666507 | 3.0863333333333336 | 0 | 0.03883228983781048 void at::native::(anonymous namespace):: | 98 | 0 | 0.09174335613709389 | 4.408520408163265 | 0 | 0.0027386076458833994 | 98 | 0 | 0.09174335613709389 | 4.408520408163265 | 0 | 0.0027386076458833994 void at::native::vectorized_elementwise_ | 7 | 0 | 0 | 1.7278571428571428 | 0 | 0 | 7 | 0 | 0 | 1.7278571428571428 | 0 | 0 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697 Approved by: https://github.com/eellison, https://github.com/shunting314
2494 lines
95 KiB
Python
2494 lines
95 KiB
Python
# mypy: allow-untyped-defs
|
|
from __future__ import annotations
|
|
|
|
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import functools
|
|
import itertools
|
|
import logging
|
|
import math
|
|
import operator
|
|
import textwrap
|
|
from collections import Counter
|
|
from typing import Any, Callable, Generic, no_type_check, Optional, TYPE_CHECKING, Union
|
|
from typing_extensions import TypeVar
|
|
|
|
import sympy
|
|
|
|
import torch
|
|
import torch._logging
|
|
from torch._inductor.tiling_utils import analyze_memory_coalescing
|
|
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
|
|
from torch.fx.immutable_collections import immutable_dict
|
|
from torch.utils._ordered_set import OrderedSet
|
|
from torch.utils._sympy.functions import FloorDiv, Identity, ModularIndexing
|
|
from torch.utils._sympy.symbol import (
|
|
free_symbol_is_type,
|
|
prefix_str,
|
|
symbol_is_type,
|
|
SymT,
|
|
)
|
|
|
|
from ..._dynamo.utils import counters
|
|
from .. import config, ir, scheduler
|
|
from ..analyze_preserves_zero_mask import prologue_preserves_zero_mask
|
|
from ..codecache import code_hash
|
|
from ..dependencies import MemoryDep, StarDep, WeakDep
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..ir import IRNode
|
|
|
|
from ..optimize_indexing import indexing_dtype_strength_reduction
|
|
from ..runtime.runtime_utils import green_text, yellow_text
|
|
from ..scheduler import BaseSchedulerNode, BaseScheduling, WhyNoFuse
|
|
from ..utils import (
|
|
cache_on_self,
|
|
expr_fits_within_32bit,
|
|
get_dtype_size,
|
|
IndentedBuffer,
|
|
Placeholder,
|
|
prefix_is_reduction,
|
|
set_kernel_post_grad_provenance_tracing,
|
|
sympy_index_symbol,
|
|
sympy_product,
|
|
sympy_subs,
|
|
unique,
|
|
)
|
|
from ..virtualized import ops, OpsWrapper, V
|
|
from .block_analysis import BlockPatternMatcher
|
|
from .common import CSEVariable, index_prevent_reordering, Kernel, PythonPrinter
|
|
from .multi_kernel import MultiKernel
|
|
from .simd_kernel_features import (
|
|
DisableReduction,
|
|
EnableReduction,
|
|
NodeScheduleEntry,
|
|
NodeScheduleMarker,
|
|
SIMDKernelFeatures,
|
|
)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Iterable, Iterator, Sequence
|
|
|
|
from torch._inductor.tiling_utils import CoalesceVarAnalysis
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
|
|
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
|
|
fusion_log = torch._logging.getArtifactLogger(__name__, "fusion")
|
|
|
|
|
|
pexpr = PythonPrinter().doprint
|
|
|
|
all_prefixes = OrderedSet(["z", "y", "x", "r0_", "r1_"])
|
|
|
|
|
|
def get_max_tiles(default: int = 2) -> int:
|
|
max_tiles = torch._inductor.config.triton.max_tiles
|
|
return max_tiles if max_tiles is not None else default
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class IterationRanges:
|
|
"""
|
|
Each range tree represents multiple sets of iteration indexing
|
|
in a single tiled dimension in the output kernel.
|
|
|
|
If you have two loops ranges one (4, 3, 2) and another (4, 6),
|
|
then the range tree will be:
|
|
4 (i0)
|
|
3 (i1) 6 (i3)
|
|
2 (i2)
|
|
Where i0 is shared between both loops, but then the split into
|
|
different indexing vars. All loop ranges must iterate over
|
|
the same number of elements.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
var_list: list[sympy.Symbol],
|
|
var_ranges: dict[sympy.Symbol, sympy.Expr],
|
|
numel: sympy.Expr,
|
|
prefix: str,
|
|
*,
|
|
kernel: SIMDKernel,
|
|
divisor=sympy.S.One,
|
|
length=sympy.S.One,
|
|
root: IterationRangesRoot,
|
|
) -> None:
|
|
super().__init__()
|
|
self.name = name
|
|
self.var_list = var_list
|
|
self.var_ranges = var_ranges
|
|
self.numel = numel
|
|
self.prefix = prefix
|
|
self.divisor = divisor
|
|
self.length = length
|
|
self.kernel = kernel
|
|
self.root = root
|
|
|
|
@property
|
|
@cache_on_self
|
|
@no_type_check # https://github.com/python/mypy/issues/17184
|
|
def is_reduction(self) -> bool:
|
|
return prefix_is_reduction(self.prefix)
|
|
|
|
def symbol(self) -> sympy.Symbol:
|
|
return sympy_index_symbol(self.name)
|
|
|
|
@property
|
|
@cache_on_self
|
|
@no_type_check
|
|
def symt(self) -> SymT:
|
|
prefix_to_symt = {prefix: symt for symt, prefix in prefix_str.items()}
|
|
return prefix_to_symt[self.prefix]
|
|
|
|
|
|
class IterationRangesRoot(IterationRanges):
|
|
"""
|
|
Root of a iteration range tree that represents a single
|
|
tiled dimension in the output kernel. It contains multiple
|
|
sets of iteration represented with IterationRangesEntry.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
numel: sympy.Expr,
|
|
prefix: str,
|
|
index: int,
|
|
kernel: SIMDKernel,
|
|
pid_cache: Optional[dict[str, str]] = None,
|
|
*,
|
|
is_loop: bool,
|
|
tensor_dim: Optional[int],
|
|
grid_dim: Optional[int],
|
|
has_zdim: bool,
|
|
) -> None:
|
|
if pid_cache is None:
|
|
pid_cache = {}
|
|
super().__init__(
|
|
name=name,
|
|
var_list=[],
|
|
var_ranges={},
|
|
numel=numel,
|
|
prefix=prefix,
|
|
kernel=kernel,
|
|
root=self,
|
|
)
|
|
self.index = index
|
|
# Store all the nodes in one flat list
|
|
self.nodes: dict[sympy.Expr, IterationRangesEntry] = {}
|
|
# This is for re-ordering program ID in triton mm template
|
|
# pid_cache["tl.program_id(0)"] = pid_m
|
|
self.pid_cache: dict[str, str] = pid_cache
|
|
|
|
# True if the dimension is implemented as a single program looping over
|
|
# the full dimension (currently only used for non-persistent reduction)
|
|
assert not is_loop or (self.is_reduction and grid_dim is None)
|
|
self.is_loop = is_loop
|
|
# Index of corresponding dimension on triton tensors
|
|
self.tensor_dim = tensor_dim
|
|
# Index of corresponding dimension in the triton grid
|
|
self.grid_dim = grid_dim
|
|
self.has_zdim = has_zdim
|
|
|
|
def __repr__(self) -> str:
|
|
return f"IterationRangesRoot({self.name!r}, {self.numel}, ...)"
|
|
|
|
def cache_clear(self) -> None:
|
|
for node in self.nodes.values():
|
|
node.cache_clear()
|
|
|
|
def index_sym(self) -> sympy.Symbol:
|
|
return sympy_index_symbol(f"{self.prefix}index")
|
|
|
|
def lookup(self, divisor: sympy.Expr, length: sympy.Expr) -> IterationRangesEntry:
|
|
"""
|
|
Lookup a given RangeTreeEntry, creating it if needed
|
|
"""
|
|
if V.graph.sizevars.statically_known_equals(divisor * length, self.numel):
|
|
expr = FloorDiv(self.index_sym(), divisor)
|
|
else:
|
|
expr = ModularIndexing(self.index_sym(), divisor, length)
|
|
|
|
if expr not in self.nodes:
|
|
node = IterationRangesEntry(
|
|
f"{self.prefix}{next(V.kernel.iter_vars_count)}",
|
|
divisor,
|
|
length,
|
|
expr,
|
|
self,
|
|
)
|
|
V.kernel.range_tree_nodes[node.symbol()] = node
|
|
self.var_list.append(node.symbol())
|
|
self.var_ranges[node.symbol()] = length
|
|
self.nodes[expr] = node
|
|
return self.nodes[expr]
|
|
|
|
def construct_entries(
|
|
self, lengths: list[sympy.Expr]
|
|
) -> list[IterationRangesEntry]:
|
|
divisor = sympy.S.One
|
|
itervars = []
|
|
for length in reversed(lengths):
|
|
itervars.append(self.lookup(divisor, length))
|
|
divisor = divisor * length
|
|
return [*reversed(itervars)]
|
|
|
|
def construct(self, lengths: list[sympy.Expr]) -> list[sympy.Symbol]:
|
|
return [e.symbol() for e in self.construct_entries(lengths)]
|
|
|
|
def vars_and_sizes(
|
|
self, index: sympy.Expr
|
|
) -> tuple[list[sympy.Symbol], list[sympy.Expr]]:
|
|
"""Figure out vars from this tree used in index"""
|
|
|
|
def get_sort_key(x: IterationRangesEntry) -> tuple[int, bool]:
|
|
"""
|
|
Gets the key for sorting nodes. When two nodes have the
|
|
same divisor, the node with length as 1 should be handled
|
|
first so the current divisor is not changed after multiplied
|
|
node.length. Returns `not length_is_one_hint` for ascending
|
|
sort.
|
|
"""
|
|
divisor_hint = V.graph.sizevars.size_hint(
|
|
x.divisor, fallback=config.unbacked_symint_fallback
|
|
)
|
|
length_is_one_hint = (
|
|
V.graph.sizevars.size_hint(
|
|
x.length, fallback=config.unbacked_symint_fallback
|
|
)
|
|
== 1
|
|
)
|
|
return (divisor_hint, not length_is_one_hint)
|
|
|
|
nodes = [V.kernel.range_tree_nodes.get(s) for s in index.free_symbols]
|
|
nodes = [n for n in nodes if n and n.prefix == self.prefix]
|
|
nodes.sort(key=lambda x: get_sort_key(x))
|
|
divisor = sympy.S.One
|
|
index_vars = []
|
|
sizes = []
|
|
|
|
def add(node):
|
|
nonlocal divisor
|
|
index_vars.append(node.symbol())
|
|
sizes.append(node.length)
|
|
divisor = divisor * node.length
|
|
|
|
for node in nodes:
|
|
if not V.graph.sizevars.statically_known_equals(node.divisor, divisor):
|
|
# fill in unused index var
|
|
add(self.lookup(divisor, FloorDiv(node.divisor, divisor)))
|
|
divisor = node.divisor
|
|
add(node)
|
|
if not V.graph.sizevars.statically_known_equals(self.numel, divisor):
|
|
# fill in unused index var
|
|
add(self.lookup(divisor, FloorDiv(self.numel, divisor)))
|
|
|
|
return [*reversed(index_vars)], [*reversed(sizes)]
|
|
|
|
|
|
class IterationRangesEntry(IterationRanges):
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
divisor: sympy.Expr,
|
|
length: sympy.Expr,
|
|
expr: sympy.Expr,
|
|
parent: IterationRanges,
|
|
) -> None:
|
|
super().__init__(
|
|
name=name,
|
|
numel=parent.numel / length,
|
|
var_list=parent.var_list,
|
|
var_ranges=parent.var_ranges,
|
|
prefix=parent.prefix,
|
|
divisor=divisor,
|
|
length=length,
|
|
kernel=parent.kernel,
|
|
root=parent.root,
|
|
)
|
|
self.parent = parent
|
|
self.codegen = functools.lru_cache(None)(self._codegen)
|
|
self.expr = expr
|
|
|
|
def __repr__(self) -> str:
|
|
return f"IterationRangesEntry({self.name}, {self.divisor}, {self.length}, {self.expr}, {self.var_ranges})"
|
|
|
|
def set_name(self, name: str) -> None:
|
|
self.codegen = lambda: name # type: ignore[assignment]
|
|
self.codegen.cache_clear = lambda: None # type: ignore[method-assign]
|
|
self.name = name
|
|
|
|
def cache_clear(self) -> None:
|
|
self.codegen.cache_clear()
|
|
|
|
def _codegen(self) -> str:
|
|
V.kernel.codegen_iteration_ranges_entry(self)
|
|
return self.name
|
|
|
|
def precomputed_args(self) -> list[sympy.Expr]:
|
|
# for dynamic shapes, find parts of indexing expressions that have to be precomputed
|
|
precomputed_args: list[sympy.Expr] = []
|
|
if isinstance(self.expr, sympy.Symbol):
|
|
return precomputed_args
|
|
assert isinstance(self.expr, (FloorDiv, ModularIndexing)), type(self.expr)
|
|
for arg in self.expr.args[1:]:
|
|
if not isinstance(arg, (sympy.Integer, sympy.Symbol)):
|
|
symbols = arg.free_symbols
|
|
if len(symbols) > 0 and all(
|
|
symbol_is_type(s, SymT.SIZE) for s in symbols
|
|
):
|
|
precomputed_args.append(arg)
|
|
return precomputed_args
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(self.name)
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
assert isinstance(other, IterationRangesEntry)
|
|
return self.name == other.name
|
|
|
|
|
|
def constant_repr(value: Union[int, float]) -> str:
|
|
if value == float("inf"):
|
|
return 'float("inf")'
|
|
elif value == float("-inf"):
|
|
return 'float("-inf")'
|
|
elif math.isnan(value):
|
|
return 'float("nan")'
|
|
return repr(value)
|
|
|
|
|
|
CSEVariableType = TypeVar("CSEVariableType", bound=CSEVariable, default=CSEVariable)
|
|
|
|
|
|
class SIMDKernel(Kernel[CSEVariableType], Generic[CSEVariableType]):
|
|
"""
|
|
Common base class for Triton/Halide codegen which both use flattened indexing rather than loop nests.
