Files
pytorch/test/test_testing.py
Rong Rong (AI Infra) 7e619b9588 First step to rearrange files in tools folder (#60473)
Summary:
Changes including:
- introduced `linter/`, `testing/`, `stats/` folders in `tools/`
- move appropriate scripts into these folders
- change grepped references in the pytorch/pytorch repo

Next step
- introduce `build/` folder for build scripts

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60473

Test Plan:
- CI (this is important b/c pytorch/test-infra also rely on some script reference.
- tools/tests/

Reviewed By: albanD

Differential Revision: D29352716

Pulled By: walterddr

fbshipit-source-id: bad40b5ce130b35dfd9e59b8af34f9025f3285fd
2021-06-24 10:13:58 -07:00

1256 lines
49 KiB
Python

import collections
import functools
import itertools
import math
import os
import re
import unittest
from typing import Any, Callable, Iterator, List, Tuple
import torch
from torch.testing._internal.common_utils import \
(IS_FBCODE, IS_SANDCASTLE, IS_WINDOWS, TestCase, make_tensor, run_tests, skipIfRocm, slowTest)
from torch.testing._internal.common_device_type import \
(PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes,
get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyOnCPUAndCUDA,
deviceCountAtLeast)
from torch.testing._internal.common_methods_invocations import op_db
import torch.testing._internal.opinfo_helper as opinfo_helper
from torch.testing._asserts import UsageError
# For testing TestCase methods and torch.testing functions
class TestTesting(TestCase):
# Ensure that assertEqual handles numpy arrays properly
@dtypes(*(torch.testing.get_all_dtypes(include_half=True, include_bfloat16=False,
include_bool=True, include_complex=True)))
def test_assertEqual_numpy(self, device, dtype):
S = 10
test_sizes = [
(),
(0,),
(S,),
(S, S),
(0, S),
(S, 0)]
for test_size in test_sizes:
a = make_tensor(test_size, device, dtype, low=-5, high=5)
a_n = a.cpu().numpy()
msg = f'size: {test_size}'
self.assertEqual(a_n, a, rtol=0, atol=0, msg=msg)
self.assertEqual(a, a_n, rtol=0, atol=0, msg=msg)
self.assertEqual(a_n, a_n, rtol=0, atol=0, msg=msg)
# Tests that when rtol or atol (including self.precision) is set, then
# the other is zeroed.
# TODO: this is legacy behavior and should be updated after test
# precisions are reviewed to be consistent with torch.isclose.
@onlyOnCPUAndCUDA
def test__comparetensors_legacy(self, device):
a = torch.tensor((10000000.,))
b = torch.tensor((10000002.,))
x = torch.tensor((1.,))
y = torch.tensor((1. + 1e-5,))
# Helper for reusing the tensor values as scalars
def _scalar_helper(a, b, rtol=None, atol=None):
return self._compareScalars(a.item(), b.item(), rtol=rtol, atol=atol)
for op in (self._compareTensors, _scalar_helper):
# Tests default
result, debug_msg = op(a, b)
self.assertTrue(result)
# Tests setting atol
result, debug_msg = op(a, b, atol=2, rtol=0)
self.assertTrue(result)
# Tests setting atol too small
result, debug_msg = op(a, b, atol=1, rtol=0)
self.assertFalse(result)
# Tests setting rtol too small
result, debug_msg = op(x, y, atol=0, rtol=1.05e-5)
self.assertTrue(result)
# Tests setting rtol too small
result, debug_msg = op(x, y, atol=0, rtol=1e-5)
self.assertFalse(result)
@onlyOnCPUAndCUDA
def test__comparescalars_debug_msg(self, device):
# float x float
result, debug_msg = self._compareScalars(4., 7.)
expected_msg = ("Comparing 4.0 and 7.0 gives a difference of 3.0, "
"but the allowed difference with rtol=1.3e-06 and "
"atol=1e-05 is only 1.9100000000000003e-05!")
self.assertEqual(debug_msg, expected_msg)
# complex x complex, real difference
result, debug_msg = self._compareScalars(complex(1, 3), complex(3, 1))
expected_msg = ("Comparing the real part 1.0 and 3.0 gives a difference "
"of 2.0, but the allowed difference with rtol=1.3e-06 "
"and atol=1e-05 is only 1.39e-05!")
self.assertEqual(debug_msg, expected_msg)
# complex x complex, imaginary difference
result, debug_msg = self._compareScalars(complex(1, 3), complex(1, 5.5))
expected_msg = ("Comparing the imaginary part 3.0 and 5.5 gives a "
"difference of 2.5, but the allowed difference with "
"rtol=1.3e-06 and atol=1e-05 is only 1.715e-05!")
self.assertEqual(debug_msg, expected_msg)
# complex x int
result, debug_msg = self._compareScalars(complex(1, -2), 1)
expected_msg = ("Comparing the imaginary part -2.0 and 0.0 gives a "
"difference of 2.0, but the allowed difference with "
"rtol=1.3e-06 and atol=1e-05 is only 1e-05!")
self.assertEqual(debug_msg, expected_msg)
# NaN x NaN, equal_nan=False
result, debug_msg = self._compareScalars(float('nan'), float('nan'), equal_nan=False)
expected_msg = ("Found nan and nan while comparing and either one is "
"nan and the other isn't, or both are nan and equal_nan "
"is False")
self.assertEqual(debug_msg, expected_msg)
# Checks that compareTensors provides the correct debug info
@onlyOnCPUAndCUDA
def test__comparetensors_debug_msg(self, device):
# Acquires atol that will be used
atol = max(1e-05, self.precision)
# Checks float tensor comparisons (2D tensor)
a = torch.tensor(((0, 6), (7, 9)), device=device, dtype=torch.float32)
b = torch.tensor(((0, 7), (7, 22)), device=device, dtype=torch.float32)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 4) "
"whose difference(s) exceeded the margin of error (including 0 nan comparisons). "
"The greatest difference was 13.0 (9.0 vs. 22.0), "
"which occurred at index (1, 1).").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks float tensor comparisons (with extremal values)
a = torch.tensor((float('inf'), 5, float('inf')), device=device, dtype=torch.float32)
b = torch.tensor((float('inf'), float('nan'), float('-inf')), device=device, dtype=torch.float32)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 3) "
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
"The greatest difference was nan (5.0 vs. nan), "
"which occurred at index 1.").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks float tensor comparisons (with finite vs nan differences)
a = torch.tensor((20, -6), device=device, dtype=torch.float32)
b = torch.tensor((-1, float('nan')), device=device, dtype=torch.float32)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 2) "
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
"The greatest difference was nan (-6.0 vs. nan), "
"which occurred at index 1.").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks int tensor comparisons (1D tensor)
a = torch.tensor((1, 2, 3, 4), device=device)
b = torch.tensor((2, 5, 3, 4), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Found 2 different element(s) (out of 4), "
"with the greatest difference of 3 (2 vs. 5) "
"occuring at index 1.")
self.assertEqual(debug_msg, expected_msg)
# Checks bool tensor comparisons (0D tensor)
a = torch.tensor((True), device=device)
b = torch.tensor((False), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Found 1 different element(s) (out of 1), "
"with the greatest difference of 1 (1 vs. 0) "
"occuring at index 0.")
self.assertEqual(debug_msg, expected_msg)
# Checks complex tensor comparisons (real part)
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
b = torch.tensor((1 - 1j, 1 + 3j), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Real parts failed to compare as equal! "
"With rtol=1.3e-06 and atol={0}, "
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
"margin of error (including 0 nan comparisons). The greatest difference was "
"3.0 (4.0 vs. 1.0), which occurred at index 1.").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks complex tensor comparisons (imaginary part)
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
b = torch.tensor((1 - 1j, 4 - 21j), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Imaginary parts failed to compare as equal! "
"With rtol=1.3e-06 and atol={0}, "
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
"margin of error (including 0 nan comparisons). The greatest difference was "
"24.0 (3.0 vs. -21.0), which occurred at index 1.").format(atol)
self.assertEqual(debug_msg, expected_msg)
# Checks size mismatch
a = torch.tensor((1, 2), device=device)
b = torch.tensor((3), device=device)
result, debug_msg = self._compareTensors(a, b)
expected_msg = ("Attempted to compare equality of tensors "
"with different sizes. Got sizes torch.Size([2]) and torch.Size([]).")
self.assertEqual(debug_msg, expected_msg)
# Checks dtype mismatch
a = torch.tensor((1, 2), device=device, dtype=torch.long)