|
|
"""
|
|
|
|
sexpr: Callable[[sympy.Expr], str] = pexpr
|
|
kexpr: Callable[[sympy.Expr], str]
|
|
allow_block_ptr: bool = False
|
|
kernel_name: str
|
|
|
|
def __init__(
|
|
self,
|
|
tiling: dict[str, sympy.Expr],
|
|
features: SIMDKernelFeatures,
|
|
pid_cache: Optional[dict[str, str]] = None,
|
|
override_persistent_reduction: Optional[bool] = None,
|
|
override_cooperative_reduction: Optional[bool] = None,
|
|
tiling_scores: Optional[dict[str, sympy.Expr]] = None,
|
|
) -> None:
|
|
if pid_cache is None:
|
|
pid_cache = {}
|
|
super().__init__()
|
|
self.features = features
|
|
self.mutations = features.get_mutations()
|
|
self.body = IndentedBuffer()
|
|
self.indexing_code = IndentedBuffer()
|
|
self.numels = {
|
|
prefix: V.graph.sizevars.simplify(val) for prefix, val in tiling.items()
|
|
}
|
|
self.range_trees: list[IterationRangesRoot] = []
|
|
self.range_tree_nodes: dict[sympy.Symbol, IterationRangesEntry] = {}
|
|
self.iter_vars_count = itertools.count()
|
|
self.inside_reduction = features.is_reduction()
|
|
self.cooperative_reduction: bool = (
|
|
override_cooperative_reduction
|
|
if override_cooperative_reduction is not None
|
|
else self.should_use_cooperative_reduction()
|
|
)
|
|
self.tiling_scores: Optional[dict[str, sympy.Expr]] = tiling_scores
|
|
self.persistent_reduction: bool = (
|
|
override_persistent_reduction
|
|
if override_persistent_reduction is not None
|
|
else self.should_use_persistent_reduction()
|
|
)
|
|
self.no_x_dim = self.want_no_x_dim()
|
|
self.code_hash: Optional[str] = None
|
|
|
|
# define this in a closure to make cache local to object
|
|
@functools.cache
|
|
def simplify_indexing(index: sympy.Expr):
|
|
index = V.graph.sizevars.simplify_with_ranges(index, self.var_ranges())
|
|
for tree in self.range_trees:
|
|
index = self.combine_contiguous_dims(index, tree)
|
|
|
|
return self.combine_modular_indexing_pairs(index)
|
|
|
|
self.simplify_indexing = simplify_indexing
|
|
self.initialize_range_tree(pid_cache)
|
|
|
|
@property
|
|
@cache_on_self
|
|
@no_type_check # https://github.com/python/mypy/issues/17184
|
|
def num_reduction_dims(self) -> int:
|
|
return sum(prefix_is_reduction(prefix) for prefix in self.numels)
|
|
|
|
def dtype_to_str(self, dtype: torch.dtype) -> str:
|
|
raise NotImplementedError
|
|
|
|
def get_index_dtype_as_torch_dtype(self) -> torch.dtype:
|
|
return self.features.select_index_dtype()
|
|
|
|
@property
|
|
def index_dtype(self) -> str:
|
|
return self.dtype_to_str(self.get_index_dtype_as_torch_dtype())
|
|
|
|
def want_no_x_dim(self) -> bool:
|
|
return False
|
|
|
|
def construct_range_trees(
|
|
self,
|
|
pid_cache: Optional[dict[str, str]],
|
|
inside_reduction: bool,
|
|
is_reduction: bool,
|
|
numels: dict[str, sympy.Expr],
|
|
no_x_dim: bool,
|
|
) -> list[IterationRangesRoot]:
|
|
active_prefixes = OrderedSet(
|
|
prefix for prefix in all_prefixes if prefix in numels
|
|
)
|
|
no_r_dim = not inside_reduction or not is_reduction
|
|
|
|
def filtered_index_map(seq, mask) -> dict[Any, int]:
|
|
return {
|
|
val: idx for idx, val in enumerate(val for val in seq if val in mask)
|
|
}
|
|
|
|
grid_dims = ["x", "y", "z"]
|
|
pointwise_tensor_dims = list(reversed(grid_dims))
|
|
reduction_dims = ["r0_", "r1_"]
|
|
if no_x_dim:
|
|
tensor_dims = reduction_dims
|
|
elif no_r_dim:
|
|
tensor_dims = pointwise_tensor_dims
|
|
else:
|
|
tensor_dims = pointwise_tensor_dims + reduction_dims
|
|
|
|
# Filter out unused tensor dims.
|
|
# Convert to dicts for O(1) index lookup.
|
|
tensor_dim_map = filtered_index_map(tensor_dims, active_prefixes)
|
|
grid_dim_map = filtered_index_map(grid_dims, all_prefixes)
|
|
|
|
range_trees = []
|
|
for i, prefix in enumerate(active_prefixes):
|
|
is_reduction = prefix_is_reduction(prefix)
|
|
tensor_dim = tensor_dim_map.get(prefix)
|
|
grid_dim = grid_dim_map.get(prefix)
|
|
index = i if grid_dim is None else grid_dim
|
|
range_trees.append(
|
|
IterationRangesRoot(
|
|
f"{prefix}index",
|
|
numels[prefix],
|
|
prefix,
|
|
index,
|
|
self, # type: ignore[arg-type]
|
|
pid_cache=pid_cache,
|
|
is_loop=is_reduction and not self.persistent_reduction,
|
|
tensor_dim=tensor_dim,
|
|
grid_dim=grid_dim,
|
|
has_zdim="z" in numels,
|
|
)
|
|
)
|
|
return range_trees
|
|
|
|
def initialize_range_tree(self, pid_cache: dict[str, str]) -> None:
|
|
range_trees = self.construct_range_trees(
|
|
pid_cache,
|
|
self.inside_reduction,
|
|
self.features.is_reduction(),
|
|
self.numels,
|
|
self.no_x_dim,
|
|
)
|
|
self.range_trees.extend(range_trees)
|
|
|
|
def finalize_indexing(self, indices: Sequence[sympy.Expr]) -> None:
|
|
"""
|
|
Hook called right before codegen with every index that will be
|
|
used in the fused kernel.
|
|
"""
|
|
|
|
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable) -> None:
|
|
prior = self.inside_reduction
|
|
self.inside_reduction = False
|
|
try:
|
|
return self.store(name, index, value)
|
|
finally:
|
|
self.inside_reduction = prior
|
|
|
|
def should_use_cooperative_reduction(self) -> bool:
|
|
return False # defined in subclass
|
|
|
|
def should_use_persistent_reduction(self) -> bool:
|
|
return False # defined in subclass
|
|
|
|
def var_ranges(self) -> dict[sympy.Symbol, sympy.Expr]:
|
|
return dict(
|
|
itertools.chain.from_iterable(
|
|
tree.var_ranges.items() for tree in self.range_trees
|
|
)
|
|
)
|
|
|
|
def triton_tensor_ndim(self) -> int:
|
|
return sum(int(tree.tensor_dim is not None) for tree in self.range_trees)
|
|
|
|
def indexing_size_str(self, i: int) -> str:
|
|
sizes = ["None"] * self.triton_tensor_ndim()
|
|
sizes[i] = ":"
|
|
return f"[{', '.join(sizes)}]"
|
|
|
|
def dense_size_list(self) -> list[str]:
|
|
sizes = ["1"] * self.triton_tensor_ndim()
|
|
for tree in self.range_trees:
|
|
if tree.tensor_dim is None:
|
|
continue
|
|
|
|
if not tree.is_reduction or self.inside_reduction:
|
|
sizes[tree.tensor_dim] = f"{tree.prefix.upper()}BLOCK"
|
|
return sizes
|
|
|
|
def dense_size_str(self) -> str:
|
|
sizes = self.dense_size_list()
|
|
return f"[{', '.join(sizes)}]"
|
|
|
|
def combine_modular_indexing_pairs(self, index: sympy.Expr) -> sympy.Expr:
|
|
if not isinstance(index, ModularIndexing):
|
|
return index
|
|
x = index.args[0]
|
|
if (tree_node := self.range_tree_nodes.get(x)) is None:
|
|
return index
|
|
new_index = sympy_subs(index, {x: tree_node.expr})
|
|
new_index = V.graph.sizevars.combine_modular_indexing_pairs(new_index)
|
|
# the index now contains xindex/etc, which is nonstandard, fix it up
|
|
return sympy_subs(
|
|
new_index,
|
|
{
|
|
tree_node.root.index_sym(): tree_node.root.lookup(
|
|
sympy.S.One, tree_node.root.numel
|
|
).symbol()
|
|
},
|
|
)
|
|
|
|
def combine_contiguous_dims(
|
|
self, index: sympy.Expr, tree: IterationRangesRoot
|
|
) -> sympy.Expr:
|
|
if expand_res := V.graph.sizevars.expand_floor_div(index):
|
|
new_index, denominator = expand_res # type: ignore[misc]
|
|
return FloorDiv(self._combine_contiguous_dims(new_index, tree), denominator)
|
|
else:
|
|
return self._combine_contiguous_dims(index, tree)
|
|
|
|
def _combine_contiguous_dims(
|
|
self, index: sympy.Expr, tree: IterationRangesRoot
|
|
) -> sympy.Expr:
|
|
"""
|
|
More aggressive simplification to merge contiguous dims
|
|
"""
|
|
if isinstance(index, (sympy.Integer, sympy.Symbol)):
|
|
return index
|
|
index_vars, sizes = tree.vars_and_sizes(index)
|
|
if len(sizes) <= 1:
|
|
return index
|
|
new_sizes, reindex, _prune = V.graph.sizevars._simplify_loops(
|
|
index_vars, sizes, index_prevent_reordering([index], index_vars, sizes)
|
|
)
|
|
if new_sizes == sizes:
|
|
return index
|
|
new_index_vars = tree.construct(new_sizes)
|
|
new_index = sympy_subs(index, dict(zip(index_vars, reindex(new_index_vars))))
|
|
return new_index
|
|
|
|
def disable_reduction(self) -> contextlib.AbstractContextManager[None]:
|
|
should_flush = self.range_trees[-1].is_loop or self.cooperative_reduction
|
|
|
|
@contextlib.contextmanager
|
|
def ctx():
|
|
if not self.features.is_reduction():
|
|
assert not self.inside_reduction
|
|
yield
|
|
return
|
|
if should_flush:
|
|
# calling codegen_body() will flush all the pending buffers
|
|
# and write out a reduction loop
|
|
self.codegen_body()
|
|
self.inside_reduction = False
|
|
try:
|
|
yield
|
|
if should_flush:
|
|
# flush out any code before opening the next loop
|
|
self.codegen_body()
|
|
finally:
|
|
self.inside_reduction = True
|
|
|
|
return ctx()
|
|
|
|
def set_ranges(self, *lengths: sympy.Expr) -> list[sympy.Symbol]:
|
|
assert len(lengths) == len(self.range_trees)
|
|
return [
|
|
ranges.construct(length)
|
|
for length, ranges in zip(lengths, self.range_trees)
|
|
]
|
|
|
|
@staticmethod
|
|
def _split_iteration_ranges(
|
|
groups: Iterable[sympy.Expr], lengths: Sequence[Sequence[sympy.Expr]]
|
|
) -> tuple[
|
|
list[list[sympy.Expr]], list[list[Callable[[list[sympy.Expr]], sympy.Expr]]]
|
|
]:
|
|
# Special case: if a node's sizes are ([], []), there's nothing to split.
|
|
if all(len(length) == 0 for length in lengths):
|
|
return [[] for group in groups], []
|
|
|
|
sv = V.graph.sizevars
|
|
new_ranges: list[list[sympy.Expr]] = [[] for _ in groups]
|
|
remaining = [sv.simplify(g) for g in groups]
|
|
var_count = itertools.count()
|
|
|
|
def add_range(i: int, expr: sympy.Expr) -> int:
|
|
expr = sv.simplify(expr)
|
|
if not sv.statically_known_multiple_of(remaining[i], expr):
|
|
raise CantSplit
|
|
# guard on the last item out
|
|
remaining[i] = FloorDiv(remaining[i], expr)
|
|
new_ranges[i].append(expr)
|
|
return next(var_count)
|
|
|
|
def make_combined(
|
|
size: sympy.Expr, idx1: int, idx2: int
|
|
) -> Callable[[list[sympy.Expr]], sympy.Expr]:
|
|
def getter(flat_vars: list[sympy.Expr]) -> sympy.Expr:
|
|
return size * flat_vars[idx1] + flat_vars[idx2]
|
|
|
|
return getter
|
|
|
|
return_getters_groups = []
|
|
current_group = 0
|
|
for length_group in lengths:
|
|
return_getters = []
|
|
for size in length_group:
|
|
if sv.statically_known_equals(size, 1): # type: ignore[arg-type]
|
|
return_getters.append(lambda _: sympy.S.Zero)
|
|
continue
|
|
|
|
while current_group < len(remaining) and sv.statically_known_equals(
|
|
remaining[current_group],
|
|
1, # type: ignore[arg-type]
|
|
):
|
|
# scroll to next group with remaining elements
|
|
current_group += 1
|
|
|
|
if current_group + 1 < len(remaining) and sv.statically_known_gt(
|
|
size, remaining[current_group]
|
|
):
|
|
# need to break size in two
|
|
if not sv.statically_known_multiple_of(
|
|
size, remaining[current_group]
|
|
):
|
|
raise CantSplit
|
|
|
|
size1 = remaining[current_group]
|
|
size2 = FloorDiv(size, remaining[current_group])
|
|
return_getters.append(
|
|
make_combined(
|
|
size2,
|
|
add_range(current_group, size1),
|
|
add_range(current_group + 1, size2),
|
|
)
|
|
)
|
|
else:
|
|
if current_group < len(remaining):
|
|
return_getters.append(
|
|
operator.itemgetter(add_range(current_group, size))
|
|
)
|
|
return_getters_groups.append(return_getters)
|
|
|
|
assert all(V.graph.sizevars.size_hint(s) == 1 for s in remaining), (
|
|
f"failed to set ranges {remaining} {lengths}"
|
|
)
|
|
|
|
return new_ranges, return_getters_groups
|
|
|
|
@classmethod
|
|
def prepare_split_iteration_lengths(
|
|
cls,
|
|
groups: Iterable[sympy.Expr],
|
|
lengths: Sequence[Sequence[sympy.Expr]],
|
|
reduction_numel: sympy.Expr = sympy.S.One,
|
|
) -> Sequence[Sequence[sympy.Expr]]:
|
|
"Fill in the reduction numel of lengths if missing"
|
|
sizevars = V.graph.sizevars
|
|
if len(lengths[1]) == 0 and (
|
|
not sizevars.statically_known_equals(reduction_numel, sympy.S.One)
|
|
and sizevars.statically_known_equals(
|
|
sympy_product(groups),
|
|
sympy_product(lengths[0]) * reduction_numel,
|
|
)
|
|
):
|
|
return (lengths[0], [reduction_numel])
|
|
|
|
return lengths
|
|
|
|
@classmethod
|
|
def is_compatible(
|
|
cls,
|
|
groups: Iterable[sympy.Expr],
|
|
lengths: Sequence[Sequence[sympy.Expr]],
|
|
reduction_numel: sympy.Expr = sympy.S.One,
|
|
) -> bool:
|
|
lengths = cls.prepare_split_iteration_lengths(groups, lengths, reduction_numel)
|
|
|
|
try:
|
|
cls._split_iteration_ranges(groups, lengths)
|
|
return True
|
|
except CantSplit:
|
|
return False
|
|
|
|
def split_and_set_ranges(
|
|
self, lengths: Sequence[Sequence[sympy.Expr]]
|
|
) -> list[list[sympy.Expr]]:
|
|
"""
|
|
Split and set iteration ranges for the kernel based on the provided lengths.
|
|
|
|
This method maps the kernel's tiling structure to the node's iteration space,
|
|
handling both pointwise and reduction dimensions appropriately.
|
|
|
|
Args:
|
|
lengths: A sequence of sequences of symbolic expressions representing
|
|
the sizes of different dimensions for each node.
|
|
|
|
Returns:
|
|
A list of lists of symbolic expressions representing the mapped
|
|
iteration variables for each dimension.
|
|
"""
|
|
# Create a dictionary mapping each range tree prefix to its total number of elements
|
|
tiling = {rt.prefix: rt.numel for rt in self.range_trees}
|
|
|
|
# If we're not inside a reduction loop, set all reduction dimensions to 1
|
|
# This effectively disables reduction dimensions when not needed
|
|
if not self.inside_reduction:
|
|
for prefix in tiling:
|
|
if prefix_is_reduction(prefix):
|
|
tiling[prefix] = sympy.S.One
|
|
|
|
# Extract the values from the tiling dictionary to create groups
|
|
groups = [*tiling.values()]
|
|
|
|
# Map the kernel's group structure to the node's sizes and set the ranges
|
|
# using the set_ranges method, returning the resulting iteration variables
|
|
return self.map_kernel_groups_to_node_sizes(groups, lengths, self.set_ranges)
|
|
|
|
@classmethod
|
|
def map_kernel_groups_to_node_sizes(
|
|
cls,
|
|
groups: Sequence[sympy.Expr],
|
|
lengths: Sequence[Sequence[sympy.Expr]],
|
|
set_ranges,
|
|
) -> list[list[sympy.Expr]]:
|
|
"""
|
|
We may want to fuse `for i0 in s0*s1` into a tiled kernel with groups (s0, s1).
|
|
|
|
To do this we need to split up the iteration space of i0 into something like:
|
|
for i1 in s0:
|
|
for i2 in s1:
|
|
i0 = i1*s1 + i2
|
|
....
|
|
|
|
This function matches and resplits lengths to the groups of
|
|
this kernel to enable tiled + non-tiled fusions.
|
|
"""
|
|
if len(lengths) == len(groups) and all(
|
|
V.graph.sizevars.simplify(sympy_product(x) - g) == 0
|
|
for x, g in zip(lengths, groups)
|
|
):
|
|
return set_ranges(*lengths)
|
|
|
|
new_ranges, return_getters_groups = cls._split_iteration_ranges(groups, lengths)
|
|
itervars = [*itertools.chain.from_iterable(set_ranges(*new_ranges))]
|
|
return [[fn(itervars) for fn in fns] for fns in return_getters_groups]
|
|
|
|
def is_indirect_indexing(self, index: sympy.Expr) -> bool:
|
|
# tmpX means indirect indexing
|
|
return free_symbol_is_type(index, SymT.TMP)
|
|
|
|
def is_broadcasted(self, index: sympy.Expr) -> bool:
|
|
# Note. This may not be correct when there is indirect indexing
|
|
if self.is_indirect_indexing(index):
|
|
return False
|
|
|
|
index_numels = [1] * len(self.numels)
|
|
for symbol in index.free_symbols:
|
|
if symbol not in self.range_tree_nodes:
|
|
# Non-iterated variables, e.g. strides
|
|
continue
|
|
entry = self.range_tree_nodes[symbol] # type: ignore[index]
|
|
assert isinstance(entry.parent, IterationRangesRoot)
|
|
index_numels[entry.parent.index] *= entry.length
|
|
|
|
# If the index variables only iterate over a subset of the kernel
|
|
# numels, then it must be broadcasted.
|
|
simplify = V.graph.sizevars.simplify
|
|
return any(
|
|
simplify(idx_range) != simplify(iter_range) # type: ignore[arg-type]
|
|
for idx_range, iter_range in zip(index_numels, self.numels.values())
|
|
)
|
|
|
|
def index_to_str(self, index: sympy.Expr) -> str:
|
|
"""
|
|
Convert an index expr to a string that can be used in output code.
|
|
e.g. a sympy expression "s2" may actually appear as "ks1" in the generated kernel.
|
|
|
|
Index expressions often need to be passed in as arguments to the triton kernel.
|
|
Rename_indexing and codegen_indexing keep track of the needed indices and add
|
|
new parameters to the function signature.
|
|
"""
|
|
if isinstance(index, list):
|
|
return f"[{', '.join(map(self.index_to_str, index))}]"
|
|
return self.kexpr(self.rename_indexing(index)) # type: ignore[call-arg]
|
|
|
|
def prepare_indexing(
|
|
self,
|
|
index: sympy.Expr,
|
|
) -> sympy.Expr:
|
|
index = self.simplify_indexing(index)
|
|
index = sympy_subs(index, V.graph.sizevars.precomputed_replacements)
|
|
# if simple replacements didn't get rid of floor/ceil, try full subs
|
|
if len(index.atoms(sympy.floor)) or len(index.atoms(sympy.ceiling)):
|
|
index = index.subs(V.graph.sizevars.precomputed_replacements)
|
|
# last resort, if no range vars are in the expr, hoist it
|
|
# TODO instead of trying to blindly find complicated exprs, we should hoist the
|
|
# inputs/outputs sizes and strides, but at the time indexing is generated
|
|
# kernel inputs and outputs are not set yet, we'd need a deeper refactor
|
|
# to do it this way
|
|
|
|
if len(index.atoms(sympy.ceiling)):
|
|
for a in index.atoms(sympy.ceiling):
|
|
# for nested exprs, atoms yields top level first (?)
|
|
# so if everything goes fine, lower level replacements will come up empty
|
|
symbols = a.free_symbols
|
|
if len(symbols) > 0 and all(
|
|
symbol_is_type(s, (SymT.SIZE, SymT.PRECOMPUTED_SIZE))
|
|
for s in symbols
|
|
):
|
|
replacements = {a: V.graph.sizevars.lookup_precomputed_size(a)}
|
|
index = sympy_subs(index, replacements)
|
|
|
|
simp_index = self.simplify_indexing(index)
|
|
|
|
# Now that we are done simplifying we can unwrap Identity so that downstream handling
|
|
# for its contained expression will work. previously, tl.full wrapping of sympy.Integer
|
|
# would not occur
|
|
simp_index = (
|
|
simp_index if not isinstance(simp_index, Identity) else simp_index.args[0]
|
|
)
|
|
|
|
return self.codegen_indexing(simp_index)
|
|
|
|
def active_range_trees(self) -> list[IterationRangesRoot]:
|
|
return [
|
|
t for t in self.range_trees if not t.is_reduction or self.inside_reduction
|
|
]
|
|
|
|
def codegen_indexing(self, expr: sympy.Expr) -> sympy.Expr:
|
|
expr = V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges())
|
|
for sym in sorted(expr.free_symbols, key=str):
|
|
if sym in self.range_tree_nodes:
|
|
# if indexing expression is complicated, we precompute it on the host side
|
|
# and send the result as a kernel argument
|
|
replacements = {}
|
|
for ps in self.range_tree_nodes[sym].precomputed_args(): # type: ignore[index]
|
|
replacements[ps] = V.graph.sizevars.lookup_precomputed_size(ps)
|
|
if len(replacements) > 0:
|
|
self.range_tree_nodes[sym].expr = sympy_subs( # type: ignore[index]
|
|
self.range_tree_nodes[sym].expr,
|
|
replacements, # type: ignore[index]
|
|
)
|
|
self.range_tree_nodes[sym].codegen() # type: ignore[index]
|
|
return expr
|
|
|
|
def codegen_nan_check(self) -> None:
|
|
raise NotImplementedError("NYI: codegen_nan_check")
|
|
|
|
def call_kernel(self, name: str, node: Optional[IRNode] = None) -> None:
|
|
raise NotImplementedError("NYI: call_kernel")
|
|
|
|
@contextlib.contextmanager
|
|
def mask_loads(
|
|
self, mask: Union[str, OpsWrapper], value: Union[int, float]
|
|
) -> Iterator[str]:
|
|
"""Context manager to add an additional mask to tl.load/store"""
|
|
prior = self._load_mask
|
|
prior_val = self._load_other
|
|
if prior:
|
|
mask = ops.logical_and(mask, prior)
|
|
|
|
mask = OpsWrapper._unwrap(mask)
|
|
self._load_mask = mask
|
|
self._load_other = value
|
|
try:
|
|
# TODO(jansel): do we need a reshape here?
|
|
yield mask
|
|
finally:
|
|
self._load_mask = prior
|
|
self._load_other = prior_val
|
|
|
|
def get_strides_of_load(self, index: sympy.Expr) -> dict[sympy.Symbol, sympy.Expr]:
|
|
"""
|
|
This gets the stride of the index for each of the tiling variables
|
|
(technically, it does it at index 0)
|
|
|
|
For example, if
|
|
xindex = x0 + 512*x1 + 1024*r0
|
|
x0 = (xindex//512)
|
|
x1 = (xindex % 512)
|
|
r0 = rindex // 1024
|
|
|
|
this function would return
|
|
{xindex: 512, rindex: 1024}
|
|
"""
|
|
index_to_tile_indexes = {k: v.expr for k, v in self.range_tree_nodes.items()}
|
|
index_in_tile_vars = sympy_subs(index, index_to_tile_indexes) # type: ignore[arg-type]
|
|
strides = {}
|
|
for range_tree in self.range_trees:
|
|
s = sympy_index_symbol(range_tree.name)
|
|
strides[s] = sympy_subs(index_in_tile_vars, {s: 1}) - sympy_subs(
|
|
index_in_tile_vars, {s: 0}
|
|
)
|
|
return strides
|
|
|
|
@staticmethod
|
|
def _map_tuple_or_scalar(fn, value):
|
|
if isinstance(value, tuple):
|
|
return tuple(map(fn, value))
|
|
return fn(value)
|
|
|
|
def estimate_flops(self) -> Optional[int]:
|
|
flops = [
|
|
node.estimate_flops()
|
|
for node in NodeScheduleMarker.only_nodes(self.features.node_schedule)
|
|
]
|
|
return sum(filter(None, flops))
|
|
|
|
def estimate_kernel_num_bytes(self):
|
|
"""
|
|
Try the best to estimate the total size (in bytes) of the
|
|
kernel's inputs and outputs, which is used for estimating the memory
|
|
throughput of this kernel. This information is used for checking how
|
|
far we are from the peak memory bandwidth. It's important that
|
|
we want to avoid overestimating the sizes of the inputs and outputs,
|
|
because it can wrongfully give us a very large memory traffic value,
|
|
which may be even larger than the theoretical bandwidth and thus
|
|
become very misleading. This is particularly problematic for cases
|
|
where we slice some inputs. In those cases, we should only count
|
|
the size of the "slices" instead of the original inputs, because
|
|
only the slices contribute to the real memory traffic.
|
|
"""
|
|
nbytes = []
|
|
ninplace_args = len(unique(self.args.inplace_buffers.values()))
|
|
_, call_args, _, _ = self.args.python_argdefs()
|
|
buf_accesses = self.features.buf_accesses()
|
|
|
|
# For pointwise and reduction kernels, this is the upper-bound numels
|
|
# for the output buffer.
|
|
# FIXME: This is not exactly right for cases like below:
|
|
# def foo(tensor0, tensor1):
|
|
# x0 = narrow(tensor0)
|
|
# return cat(x0, tensor1)
|
|
# For this example, we will end up overestimate the size for the
|
|
# slice s0. Potentially, we could have precise inputs information
|
|
# if we maintained the original inputs of the Pointwise kernel created
|
|
# for the "cat". However, I think it might be a bit overwhelming that
|
|
# we add such complexity only for handling some particular cases for
|
|
# benchmarking.
|
|
out_numel = V.graph.sizevars.size_hint(sympy_product(self.numels.values()))
|
|
for i, arg in enumerate(call_args):
|
|
# "buf" may be narrowed. In this case, the number of memory accesses
|
|
# should be estimated based on the reinterpreted layout.
|
|
# On the other hand, buf may be broadcasted. In this case,
|
|
# counting the size of the underline storage would give us
|
|
# a better estimation in terms of memory accesses.
|
|
if arg not in buf_accesses:
|
|
nbytes.append(0)
|
|
continue
|
|
arg_numel = V.graph.get_numel(arg)
|
|
buf_size = V.graph.sizevars.size_hint(arg_numel)
|
|
if buf_size > out_numel:
|
|
# This arg points to a buf that has been sliced.
|
|
# We need to count each individual slice to have
|
|
# a better estimation.
|
|
indices = OrderedSet[Any]()
|
|
no_index_dep_count = 0
|
|
for dep in buf_accesses[arg]:
|
|
if isinstance(dep, (StarDep, WeakDep)):
|
|
indices.add(f"no_index_dep_{no_index_dep_count}")
|
|
no_index_dep_count += 1
|
|
else:
|
|
indices.add(dep.index)
|
|
numel = len(indices) * out_numel
|
|
else:
|
|
numel = buf_size
|
|
dtype = V.graph.get_dtype(arg)
|
|
dtype_size = get_dtype_size(dtype)
|
|
nbytes.append(numel * dtype_size * (1 + int(i < ninplace_args)))
|
|
return sum(nbytes)
|
|
|
|
def warn_mix_layout(self, kernel_name):
|
|
"""
|
|
Print message if the kernel have mixed layout inputs.
|
|
Only care about 4D tensor for now.
|
|
"""
|
|
if (
|
|
len(self.args.input_buffers) == 1
|
|
and len(self.args.output_buffers) == 1
|
|
and len(self.args.inplace_buffers) == 0
|
|
):
|
|
# even if input buffer and output buffer have different layout,
|
|
# this can be a layout conversion kernel. No need to warn for
|
|
# the mix layouts.
|
|
return
|
|
|
|
argdefs, call_args, _signature, _ = self.args.python_argdefs()
|
|
uniform_stride_order = None
|
|
for arg_name in call_args:
|
|
buf = V.graph.try_get_buffer(arg_name)
|
|
if not buf:
|
|
continue
|
|
layout = buf.get_layout()
|
|
if len(layout.size) == 4:
|
|
# ignore the tensor if only 1 dimension is non-zero
|
|
if len([x for x in layout.size if x == 1]) == 3:
|
|
continue
|
|
stride_order = ir.get_stride_order(layout.stride)
|
|
if uniform_stride_order is None:
|
|
uniform_stride_order = stride_order
|
|
elif uniform_stride_order != stride_order:
|
|
msg = yellow_text(
|
|
f"Expected stride order {uniform_stride_order}, but found stride order"
|
|
+ f" {stride_order} for kernel {kernel_name}"
|
|
)
|
|
log.warning(msg)
|
|
|
|
stride_order_list = [
|
|
ir.get_stride_order(
|
|
V.graph.get_buffer(name).get_layout().stride
|
|
)
|
|
if V.graph.try_get_buffer(name)
|
|
else None
|
|
for name in call_args
|
|
]
|
|
size_list = [
|
|
V.graph.get_buffer(name).get_layout().size
|
|
if V.graph.try_get_buffer(name)
|
|
else None
|
|
for name in call_args
|
|
]
|
|
source_list = [
|
|
"GraphInput"
|
|
if name in V.graph.graph_inputs
|
|
else "IntermediateBuffer"
|
|
if name in V.graph.name_to_buffer
|
|
else None
|
|
for name in call_args
|
|
]
|
|
|
|
argdef_names = [x.name for x in argdefs]
|
|
msg = yellow_text(
|
|
f" param names {argdef_names}\n buf names {call_args}\n strides {stride_order_list}"
|
|
+ f"\n sizes {size_list}\n sources {source_list}\n"
|
|
)
|
|
log.warning(msg)
|
|
return
|
|
msg = green_text(
|
|
f"All the inputs for the triton kernel {kernel_name} have uniform layout"
|
|
)
|
|
log.warning(msg)
|
|
|
|
def welford_reduce_fallback(self, dtype, value):
|
|
sum_ = ops.reduction(dtype, dtype, "sum", value)
|
|
self.inside_reduction = False
|
|
rnumel = ops.index_expr(self.features.reduction_numel, dtype)
|
|
mean = ops.truediv(sum_, rnumel)
|
|
|
|
self.inside_reduction = True
|
|
dx = ops.sub(value, mean)
|
|
dx2 = ops.mul(dx, dx)
|
|
m2 = ops.reduction(dtype, dtype, "sum", dx2)
|
|
return OpsWrapper._unwrap((mean, m2, rnumel))
|
|
|
|
def prepare_softmax_twopass_fallback(self, dtype, value):
|
|
vmax = ops.reduction(dtype, dtype, "max", value)
|
|
sub = ops.sub(value, vmax)
|
|
exp = ops.exp(sub)
|
|
vsum = ops.reduction(dtype, dtype, "sum", exp)
|
|
return OpsWrapper._unwrap((vmax, vsum))
|
|
|
|
def codegen_kernel(self):
|
|
raise NotImplementedError
|
|
|
|
def codegen_body(self):
|
|
pass
|
|
|
|
def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry):
|
|
pass
|
|
|
|
|
|
class SIMDScheduling(BaseScheduling):
|
|
"""
|
|
Single Instruction Multiple Data parent class used for fusion across
|
|
multiple different backends.
|
|
"""
|
|
|
|
kernel_type: type[Any] = SIMDKernel # override in subclass
|
|
|
|
def group_fn(self, sizes):
|
|
return tuple(V.graph.sizevars.simplify(sympy_product(s)) for s in sizes)
|
|
|
|
def can_fuse(self, node1, node2):
|
|
"""
|
|
Hook called by Scheduler to determine if the Triton backend
|
|
can fuse node1 and node2. These nodes might already be
|
|
FusedSchedulerNodes.