b = torch.tensor((1, 2), device=device, dtype=torch.float32)
result, debug_msg = self._compareTensors(a, b, exact_dtype=True)
expected_msg = ("Attempted to compare equality of tensors "
"with different dtypes. Got dtypes torch.int64 and torch.float32.")
self.assertEqual(debug_msg, expected_msg)
# Checks device mismatch
if self.device_type == 'cuda':
a = torch.tensor((5), device='cpu')
b = torch.tensor((5), device=device)
result, debug_msg = self._compareTensors(a, b, exact_device=True)
expected_msg = ("Attempted to compare equality of tensors "
"on different devices! Got devices cpu and cuda:0.")
self.assertEqual(debug_msg, expected_msg)
# Helper for testing _compareTensors and _compareScalars
# Works on single element tensors
def _comparetensors_helper(self, tests, device, dtype, equal_nan, exact_dtype=True, atol=1e-08, rtol=1e-05):
for test in tests:
a = torch.tensor((test[0],), device=device, dtype=dtype)
b = torch.tensor((test[1],), device=device, dtype=dtype)
# Tensor x Tensor comparison
compare_result, debug_msg = self._compareTensors(a, b, rtol=rtol, atol=atol,
equal_nan=equal_nan,
exact_dtype=exact_dtype)
self.assertEqual(compare_result, test[2])
# Scalar x Scalar comparison
compare_result, debug_msg = self._compareScalars(a.item(), b.item(),
rtol=rtol, atol=atol,
equal_nan=equal_nan)
self.assertEqual(compare_result, test[2])
def _isclose_helper(self, tests, device, dtype, equal_nan, atol=1e-08, rtol=1e-05):
for test in tests:
a = torch.tensor((test[0],), device=device, dtype=dtype)
b = torch.tensor((test[1],), device=device, dtype=dtype)
actual = torch.isclose(a, b, equal_nan=equal_nan, atol=atol, rtol=rtol)
expected = test[2]
self.assertEqual(actual.item(), expected)
# torch.close is not implemented for bool tensors
# see https://github.com/pytorch/pytorch/issues/33048
def test_isclose_comparetensors_bool(self, device):
tests = (
(True, True, True),
(False, False, True),
(True, False, False),
(False, True, False),
)
with self.assertRaises(RuntimeError):
self._isclose_helper(tests, device, torch.bool, False)
self._comparetensors_helper(tests, device, torch.bool, False)
@dtypes(torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64)
def test_isclose_comparetensors_integer(self, device, dtype):
tests = (
(0, 0, True),
(0, 1, False),
(1, 0, False),
)
self._isclose_helper(tests, device, dtype, False)
# atol and rtol tests
tests = [
(0, 1, True),
(1, 0, False),
(1, 3, True),
]
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
if dtype is torch.uint8:
tests = [
(-1, 1, False),
(1, -1, False)
]
else:
tests = [
(-1, 1, True),
(1, -1, True)
]
self._isclose_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
self._comparetensors_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
@onlyOnCPUAndCUDA
@dtypes(torch.float16, torch.float32, torch.float64)
def test_isclose_comparetensors_float(self, device, dtype):
tests = (
(0, 0, True),
(0, -1, False),
(float('inf'), float('inf'), True),
(-float('inf'), float('inf'), False),
(float('inf'), float('nan'), False),
(float('nan'), float('nan'), False),
(0, float('nan'), False),
(1, 1, True),
)
self._isclose_helper(tests, device, dtype, False)
self._comparetensors_helper(tests, device, dtype, False)
# atol and rtol tests
eps = 1e-2 if dtype is torch.half else 1e-6
tests = (
(0, 1, True),
(0, 1 + eps, False),
(1, 0, False),
(1, 3, True),
(1 - eps, 3, False),
(-.25, .5, True),
(-.25 - eps, .5, False),
(.25, -.5, True),
(.25 + eps, -.5, False),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# equal_nan = True tests
tests = (
(0, float('nan'), False),
(float('inf'), float('nan'), False),
(float('nan'), float('nan'), True),
)
self._isclose_helper(tests, device, dtype, True)
self._comparetensors_helper(tests, device, dtype, True)
# torch.close with equal_nan=True is not implemented for complex inputs
# see https://github.com/numpy/numpy/issues/15959
# Note: compareTensor will compare the real and imaginary parts of a
# complex tensors separately, unlike isclose.
@dtypes(torch.complex64, torch.complex128)
def test_isclose_comparetensors_complex(self, device, dtype):
tests = (
(complex(1, 1), complex(1, 1 + 1e-8), True),