|
|
"""
|
|
if isinstance(node1, scheduler.ForeachKernelSchedulerNode) or isinstance(
|
|
node2, scheduler.ForeachKernelSchedulerNode
|
|
):
|
|
return scheduler.ForeachKernelSchedulerNode.can_fuse(node1, node2)
|
|
|
|
_, (numel1, rnumel1) = node1.group
|
|
_, (numel2, rnumel2) = node2.group
|
|
why = WhyNoFuse(node1, node2)
|
|
|
|
if node1.is_split_scan() and not node2.is_split_scan():
|
|
if node2.is_reduction():
|
|
why("Split scan cannot fuse with reductions")
|
|
elif node2.is_split_scan() and not node1.is_split_scan():
|
|
if node1.is_reduction():
|
|
why("Split scan cannot fuse with reductions")
|
|
|
|
if node1.is_reduction() and node2.is_reduction():
|
|
reduction_can_fuse = numel1 == numel2 and rnumel1 == rnumel2
|
|
if not reduction_can_fuse:
|
|
why(
|
|
"numel/rnumel mismatch (reduce) (%s, %s), (%s, %s)",
|
|
numel1,
|
|
numel2,
|
|
rnumel1,
|
|
rnumel2,
|
|
)
|
|
return reduction_can_fuse
|
|
|
|
if not node1.is_reduction() and not node2.is_reduction():
|
|
if not (numel1 == numel2 and rnumel1 == rnumel2):
|
|
if not node2.is_template():
|
|
why(
|
|
"numel/rnumel mismatch (non-reduce) (%s, %s), (%s, %s)",
|
|
numel1,
|
|
numel2,
|
|
rnumel1,
|
|
rnumel2,
|
|
)
|
|
return False
|
|
else:
|
|
# prologue fusion input sizes differ from output group
|
|
# fuse so long as this node matches the group of existing prologue nodes
|
|
for node in node2.get_nodes():
|
|
# dont need to check epilogue nodes for prologue fusion, break after template
|
|
if node.is_template():
|
|
break
|
|
# we would have already restricted prologue from fusing if it had multiple
|
|
# uses, so it must be fusing into this node
|
|
if not node.used_buffer_names() & node1.get_buffer_names():
|
|
continue
|
|
_, (pro_numel, pro_rnumel) = node.group
|
|
if not (numel1 == pro_numel and rnumel1 == pro_rnumel):
|
|
why(
|
|
"numel/rnumel mismatch prologue mismatch (%s, %s), (%s, %s)",
|
|
numel1,
|
|
pro_numel,
|
|
rnumel1,
|
|
pro_rnumel,
|
|
)
|
|
return False
|
|
|
|
for n in (node1, node2):
|
|
if n.is_template():
|
|
return True
|
|
|
|
# check for a bad combined tiling
|
|
tiling1 = self.select_tiling(node1.get_nodes(), numel1, rnumel1)
|
|
tiling2 = self.select_tiling(node2.get_nodes(), numel1, rnumel1)
|
|
tiling3 = self.select_tiling(
|
|
node1.get_nodes() + node2.get_nodes(), numel1, rnumel1
|
|
)
|
|
if config.triton.tiling_prevents_pointwise_fusion:
|
|
cond = True
|
|
if len(tiling1) > 2:
|
|
if len(tiling2) > 2:
|
|
cond = tiling1 == tiling2 == tiling3
|
|
else:
|
|
cond = tiling1 == tiling3
|
|
elif len(tiling2) > 2:
|
|
cond = tiling2 == tiling3
|
|
if not cond:
|
|
why(
|
|
"tiling mismatch (%s, %s, %s)",
|
|
tiling1,
|
|
tiling2,
|
|
tiling3,
|
|
)
|
|
return False
|
|
|
|
return True
|
|
|
|
if not node1.is_reduction() and node2.is_reduction():
|
|
assert rnumel1 == 1 and rnumel2 != 1
|
|
if numel1 == numel2 * rnumel2:
|
|
if not all(
|
|
SIMDKernel.is_compatible((numel2, rnumel2), n.get_ranges())
|
|
for n in node1.get_nodes()
|
|
):
|
|
why("nodes numel/rnumel incompatibility")
|
|
return False
|
|
if (
|
|
config.triton.tiling_prevents_reduction_fusion
|
|
and not node1.is_template()
|
|
):
|
|
is_reduction_tiling_valid = tuple(
|
|
self.select_tiling(node1.get_nodes(), numel1).values()
|
|
) in (
|
|
(numel1, 1),
|
|
(numel2, rnumel2, 1),
|
|
)
|
|
if not is_reduction_tiling_valid:
|
|
why("invalid tiling for reduction")
|
|
return is_reduction_tiling_valid
|
|
return True
|
|
|
|
if numel1 != numel2:
|
|
why("nodes numel incompatibility")
|
|
return numel1 == numel2
|
|
|
|
assert node1.is_reduction() and not node2.is_reduction()
|
|
# swap args to hit the case above
|
|
return self.can_fuse_horizontal(node2, node1)
|
|
|
|
can_fuse_vertical = can_fuse
|
|
can_fuse_horizontal = can_fuse
|
|
|
|
def generate_node_schedule(self, nodes, numel, rnumel):
|
|
node_schedule: list[Any] = []
|
|
done = OrderedSet[scheduler.BaseSchedulerNode]()
|
|
# Writes with a reduced shape, meaning they are only present once the
|
|
# reduction loop has ended
|
|
not_ready_yet_nodes: OrderedSet[str] = OrderedSet()
|
|
current_loop_buffer_usage: OrderedSet[str] = OrderedSet()
|
|
maybe_split_index: Optional[int] = None
|
|
|
|
def fits_in_main_body(n):
|
|
_, (node_numel, node_rnumel) = n.group
|
|
return (node_numel == numel and node_rnumel == rnumel) or (
|
|
node_numel == numel * rnumel and node_rnumel == 1
|
|
)
|
|
|
|
def fits_outside_reduction(n):
|
|
_, (node_numel, node_rnumel) = n.group
|
|
return node_numel == numel and node_rnumel == 1 and rnumel != 1
|
|
|
|
def expect_improved_memory_usage(n):
|
|
for read in n.read_writes.reads:
|
|
if read.name in current_loop_buffer_usage:
|
|
return True
|
|
return False
|
|
|
|
def schedule_node_in_loop(n):
|
|
done.add(n)
|
|
node_schedule.append(n)
|
|
current_loop_buffer_usage.update([x.name for x in n.read_writes.reads])
|
|
|
|
# A scan is modelled as a reduction in the scheduler but has a
|
|
# full sized output that can be used inside the loop body
|
|
if (
|
|
n.is_reduction()
|
|
and isinstance(n, scheduler.SchedulerNode)
|
|
and isinstance(n.node, ir.ComputedBuffer)
|
|
and not isinstance(n.node.data, ir.Scan)
|
|
):
|
|
not_ready_yet_nodes.add(n.get_name())
|
|
else: # this node is available within the loop
|
|
current_loop_buffer_usage.update([x.name for x in n.read_writes.writes])
|
|
|
|
@contextlib.contextmanager
|
|
def end_current_reduction_loop():
|
|
nonlocal maybe_split_index
|
|
if node_schedule and node_schedule[-1] is EnableReduction:
|
|
node_schedule.pop()
|
|
else:
|
|
node_schedule.append(DisableReduction)
|
|
if maybe_split_index:
|
|
node_schedule.insert(maybe_split_index, DisableReduction)
|
|
node_schedule.insert(maybe_split_index + 1, EnableReduction)
|
|
maybe_split_index = None
|
|
yield
|
|
node_schedule.append(EnableReduction)
|
|
not_ready_yet_nodes.clear()
|
|
current_loop_buffer_usage.clear()
|
|
|
|
def requires_closing_previous_reduction(node, node_schedule):
|
|
if rnumel == 1:
|
|
return False
|
|
if not not_ready_yet_nodes & node.ancestors:
|
|
return False
|
|
assert node_schedule and not isinstance(
|
|
node_schedule[-1], (EnableReduction, DisableReduction)
|
|
)
|
|
return bool(not_ready_yet_nodes)
|
|
|
|
for node in nodes:
|
|
if node in done:
|
|
continue
|
|
done.add(node)
|
|
|
|
if fits_in_main_body(node):
|
|
if requires_closing_previous_reduction(node, node_schedule):
|
|
with end_current_reduction_loop():
|
|
pass # need to start a new reduction loop
|
|
|
|
if current_loop_buffer_usage and not expect_improved_memory_usage(node):
|
|
# If we don't improve memory usage, then it is better to split into two loops
|
|
maybe_split_index = maybe_split_index or len(node_schedule)
|
|
else:
|
|
# Memory usage got improved, cancel the loop split
|
|
maybe_split_index = None
|
|
|
|
schedule_node_in_loop(node)
|
|
elif fits_outside_reduction(node):
|
|
with end_current_reduction_loop():
|
|
node_schedule.append(node)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"unexpected group: ({numel}, {rnumel}) != {node.group[1]}"
|
|
)
|
|
|
|
return node_schedule
|
|
|
|
def codegen_node(
|
|
self, node: Union[scheduler.FusedSchedulerNode, scheduler.SchedulerNode]
|
|
):
|
|
"""
|
|
Given a set of pre-fused nodes, generate a Triton kernel.
|
|
"""
|
|
|
|
nodes: list[scheduler.SchedulerNode] = node.get_nodes() # type: ignore[assignment]
|
|
|
|
if torch._inductor.config.triton.coalesce_tiling_analysis:
|
|
coalesce_analysis = analyze_memory_coalescing(node)
|
|
else:
|
|
coalesce_analysis = None
|
|
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
|
|
|
|
node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
|
|
schedule_log.debug("Schedule:\n %s", node_schedule)
|
|
|
|
return self.codegen_node_schedule(
|
|
SIMDKernelFeatures(node_schedule, numel, rnumel, coalesce_analysis)
|
|
)
|
|
|
|
@staticmethod
|
|
def can_use_32bit_indexing(
|
|
numel: sympy.Expr,
|
|
buffers: Iterable[
|
|
Union[ir.Buffer, ir.TensorBox, ir.TorchBindObject, ir.IRNode]
|
|
],
|
|
) -> bool:
|
|
int_max = torch.iinfo(torch.int32).max
|
|
|
|
if not expr_fits_within_32bit(numel):
|
|
return False
|
|
|
|
# Any use of a MultiOutputLayout will create a buffer with a
|
|
# Layout whose sizes are accounted for
|
|
buf_sizes = [
|
|
buf.get_layout().storage_size()
|
|
for buf in buffers
|
|
if buf.has_tensor_output()
|
|
]
|
|
|
|
if not all(expr_fits_within_32bit(size) for size in buf_sizes):
|
|
return False
|
|
|
|
# Only install guards for 32-bit indexing as there is no correctness
|
|
# issue with using 64-bit for everything
|
|
V.graph.sizevars.check_leq(numel, int_max) # type: ignore[arg-type]
|
|
for size in buf_sizes:
|
|
V.graph.sizevars.check_leq(size, int_max) # type: ignore[arg-type]
|
|
return True
|
|
|
|
def codegen_node_schedule(self, kernel_features: SIMDKernelFeatures):
|
|
node_schedule = kernel_features.node_schedule
|
|
|
|
tiling, tiling_score = self.get_tiling_and_scores(
|
|
node_schedule,
|
|
kernel_features.numel,
|
|
kernel_features.reduction_numel,
|
|
kernel_features.coalesce_analysis,
|
|
)
|
|
kernels = self.create_kernel_choices(
|
|
kernel_features,
|
|
[tiling],
|
|
{"features": kernel_features, "tiling_scores": tiling_score},
|
|
)
|
|
for kernel in kernels:
|
|
self.codegen_node_schedule_with_kernel(node_schedule, kernel)
|
|
MultiKernel.merge_workspaces_inplace(kernels)
|
|
for kernel in kernels:
|
|
with V.set_kernel_handler(kernel):
|
|
src_code = kernel.codegen_kernel()
|
|
kernel_name = self.define_kernel(src_code, node_schedule, kernel)
|
|
if config.trace.enabled:
|
|
set_kernel_post_grad_provenance_tracing(
|
|
node_schedule, # type: ignore[arg-type]
|
|
kernel_name,
|
|
)
|
|
log.debug("Generating kernel code with kernel_name: %s", kernel_name)
|
|
kernel.kernel_name = kernel_name
|
|
kernel.code_hash = code_hash(src_code)
|
|
del kernel
|
|
|
|
final_kernel: Union[SIMDKernel, MultiKernel]
|
|
if len(kernels) > 1:
|
|
final_kernel = MultiKernel(kernels)
|
|
else:
|
|
(final_kernel,) = kernels
|
|
|
|
with V.set_kernel_handler(final_kernel):
|
|
for node in kernel_features.scheduler_nodes():
|
|
node.mark_run()
|
|
|
|
self.codegen_comment(node_schedule)
|
|
final_kernel.call_kernel(final_kernel.kernel_name)
|
|
|
|
if config.nan_asserts:
|
|
final_kernel.codegen_nan_check()
|
|
if config.warn_mix_layout:
|
|
final_kernel.warn_mix_layout(kernels[0].kernel_name)
|
|
|
|
V.graph.removed_buffers |= final_kernel.removed_buffers
|
|
V.graph.inplaced_to_remove |= final_kernel.inplaced_to_remove
|
|
|
|
if (
|
|
V.graph.wrapper_code.supports_intermediate_hooks # type: ignore[has-type]
|
|
and config.generate_intermediate_hooks
|
|
):
|
|
# Not every node in the schedule will actually be live on output;
|
|
# we can't check dead buffers.
|
|
live_outs = kernels[0].args.live_output_buffers()
|
|
for node in kernel_features.scheduler_nodes():
|
|
name = node.get_name()
|
|
if name not in live_outs:
|
|
continue
|
|
assert node.node is not None
|
|
origin_node = node.node.get_origin_node()
|
|
if origin_node is not None:
|
|
counters["inductor"]["intermediate_hooks"] += 1
|
|
V.graph.wrapper_code.writeline(
|
|
f"run_intermediate_hooks({origin_node.name!r}, {name})"
|
|
)
|
|
|
|
self.free_buffers_in_scheduler()
|
|
|
|
def create_kernel_choices(
|
|
self, kernel_features: SIMDKernelFeatures, kernel_args, kernel_kwargs
|
|
) -> list[SIMDKernel]:
|
|
return [
|
|
self.kernel_type(
|
|
*kernel_args,
|
|
**kernel_kwargs,
|
|
)
|
|
]
|
|
|
|
def codegen_node_schedule_with_kernel(self, node_schedule, kernel):
|
|
with kernel:
|
|
stack = contextlib.ExitStack()
|
|
all_indexing = {}
|
|
|
|
# First pass to collect indexing and decide inplace updates
|
|
for node in node_schedule:
|
|
if node is DisableReduction:
|
|
stack.enter_context(kernel.disable_reduction())
|
|
elif node is EnableReduction:
|
|
stack.close()
|
|
else:
|
|
node.decide_inplace_update()
|
|
index_vars = kernel.split_and_set_ranges(node.get_ranges())
|
|
all_indexing.update(
|
|
dict.fromkeys(
|
|
node._body.indexing_from_args(index_vars).values()
|
|
)
|
|
)
|
|
|
|
kernel.finalize_indexing(all_indexing.keys())
|
|
|
|
# Second pass to do codegen
|
|
for node in node_schedule:
|
|
if node is DisableReduction:
|
|
stack.enter_context(kernel.disable_reduction())
|
|
elif node is EnableReduction:
|
|
stack.close()
|
|
else:
|
|
# TODO - use split ranges ?
|
|
indexing_dtype_strength_reduction(node._body)
|
|
index_vars = kernel.split_and_set_ranges(node.get_ranges())
|
|
node.codegen(index_vars)
|
|
|
|
def codegen_template(
|
|
self, template_node, epilogue_nodes, prologue_nodes, *, only_gen_src_code=False
|
|
) -> Optional[str]:
|
|
"""
|
|
Codegen a triton template
|
|
|
|
If `only_gen_src_code` the src code will be returned instead of codegen'd into the wrapper
|
|
"""
|
|
_, (_numel, rnumel) = template_node.group
|
|
assert rnumel == 1
|
|
kernel, render = template_node.node.make_kernel_render(template_node.node)
|
|
|
|
buf_name_to_prologue_group = {}
|
|
template_reads = template_node.used_buffer_names()
|
|
prologue_group = []
|
|
for prologue in prologue_nodes:
|
|
names = prologue.get_buffer_names()
|
|
prologue_group.append(prologue)
|
|
# this must be the end of a prologue group
|
|
if names & template_reads:
|
|
assert len(names) == 1
|
|
buf_name_to_prologue_group[next(iter(names))] = prologue_group
|
|
kernel.prologue_fused_inputs.add(next(iter(names)))
|
|
prologue_group = []
|
|
|
|
# all prologue groups should have finalized with use in template
|
|
assert len(prologue_group) == 0
|
|
|
|
with kernel:
|
|
if not only_gen_src_code:
|
|
# prologue nodes can only be fused if their only use is in the template,
|
|
# so they are necessarily not allocated
|
|
for node in [template_node, *epilogue_nodes]:
|
|
node.mark_run()
|
|
|
|
partial_code = render()
|
|
|
|
with kernel.set_subgraph_body("<STORE_OUTPUT>"):
|
|
for node in epilogue_nodes:
|
|
node.codegen(kernel.split_and_set_ranges(node.get_ranges()))
|
|
kernel.cse.invalidate(OrderedSet())
|
|
|
|
for input_name, buffer in kernel.named_input_nodes.items():
|
|
subgraph_name = f"<LOAD_INPUT_{input_name}>"
|
|
if prologue_group := buf_name_to_prologue_group.get(
|
|
buffer.get_name(), []
|
|
):
|
|
can_codegen_without_upcast = all(
|
|
p_n.can_codegen_without_upcasts() for p_n in prologue_group
|
|
)
|
|
|
|
# TODO - this doesn't work with libdevice calls, potentially other bugs
|
|
# upcasting to fp32 and downcasting gives large slowdown
|
|
with config.patch(
|
|
"triton.codegen_upcast_to_fp32", not can_codegen_without_upcast
|
|
):
|
|
with kernel.set_subgraph_body(subgraph_name):
|
|
for prologue_node in prologue_group:
|
|
if (
|
|
len(prologue_node.get_buffer_names()) == 1
|
|
and len(prologue_group) == 1
|
|
):
|
|
if prologue_preserves_zero_mask(prologue_node):
|
|
kernel.prologue_fused_inputs_preserve_zero |= (
|
|
prologue_node.get_buffer_names()
|
|
)
|
|
|
|
prologue_node.codegen(
|
|
kernel.split_and_set_ranges(
|
|
prologue_node.get_ranges()
|
|
)
|
|
)
|
|
kernel.cse.invalidate(OrderedSet())
|
|
|
|
if not isinstance(partial_code, str):
|
|
# This is used to calculate flops in TritonTemplateKernels
|
|
with ir.IRNode.current_origins(template_node.node.origins):
|
|
partial_code.finalize_hook("<DEF_KERNEL>")
|
|
partial_code.finalize_hook("<ARGDEFS>", strict=False)
|
|
# finalize must be called after adding epilogue above
|
|
|
|
with V.set_kernel_handler(kernel):
|
|
# TODO: Maybe unify CUDATemplateKernel to also use PartialRender for flexible epilogue fusion.
|
|
|
|
for input_name in kernel.named_input_nodes.keys():
|
|
subgraph_name = f"<LOAD_INPUT_{input_name}>"
|
|
partial_code.finalize_hook(subgraph_name, strict=False)
|
|
|
|
with kernel.set_subgraph_body("<STORE_OUTPUT>"):
|
|
if isinstance(partial_code, str):
|
|
src_code = partial_code
|
|
else:
|
|
partial_code.finalize_hook("<STORE_OUTPUT>")
|
|
src_code = partial_code.code
|
|
node_schedule = [*prologue_nodes, template_node, *epilogue_nodes]
|
|
|
|
if config.benchmark_kernel:
|
|
num_gb = kernel.estimate_kernel_num_bytes() / 1e9
|
|
src_code = (
|
|
f"{kernel.imports_for_benchmark_kernel()}\n"
|
|
f"{src_code}\n"
|
|
f"{kernel.codegen_kernel_benchmark(num_gb).getvalue()}"
|
|
)
|
|
|
|
if only_gen_src_code:
|
|
return src_code
|
|
|
|
kernel_name = self.define_kernel(src_code, node_schedule, kernel)
|
|
|
|
if config.trace.enabled:
|
|
set_kernel_post_grad_provenance_tracing(node_schedule, kernel_name)
|
|
|
|
self.codegen_comment(node_schedule)
|
|
kernel.call_kernel(kernel_name, template_node.node)
|
|
|
|
V.graph.removed_buffers |= kernel.removed_buffers
|
|
V.graph.inplaced_to_remove |= kernel.inplaced_to_remove
|
|
self.free_buffers_in_scheduler()
|
|
return None
|
|
|
|
def codegen_sync(self):
|
|
V.graph.wrapper_code.writeline(V.graph.device_ops.synchronize())
|
|
|
|
def generate_combo_kernel_code(
|
|
self,
|
|
subkernel_nodes: list[BaseSchedulerNode],
|
|
custom_part_algorithm: bool,
|
|
enable_autotune: bool,
|
|
mixed_sizes: bool,
|
|
only_gen_src_code: bool = False,
|
|
) -> list[tuple[str, Any, Any]]:
|
|
from .triton_combo_kernel import ComboKernel
|
|
|
|
fused_node_lists = [node.get_nodes() for node in subkernel_nodes]
|
|
subkernel_map, node_schedule_map = {}, {}
|
|
for pn, nodes in zip(subkernel_nodes, fused_node_lists):
|
|
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
|
|
node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
|
|
tiling = self.select_tiling(node_schedule, numel, rnumel)
|
|
node_schedule_map[pn] = node_schedule, tiling, numel, rnumel
|
|
subkernel_map[pn] = ComboKernel.create_triton_kernel(
|
|
tiling,
|
|
features=SIMDKernelFeatures(node_schedule, numel, rnumel),
|
|
optimize_mask=not mixed_sizes,
|
|
)
|
|
|
|
partitions = ComboKernel.horizontal_partition(
|
|
nodes=subkernel_nodes,
|
|
triton_scheduling=self,
|
|
custom_algorithm=custom_part_algorithm,
|
|
kernel_map=subkernel_map,
|
|
node_info_map=node_schedule_map,
|
|
)
|
|
log.debug(
|
|
"ComboKernels: %d nodes partitioned into %s groups",
|
|
len(subkernel_nodes),
|
|
[len(p) for p in partitions],
|
|
)
|
|
kernel_code_list = []
|
|
for node_group in partitions:
|
|
fused_node_lists = [node.get_nodes() for node in node_group]
|
|
kernel = ComboKernel(
|
|
enable_autotune=enable_autotune,
|
|
mixed_sizes=mixed_sizes,
|
|
)
|
|
|
|
for pn, nodes in zip(node_group, fused_node_lists):
|
|
self.codegen_node_schedule_with_kernel(
|
|
node_schedule_map[pn][0],
|
|
kernel.create_sub_kernel(subkernel_map[pn]),
|
|
)
|
|
subkernel = subkernel_map[pn]
|
|
node_schedule = node_schedule_map[pn][0]
|
|
if not only_gen_src_code:
|
|
with V.set_kernel_handler(subkernel): # type: ignore[call-arg]
|
|
for node in NodeScheduleMarker.only_nodes(node_schedule):
|
|
node.mark_run()
|
|
V.graph.removed_buffers |= subkernel.removed_buffers
|
|
V.graph.inplaced_to_remove |= subkernel.inplaced_to_remove
|
|
|
|
src_code = kernel.codegen_kernel()
|
|
kernel_code_list.append((src_code, kernel, node_group))
|
|
return kernel_code_list
|
|
|
|
def codegen_combo_kernel(self, combo_kernel_node):
|
|
subkernel_nodes = combo_kernel_node.get_subkernel_nodes()
|
|
custom_part_algorithm = combo_kernel_node.use_custom_partition_algo
|
|
enable_autotune = combo_kernel_node.enable_autotune
|
|
mixed_sizes = config.combo_kernel_allow_mixed_sizes > 1 or (
|
|
config.combo_kernel_allow_mixed_sizes == 1 and custom_part_algorithm
|
|
)
|
|
|
|
kernel_code_list = self.generate_combo_kernel_code(
|
|
subkernel_nodes, custom_part_algorithm, enable_autotune, mixed_sizes
|
|
)
|
|
|
|
for src_code, kernel, _ in kernel_code_list:
|
|
kernel_name = self.define_kernel(src_code, [combo_kernel_node], kernel)
|
|
# dump provenance node info for ComboKernelNode/ForeachKernel type
|
|
if config.trace.enabled:
|
|
set_kernel_post_grad_provenance_tracing(
|
|
combo_kernel_node.snodes, kernel_name
|
|
)
|
|
self.codegen_comment([combo_kernel_node])
|
|
log.debug("ComboKernels: generated kernel %s.", kernel_name)
|
|
kernel.call_kernel(V.graph.wrapper_code, kernel_name)
|
|
|
|
self.free_buffers_in_scheduler()
|
|
|
|
@classmethod
|
|
@functools.lru_cache(32)
|
|
def candidate_tilings(cls, node, numel, reduction_numel) -> list[CandidateTiling]:
|
|
is_pointwise = reduction_numel == 1
|
|
|
|
def tile_ranges(is_pointwise: bool, ranges, rw) -> list[CandidateTiling]:
|
|
"""
|
|
Compute tiling candidates by dividing up the iteration ranges.
|
|
"""
|
|
assert len(rw.range_vars) == len(ranges), f"{rw.range_vars=} {ranges=}"
|
|
|
|
# isinstance(dep, MemoryDep): this filters out StarDeps. StarDeps refer to reads
|
|
# that need to access the entire tensor; they don't contribute read indexing
|
|
# information (and practically, they don't have dep.index so they can't be used
|
|
# for stride_hints below
|
|
dep_sources = [rw.reads, rw.writes]
|
|
assert all(
|
|
isinstance(dep, (MemoryDep, StarDep))
|
|
for dep in itertools.chain.from_iterable(dep_sources)
|
|
)
|
|
deps = [
|
|
dep
|
|
for dep in itertools.chain.from_iterable(dep_sources)
|
|
if dep.name not in V.graph.removed_buffers
|
|
and isinstance(dep, MemoryDep)
|
|
]
|
|
write_names = OrderedSet([dep.name for dep in rw.writes])
|
|
|
|
def collapse_ranges(ranges: Sequence[sympy.Expr]) -> sympy.Expr:
|
|
return V.graph.sizevars.simplify(sympy_product(ranges))
|
|
|
|
# Default to no tiling.
|
|
tilings = [
|
|
CandidateTiling(
|
|
tiling=cls.create_partial_tiling(
|
|
[collapse_ranges(ranges)], is_pointwise
|
|
),
|
|
name="none",
|
|
score=0,
|
|
)
|
|
]
|
|
|
|
# Find non-trivial tiling candidates.
|
|
for dep in deps:
|
|
strides = V.graph.sizevars.stride_hints(dep.index, rw.range_vars)
|
|
assert len(strides) == len(ranges)
|
|
try:
|
|
split = strides.index(1) + 1
|
|
if split == len(ranges):
|
|
continue
|
|
if all(s == 0 for s in strides[split:]):
|
|
# if this is a broadcasted tensor and all dimensions after split are broadcast,
|
|
# this is not a real split
|
|
continue
|
|
|
|
except ValueError:
|
|
continue
|
|
|
|
tiled_groups = (
|
|
collapse_ranges(ranges[:split]),
|
|
collapse_ranges(ranges[split:]),
|
|
)
|
|
|
|
# score by number of elements
|
|
score = V.graph.sizevars.size_hint(
|
|
sympy_product(
|
|
size for size, stride in zip(ranges, strides) if stride != 0
|
|
)
|
|
)
|
|
if dep.name in write_names:
|
|
# ngimel said contiguous writes is more important than reads
|
|
score *= 2
|
|
if CandidateTiling.is_good_size(tiled_groups[0]):
|
|
score *= 2
|
|
if CandidateTiling.is_good_size(tiled_groups[1]):
|
|
score *= 2
|
|
|
|
if (
|
|
V.graph.sizevars.size_hint(
|
|
score - sympy_product(itertools.chain(ranges, reduction_ranges))
|
|
)
|
|
>= 0
|
|
):
|
|
tilings.append(
|
|
CandidateTiling(
|
|
tiling=cls.create_partial_tiling(
|
|
[
|
|
collapse_ranges(ranges[:split]),
|
|
collapse_ranges(ranges[split:]),
|
|
],
|
|
reduction_numel,
|
|
),
|
|
score=score,
|
|
name=dep.name,
|
|
)
|
|
)
|
|
|
|
return tilings
|
|
|
|
pointwise_ranges, reduction_ranges = node.get_ranges()
|
|
if (
|
|
len(pointwise_ranges) <= 1
|
|
and len(reduction_ranges) <= 1
|
|
or free_unbacked_symbols(pointwise_ranges + reduction_ranges)
|
|
):
|
|
return []
|
|
|
|
# Tile either pointwise or reduction dims.
|
|
pointwise_ranges, reduction_ranges = node.get_ranges()
|
|
partial_tilings = tile_ranges(
|
|
is_pointwise,
|
|
pointwise_ranges if is_pointwise else reduction_ranges,
|
|
node.pointwise_or_reduction_read_writes(is_pointwise),
|
|
)
|
|
|
|
# Fill in the missing ranges.
|
|
full_tilings = [
|
|
CandidateTiling(
|
|
tiling=cls.complete_partial_tiling(
|
|
tiling.tiling, numel, reduction_numel
|
|
),
|
|
score=tiling.score,
|
|
name=tiling.name,
|
|
)
|
|
for tiling in partial_tilings
|
|
]
|
|
|
|
return full_tilings
|
|
|
|
@classmethod
|
|
def create_tiling(
|
|
cls, pw_tiling: Sequence[sympy.Expr], reduction_tiling: Sequence[sympy.Expr]
|
|
) -> dict[str, sympy.Expr]:
|
|
"""
|
|
Create a tiling dict from pointwise and reduction splits.
|
|
"""
|
|
pw_prefixes = ["z", "y", "x"][-len(pw_tiling) :]
|
|
reduction_prefixes = ["r0_", "r1_"][: len(reduction_tiling)]
|
|
return immutable_dict(
|
|
[*zip(pw_prefixes, pw_tiling), *zip(reduction_prefixes, reduction_tiling)]
|
|
)
|
|
|
|
@classmethod
|
|
def create_partial_tiling(
|
|
cls,
|
|
tiling: Sequence[sympy.Expr],
|
|
is_pointwise: bool,
|
|
) -> dict[str, sympy.Expr]:
|
|
return cls.create_tiling(
|
|
tiling if is_pointwise else [],
|
|
tiling if not is_pointwise else [],
|
|
)
|
|
|
|
@classmethod
|
|
def complete_partial_tiling(
|
|
cls,
|
|
tiling: dict[str, sympy.Expr],
|
|
numel: sympy.Expr,
|
|
reduction_numel: sympy.Expr,
|
|
) -> dict[str, sympy.Expr]:
|
|
"""
|
|
Given a tiling for only pointwise or reduction dimensions, adds the missing one.
|
|
"""
|
|
splits = list(tiling.values())
|
|
is_pointwise = "x" in tiling
|
|
|
|
total_numel = numel * reduction_numel
|
|
missing_tiling = [total_numel / sympy_product(splits)]
|
|
|
|
tiling_args = (
|
|
(splits, missing_tiling) if is_pointwise else (missing_tiling, splits)
|
|
)
|
|
return cls.create_tiling(*tiling_args)
|
|
|
|
@classmethod
|
|
def get_nd_tilings(
|
|
cls,
|
|
node_schedule,
|
|
pointwise_numel,
|
|
reduction_numel,
|
|
) -> list[dict[str, tuple[sympy.Expr]]]:
|
|
"""
|
|
Creates N-dimensional tiling candidates, attempting to simplify loads/stores
|
|
by tiling the kernel into higher dimensions.
|
|
|
|
Returns a list of tilings ranked by dimensionality.
|
|
"""
|
|
is_pointwise = reduction_numel == 1
|
|
tilings = OrderedSet[dict[str, sympy.Expr]]()
|
|
for node in EnableReduction.filter(node_schedule):
|
|
if not isinstance(node, scheduler.SchedulerNode):
|
|
continue
|
|
|
|
# If this is a reduction schedule, skip nodes which are missing their
|
|
# reduction ranges.
|
|
node_ranges = node.get_ranges()
|
|
if not is_pointwise and len(node_ranges[1]) == 0:
|
|
continue
|
|
|
|
# Use the node ranges as the default tiling candidate.
|
|
ranges_to_tile = node_ranges[0 if is_pointwise else 1]
|
|
node_tilings = [ranges_to_tile]
|
|
|
|
# Search the indexing expressions for more candidates.
|
|
# If we see modular indexing, try to subdivide ranges into their implied
|
|
# block shape.
|
|
memory_deps = [
|
|
dep
|
|
for dep in node.read_writes.reads_and_writes()
|
|
if isinstance(dep, MemoryDep) and len(dep.ranges) > 0
|
|
]
|
|
for dep in memory_deps:
|
|
# Attempt to partition variable ranges into pointwise and reduction groups.
|
|
# To achieve this, merge the leading ranges until we reach the pointwise numel.
|
|
all_var_ranges = [*dep.ranges.items()]
|
|
pointwise_vars_numel = sympy.S.One
|
|
sizevars = V.graph.sizevars
|
|
for pointwise_end_idx, (var, numel) in enumerate(all_var_ranges):
|
|
pointwise_vars_numel *= numel
|
|
if sizevars.statically_known_geq(
|
|
pointwise_vars_numel, pointwise_numel
|
|
):
|
|
break
|
|
|
|
# Reject the split if it does not match the total pointwise numel.
|
|
if not sizevars.statically_known_equals(
|
|
pointwise_vars_numel, pointwise_numel
|
|
):
|
|
continue
|
|
|
|
# Partition var ranges into pointwise and reduction splits.
|
|
reduction_start_idx = pointwise_end_idx + 1
|
|
var_ranges = (
|
|
all_var_ranges[:reduction_start_idx]
|
|
if is_pointwise
|
|
else all_var_ranges[reduction_start_idx:]
|
|
)
|
|
|
|
# Pattern match the subexpression pertaining to each index variable.
|
|
index_tiling = []
|
|
for var, numel in var_ranges:
|
|
index = BlockPatternMatcher.get_subexpr_involving_symbol(
|
|
dep.index, var
|
|
)
|
|
|
|
# Heuristic to bound the maximum dimensionality of the block.
|
|
num_dims = max(
|
|
2,
|
|
index.count(FloorDiv) + index.count(ModularIndexing),
|
|
len(ranges_to_tile),
|
|
)
|
|
|
|
# Attempt to pattern match the index expr.
|
|
# Failed matches default to the full range.
|
|
match_result = BlockPatternMatcher.match_mod_div_block_expr(
|
|
index, var, numel, num_dims
|
|
)
|
|
dims = match_result[0] if match_result is not None else [numel]
|
|
index_tiling.extend(dims)
|
|
|
|
# Prune dimensions of size 1.
|
|
index_tiling = [
|
|
dim
|
|
for dim in index_tiling
|
|
if not V.graph.sizevars.statically_known_equals(dim, sympy.S.One)
|
|
]
|
|
|
|
if len(index_tiling) > 0:
|
|
node_tilings.append(index_tiling)
|
|
|
|
# Flatten leading dimensions, assigning labels to each dim.
|
|
for node_tiling in node_tilings:
|
|
num_leading_dims = max(0, len(node_tiling) - get_max_tiles(2))
|
|
first_trailing_dim = num_leading_dims + 1
|
|
collapsed_leading_dim = sympy_product(node_tiling[:first_trailing_dim])
|
|
collapsed_splits = (collapsed_leading_dim,) + tuple(
|
|
node_tiling[first_trailing_dim:]
|
|
)
|
|
tilings.add(
|
|
cls.complete_partial_tiling(
|
|
cls.create_partial_tiling(collapsed_splits, is_pointwise),
|
|
pointwise_numel,
|
|
reduction_numel,
|
|
)
|
|
)
|
|
|
|
# Rank tilings by the number of dimensions. E.g., prefer 2D to 1D.
|
|
# Since this is a stable sort, ties are broken by schedule order.
|
|
ranked_tilings = sorted(
|
|
tilings,
|
|
key=len,
|
|
reverse=True,
|
|
)
|
|
|
|
return ranked_tilings
|
|
|
|
@classmethod
|
|
def compute_tiling_strategy(
|
|
cls,
|
|
node_schedule: list[NodeScheduleEntry],
|
|
pointwise_numel: sympy.Expr,
|
|
reduction_numel: sympy.Expr,
|
|
coalesce_analysis: CoalesceVarAnalysis,
|
|
) -> tuple[dict[str, sympy.Expr], Optional[dict[str, sympy.Expr]]]:
|
|
"""
|
|
Generates a tiling, and a score of each tile according to each tile's coalesced memory accesses.
|
|
"""
|
|
tiling_var: Optional[sympy.Expr] = (
|
|
None
|
|
if not coalesce_analysis.suggested_split
|
|
else coalesce_analysis.suggested_split.var
|
|
)
|
|
|
|
all_iter_vars = coalesce_analysis.norm_read_writes.index_vars
|
|
all_red_vars = coalesce_analysis.norm_read_writes.reduce_vars
|
|
ranges = coalesce_analysis.norm_read_writes.var_ranges
|
|
|
|
pw_ranges = [ranges[v] for v in all_iter_vars]
|
|
red_ranges = [ranges[v] for v in all_red_vars]
|
|
|
|
torch._check(
|
|
sympy_product(pw_ranges) == pointwise_numel,
|
|
lambda: f"{pw_ranges}, {pointwise_numel}, {node_schedule}",
|
|
)
|
|
torch._check(
|
|
sympy_product(red_ranges) == reduction_numel,
|
|
lambda: f"{red_ranges}, {reduction_numel}, {node_schedule}",
|
|
)
|
|
|
|
# score of a pointwise or reduction split
|
|
scored_sub_split: dict[Any, tuple[list[int], list[int]]] = {}
|
|
|
|
score_split: list[
|
|
tuple[tuple[list[int], list[int]], tuple[list[int], list[int]]]
|
|
] = []
|
|
|
|
def process_node_vars(
|
|
vars_to_use: tuple[sympy.Expr, ...] = (),
|
|
use_split_var: bool = False,
|
|
is_pointwise: bool = False,
|
|
) -> tuple[list[int], list[int]]:
|
|
"""
|
|
Generate a tiling, and a tiling score, given vars to use as splits.