(complex(0, 1), complex(1, 1), False),
(complex(1, 1), complex(1, 0), False),
(complex(1, 1), complex(1, float('nan')), False),
(complex(1, float('nan')), complex(1, float('nan')), False),
(complex(1, 1), complex(1, float('inf')), False),
(complex(float('inf'), 1), complex(1, float('inf')), False),
(complex(-float('inf'), 1), complex(1, float('inf')), False),
(complex(-float('inf'), 1), complex(float('inf'), 1), False),
(complex(float('inf'), 1), complex(float('inf'), 1), True),
(complex(float('inf'), 1), complex(float('inf'), 1 + 1e-4), False),
)
self._isclose_helper(tests, device, dtype, False)
self._comparetensors_helper(tests, device, dtype, False)
# atol and rtol tests
# atol and rtol tests
eps = 1e-6
tests = (
# Complex versions of float tests (real part)
(complex(0, 0), complex(1, 0), True),
(complex(0, 0), complex(1 + eps, 0), False),
(complex(1, 0), complex(0, 0), False),
(complex(1, 0), complex(3, 0), True),
(complex(1 - eps, 0), complex(3, 0), False),
(complex(-.25, 0), complex(.5, 0), True),
(complex(-.25 - eps, 0), complex(.5, 0), False),
(complex(.25, 0), complex(-.5, 0), True),
(complex(.25 + eps, 0), complex(-.5, 0), False),
# Complex versions of float tests (imaginary part)
(complex(0, 0), complex(0, 1), True),
(complex(0, 0), complex(0, 1 + eps), False),
(complex(0, 1), complex(0, 0), False),
(complex(0, 1), complex(0, 3), True),
(complex(0, 1 - eps), complex(0, 3), False),
(complex(0, -.25), complex(0, .5), True),
(complex(0, -.25 - eps), complex(0, .5), False),
(complex(0, .25), complex(0, -.5), True),
(complex(0, .25 + eps), complex(0, -.5), False),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# atol and rtol tests for isclose
tests = (
# Complex-specific tests
(complex(1, -1), complex(-1, 1), False),
(complex(1, -1), complex(2, -2), True),
(complex(-math.sqrt(2), math.sqrt(2)),
complex(-math.sqrt(.5), math.sqrt(.5)), True),
(complex(-math.sqrt(2), math.sqrt(2)),
complex(-math.sqrt(.501), math.sqrt(.499)), False),
(complex(2, 4), complex(1., 8.8523607), True),
(complex(2, 4), complex(1., 8.8523607 + eps), False),
(complex(1, 99), complex(4, 100), True),
)
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# atol and rtol tests for compareTensors
tests = (
(complex(1, -1), complex(-1, 1), False),
(complex(1, -1), complex(2, -2), True),
(complex(1, 99), complex(4, 100), False),
)
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
# equal_nan = True tests
tests = (
(complex(1, 1), complex(1, float('nan')), False),
(complex(float('nan'), 1), complex(1, float('nan')), False),
(complex(float('nan'), 1), complex(float('nan'), 1), True),
)
with self.assertRaises(RuntimeError):
self._isclose_helper(tests, device, dtype, True)
self._comparetensors_helper(tests, device, dtype, True)
# Tests that isclose with rtol or atol values less than zero throws a
# RuntimeError
@dtypes(torch.bool, torch.uint8,
torch.int8, torch.int16, torch.int32, torch.int64,
torch.float16, torch.float32, torch.float64)
def test_isclose_atol_rtol_greater_than_zero(self, device, dtype):
t = torch.tensor((1,), device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=-1, rtol=1)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=1, rtol=-1)
with self.assertRaises(RuntimeError):
torch.isclose(t, t, atol=-1, rtol=-1)
@dtypes(torch.bool, torch.long, torch.float, torch.cfloat)
def test_make_tensor(self, device, dtype):
def check(size, low, high, requires_grad, noncontiguous):
t = make_tensor(size, device, dtype, low=low, high=high,
requires_grad=requires_grad, noncontiguous=noncontiguous)
self.assertEqual(t.shape, size)
self.assertEqual(t.device, torch.device(device))
self.assertEqual(t.dtype, dtype)
low = -9 if low is None else low
high = 9 if high is None else high
if t.numel() > 0 and dtype in [torch.long, torch.float]:
self.assertTrue(t.le(high).logical_and(t.ge(low)).all().item())
if dtype in [torch.float, torch.cfloat]:
self.assertEqual(t.requires_grad, requires_grad)
else:
self.assertFalse(t.requires_grad)
if t.numel() > 1:
self.assertEqual(t.is_contiguous(), not noncontiguous)
else:
self.assertTrue(t.is_contiguous())
for size in (tuple(), (0,), (1,), (1, 1), (2,), (2, 3), (8, 16, 32)):
check(size, None, None, False, False)