|
|
"""
|
|
|
|
ranges = pw_ranges if is_pointwise else red_ranges
|
|
target_numel = pointwise_numel if is_pointwise else reduction_numel
|
|
# Some kernels have no reduction ranges, and a reduction numel of 1
|
|
if not ranges:
|
|
if target_numel:
|
|
return ([target_numel], [])
|
|
else:
|
|
return ([], [])
|
|
|
|
key = (repr(vars_to_use), use_split_var, is_pointwise)
|
|
if out := scored_sub_split.get(key, None):
|
|
return out
|
|
|
|
splitting_vars = all_iter_vars if is_pointwise else all_red_vars
|
|
|
|
splits = []
|
|
split_scores = []
|
|
prod = 1
|
|
prev_var_coalesced_score = 0
|
|
|
|
# iterate from non-dense to dense
|
|
for v, v_range in zip(splitting_vars, ranges):
|
|
if v not in vars_to_use:
|
|
prod *= v_range
|
|
prev_var_coalesced_score = coalesce_analysis.coalesced_by_var.get(
|
|
v, 0
|
|
)
|
|
continue
|
|
|
|
if use_split_var and v == tiling_var:
|
|
var_tiling = coalesce_analysis.suggested_split
|
|
assert var_tiling is not None
|
|
|
|
tile = var_tiling.tiling_factor
|
|
remainder = FloorDiv(v_range, var_tiling.tiling_factor)
|
|
|
|
splits.append(prod * remainder)
|
|
split_scores.append(var_tiling.score)
|
|
|
|
splits.append(tile)
|
|
split_scores.append(coalesce_analysis.coalesced_by_var.get(v, 0))
|
|
|
|
prod = 1
|
|
prev_var_coalesced_score = 0
|
|
|
|
continue
|
|
|
|
prod *= v_range
|
|
splits.append(prod)
|
|
split_scores.append(coalesce_analysis.coalesced_by_var.get(v, 0))
|
|
prod = 1
|
|
|
|
if prod != 1 or (is_pointwise and len(splits) == 0):
|
|
splits.append(prod)
|
|
split_scores.append(prev_var_coalesced_score)
|
|
|
|
# penalize splits that leave small blocks
|
|
# where we can't fully utilize full memory transaction
|
|
# TODO: incorporate exact bitwidth, and read/write
|
|
# coalesced write is 2x more important
|
|
for i in range(len(splits)):
|
|
s = V.graph.sizevars.size_hint(splits[i], fallback=32)
|
|
s = min(s, 8)
|
|
split_scores[i] = int(split_scores[i] * s / 8)
|
|
|
|
scored_sub_split[key] = (splits, split_scores)
|
|
return (splits, split_scores)
|
|
|
|
# add the default tiling
|
|
score_split.append(
|
|
(
|
|
process_node_vars(is_pointwise=True),
|
|
process_node_vars(is_pointwise=False),
|
|
)
|
|
)
|
|
|
|
if tiling_var:
|
|
score_split.append(
|
|
(
|
|
process_node_vars(
|
|
(tiling_var,), use_split_var=True, is_pointwise=True
|
|
),
|
|
process_node_vars(is_pointwise=False),
|
|
)
|
|
)
|
|
|
|
# TODO, add tests, reduction splits if config.triton.tile_reductions
|
|
# TODO: we should ignore tiny increases in score for extra splits
|
|
overlapping_iter_vars = (
|
|
all_iter_vars & coalesce_analysis.coalesced_by_var.keys()
|
|
)
|
|
for v in overlapping_iter_vars:
|
|
score_split.append(
|
|
(
|
|
process_node_vars((v,), is_pointwise=True),
|
|
process_node_vars(is_pointwise=False),
|
|
)
|
|
)
|
|
|
|
if get_max_tiles(default=3) == 3 and reduction_numel == 1:
|
|
for vars_to_use in itertools.combinations(overlapping_iter_vars, 2):
|
|
score_split.append(
|
|
(
|
|
process_node_vars(vars_to_use, is_pointwise=True),
|
|
process_node_vars(is_pointwise=False),
|
|
)
|
|
)
|
|
|
|
tilings: list[tuple[CandidateTiling, dict[str, sympy.Expr]]] = []
|
|
for (pw_split, pw_score), (red_split, red_score) in score_split:
|
|
candidate = CandidateTiling(
|
|
cls.create_tiling(pw_split, red_split),
|
|
score=sum(pw_score) + sum(red_score),
|
|
)
|
|
tiling_score = cls.create_tiling(pw_score, red_score)
|
|
tilings.append((candidate, tiling_score))
|
|
|
|
default_tiling = cls.create_tiling([pointwise_numel], [reduction_numel])
|
|
|
|
# add a slight penalty for longer tilings that dont increase score much,
|
|
# and are poor sizes
|
|
bad_size_additional_tiling_penalty = 1.025
|
|
good_size_tiling_penalty = 1.005
|
|
|
|
def score_mod(t):
|
|
score_factor = 1.0
|
|
for tile_size in t[0].tiling.values():
|
|
if not CandidateTiling.is_good_size(tile_size):
|
|
score_factor = score_factor / bad_size_additional_tiling_penalty
|
|
else:
|
|
score_factor = score_factor / good_size_tiling_penalty
|
|
|
|
return -t[0].score * score_factor
|
|
|
|
# apply penalty for longer tilings that dont increase score much
|
|
for cand, tiling_score in sorted(tilings, key=score_mod):
|
|
if cls.tiling_is_compatible(
|
|
node_schedule, pointwise_numel, reduction_numel, cand.tiling
|
|
):
|
|
# we always include default reduction numel == 1, dont include
|
|
tiling_len = len(cand.tiling) - (1 if reduction_numel == 1 else 0)
|
|
if tiling_len > get_max_tiles(default=3):
|
|
perf_hint_log.info(
|
|
"Found optimal tiling with %s tiles but torch._inductor.config.triton.max_tiles "
|
|
"set to %s. Consider increasing",
|
|
tiling_len,
|
|
torch._inductor.config.triton.max_tiles,
|
|
)
|
|
continue
|
|
|
|
return cand.tiling, tiling_score
|
|
|
|
# surprisingly, the default tiling is not always read as compatible by `tiling_is_compatible`
|
|
# TODO - look into, occurs with dynamic shapes often
|
|
if cand.tiling == default_tiling:
|
|
return cand.tiling, tiling_score
|
|
|
|
return default_tiling, None
|
|
|
|
@classmethod
|
|
def tiling_is_compatible(
|
|
cls,
|
|
node_schedule: list[NodeScheduleEntry],
|
|
numel: sympy.Expr,
|
|
reduction_numel: sympy.Expr,
|
|
tiling: dict[str, sympy.Expr],
|
|
):
|
|
assert isinstance(tiling, dict)
|
|
return all(
|
|
SIMDKernel.is_compatible(
|
|
tiling.values(), node.get_ranges(), reduction_numel=reduction_numel
|
|
)
|
|
for node in node_schedule
|
|
if isinstance(node, scheduler.SchedulerNode)
|
|
)
|
|
|
|
@classmethod
|
|
def get_first_compatible_tiling(
|
|
cls,
|
|
node_schedule: list[NodeScheduleEntry],
|
|
numel: sympy.Expr,
|
|
reduction_numel: sympy.Expr,
|
|
ranked_tilings: list[dict[str, sympy.Expr]],
|
|
):
|
|
for tiling in ranked_tilings:
|
|
if cls.tiling_is_compatible(node_schedule, numel, reduction_numel, tiling):
|
|
return tiling
|
|
|
|
return None
|
|
|
|
@classmethod
|
|
def select_tiling(
|
|
cls,
|
|
node_schedule,
|
|
numel,
|
|
reduction_numel=sympy.S.One,
|
|
coalesce_analysis: Optional[CoalesceVarAnalysis] = None,
|
|
) -> dict[str, sympy.Expr]:
|
|
return cls.get_tiling_and_scores(
|
|
node_schedule, numel, reduction_numel, coalesce_analysis
|
|
)[0]
|
|
|
|
@classmethod
|
|
def get_tiling_and_scores(
|
|
cls,
|
|
node_schedule,
|
|
numel,
|
|
reduction_numel=sympy.S.One,
|
|
coalesce_analysis: Optional[CoalesceVarAnalysis] = None,
|
|
) -> tuple[dict[str, sympy.Expr], Optional[dict[str, sympy.Expr]]]:
|
|
"""
|
|
Heuristics to decide how to tile kernels.
|
|
Currently, we tile based on stride-1 dimensions.
|
|
|
|
Returns:
|
|
`(tile1, tile2, reduction_numel)` s.t. `tile1 * tile2 == numel`
|
|
|
|
"""
|
|
# If this is a reduction, only tile reduction dims.
|
|
is_pointwise = reduction_numel == 1
|
|
|
|
# Tiled reductions are gated by a config flag.
|
|
default_tiling = cls.create_tiling([numel], [reduction_numel])
|
|
|
|
# # TODO: enable by default
|
|
if (
|
|
torch._inductor.config.triton.coalesce_tiling_analysis
|
|
and coalesce_analysis
|
|
and not config.triton.prefer_nd_tiling
|
|
):
|
|
return cls.compute_tiling_strategy(
|
|
node_schedule, numel, reduction_numel, coalesce_analysis
|
|
)
|
|
|
|
if (not is_pointwise and not config.triton.tile_reductions) or get_max_tiles(
|
|
default=2
|
|
) <= 1:
|
|
# Emit a perf hint in case we miss an opportunity to tile a reduction.
|
|
if perf_hint_log.level <= logging.WARNING:
|
|
for node in EnableReduction.filter(node_schedule):
|
|
if (
|
|
not config.triton.tile_reductions
|
|
and len(cls.candidate_tilings(node, numel, reduction_numel)) > 0
|
|
):
|
|
perf_hint_log.info(
|
|
textwrap.dedent(
|
|
"""
|
|
Reduction over non-contiguous dims.
|
|
Consider setting config.triton.tile_reductions to True.
|
|
"""
|
|
)
|
|
)
|
|
break
|
|
|
|
return default_tiling, None
|
|
|
|
seen_names: OrderedSet[str] = OrderedSet()
|
|
candidate_tiles: Counter[CandidateTiling] = collections.Counter()
|
|
for node in EnableReduction.filter(node_schedule):
|
|
for candidate_tiling in cls.candidate_tilings(node, numel, reduction_numel):
|
|
if candidate_tiling.name in seen_names:
|
|
continue
|
|
elif candidate_tiling.name is not None:
|
|
seen_names.add(candidate_tiling.name)
|
|
candidate_tiles[candidate_tiling] += candidate_tiling.score
|
|
|
|
ranked_tilings: list[dict[str, sympy.Expr]] = [
|
|
candidate_tiling.tiling
|
|
for candidate_tiling, score in candidate_tiles.most_common()
|
|
]
|
|
|
|
if get_max_tiles(default=2) >= 3 and is_pointwise:
|
|
# Consider adding a third dimension of tiling, but only
|
|
# when a1 is a multiple of b1; otherwise, you have a lot
|
|
# of stragglers which is annoying to generate code for.
|
|
#
|
|
# NB: More than three max tiles is not enabled by default.
|
|
|
|
def convert_tiling_to_3d(
|
|
tiling0: dict[str, sympy.Expr], tiling1: dict[str, sympy.Expr]
|
|
) -> Optional[dict[str, sympy.Expr]]:
|
|
a0, a1 = tiling0["x"], tiling0.get("y", 1)
|
|
b0, b1 = tiling1["x"], tiling1.get("y", 1)
|
|
|
|
if (
|
|
free_unbacked_symbols([a1, b1])
|
|
or V.graph.sizevars.size_hint(a1 - b1) == 0
|
|
):
|
|
return None
|
|
if V.graph.sizevars.size_hint(a1 - b1) < 0:
|
|
# swap so a0 is bigger
|
|
(a0, a1), (b0, b1) = (b0, b1), (a0, a1)
|
|
|
|
assert V.graph.sizevars.size_hint(a1 - b1) > 0
|
|
if not V.graph.sizevars.statically_known_multiple_of(a1, b1):
|
|
return None
|
|
|
|
new_tiling = {
|
|
"z": a0,
|
|
"y": FloorDiv(a1, b1),
|
|
"x": b1,
|
|
"r0_": tiling0["r0_"],
|
|
}
|
|
|
|
return new_tiling
|
|
|
|
for i in range(1, len(ranked_tilings)):
|
|
new_3d_tiling = convert_tiling_to_3d(
|
|
ranked_tilings[0], ranked_tilings[i]
|
|
)
|
|
if new_3d_tiling is not None:
|
|
ranked_tilings = [new_3d_tiling] + ranked_tilings
|
|
break # only 1 choice for now
|
|
|
|
if len(ranked_tilings) > 1:
|
|
perf_hint_log.info("possibly bad tiling: %s", ranked_tilings)
|
|
|
|
# Optionally, prefer tiling into as many dimensions as possible.
|
|
if config.triton.prefer_nd_tiling:
|
|
ranked_tilings = (
|
|
cls.get_nd_tilings(node_schedule, numel, reduction_numel)
|
|
+ ranked_tilings
|
|
)
|
|
|
|
if tiling := cls.get_first_compatible_tiling(
|
|
node_schedule, numel, reduction_numel, ranked_tilings
|
|
):
|
|
return tiling, None
|
|
|
|
return default_tiling, None
|
|
|
|
def flush(self):
|
|
pass
|
|
|
|
def ready_to_flush(self) -> bool:
|
|
return False
|
|
|
|
def generate_kernel_code_from_nodes(self, nodes, benchmark_kernel=False):
|
|
if not any(n.is_template() for n in nodes):
|
|
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
|
|
node_schedule = self.generate_node_schedule(nodes, numel, rnumel)
|
|
tiling = self.select_tiling(node_schedule, numel, rnumel)
|
|
kernel = self.kernel_type(
|
|
tiling,
|
|
features=SIMDKernelFeatures(node_schedule, numel, rnumel),
|
|
)
|
|
self.codegen_node_schedule_with_kernel(node_schedule, kernel)
|
|
with (
|
|
config.patch("benchmark_kernel", benchmark_kernel),
|
|
V.set_kernel_handler(kernel),
|
|
):
|
|
src_code = kernel.codegen_kernel()
|
|
else:
|
|
prologue, template, epilogue = nodes[0].get_prologue_template_epilogue(
|
|
nodes
|
|
)
|
|
with config.patch("benchmark_kernel", benchmark_kernel):
|
|
src_code = self.codegen_template(
|
|
template,
|
|
epilogue,
|
|
prologue,
|
|
only_gen_src_code=True,
|
|
)
|
|
|
|
src_code = src_code.replace(str(Placeholder.KERNEL_NAME), "triton_")
|
|
return src_code
|
|
|
|
def codegen_comment(self, node_schedule):
|
|
pass
|
|
|
|
def define_kernel(self, src_code, node_schedule, kernel):
|
|
raise NotImplementedError
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class CandidateTiling:
|
|
tiling: dict[str, sympy.Expr]
|
|
score: int # higher is better
|
|
name: Optional[str] = None
|
|
|
|
@staticmethod
|
|
def is_good_size(s):
|
|
"""Somewhat arbitrary heuristic used to boost scores for some sizes"""
|
|
s = V.graph.sizevars.size_hint(s)
|
|
return s >= 32 and (s % 32 == 0)
|
|
|
|
|
|
class CantSplit(Exception):
|
|
pass
|