check(size, 2, 4, True, True)
def test_assert_messages(self, device):
self.assertIsNone(self._get_assert_msg(msg=None))
self.assertEqual("\nno_debug_msg", self._get_assert_msg("no_debug_msg"))
self.assertEqual("no_user_msg", self._get_assert_msg(msg=None, debug_msg="no_user_msg"))
self.assertEqual("debug_msg\nuser_msg", self._get_assert_msg(msg="user_msg", debug_msg="debug_msg"))
# The following tests (test_cuda_assert_*) are added to ensure test suite terminates early
# when CUDA assert was thrown. Because all subsequent test will fail if that happens.
# These tests are slow because it spawn another process to run test suite.
# See: https://github.com/pytorch/pytorch/issues/49019
@onlyCUDA
@slowTest
def test_cuda_assert_should_stop_common_utils_test_suite(self, device):
# test to ensure common_utils.py override has early termination for CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python3
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
class TestThatContainsCUDAAssertFailure(TestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self):
x = torch.rand(10, device='cuda')
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self):
x1 = torch.tensor([0., 1.], device='cuda')
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
if __name__ == '__main__':
run_tests()
""")
# should capture CUDA error
self.assertIn('CUDA error: device-side assert triggered', stderr)
# should run only 1 test because it throws unrecoverable error.
self.assertIn('Ran 1 test', stderr)
@onlyCUDA
@slowTest
def test_cuda_assert_should_stop_common_device_type_test_suite(self, device):
# test to ensure common_device_type.py override has early termination for CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python3
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
class TestThatContainsCUDAAssertFailure(TestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self, device):
x = torch.rand(10, device=device)
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
x1 = torch.tensor([0., 1.], device=device)
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
instantiate_device_type_tests(
TestThatContainsCUDAAssertFailure,
globals(),
only_for='cuda'
)
if __name__ == '__main__':
run_tests()
""")
# should capture CUDA error
self.assertIn('CUDA error: device-side assert triggered', stderr)
# should run only 1 test because it throws unrecoverable error.
self.assertIn('Ran 1 test', stderr)
@onlyCUDA
@slowTest
def test_cuda_assert_should_not_stop_common_distributed_test_suite(self, device):
# test to ensure common_distributed.py override should not early terminate CUDA.
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
#!/usr/bin/env python3
import torch
from torch.testing._internal.common_utils import (run_tests, slowTest)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_distributed import MultiProcessTestCase
class TestThatContainsCUDAAssertFailure(MultiProcessTestCase):
@slowTest
def test_throw_unrecoverable_cuda_exception(self, device):
x = torch.rand(10, device=device)
# cause unrecoverable CUDA exception, recoverable on CPU
y = x[torch.tensor([25])].cpu()
@slowTest
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
x1 = torch.tensor([0., 1.], device=device)
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
instantiate_device_type_tests(
TestThatContainsCUDAAssertFailure,
globals(),
only_for='cuda'
)
if __name__ == '__main__':
run_tests()
""")
# we are currently disabling CUDA early termination for distributed tests.
self.assertIn('Ran 2 test', stderr)
@onlyOnCPUAndCUDA
def test_get_supported_dtypes(self, device):
# Test the `get_supported_dtypes` helper function.
# We acquire the dtypes for few Ops dynamically and verify them against
# the correct statically described values.
ops_to_test = list(filter(lambda op: op.name in ['atan2', 'topk', 'xlogy'], op_db))
for op in ops_to_test:
dynamic_dtypes = opinfo_helper.get_supported_dtypes(op.op, op.sample_inputs_func, self.device_type)
dynamic_dispatch = opinfo_helper.dtypes_dispatch_hint(dynamic_dtypes)
if self.device_type == 'cpu':
dtypes = op.dtypesIfCPU
else: # device_type ='cuda'
dtypes = op.dtypesIfCUDA
self.assertTrue(set(dtypes) == set(dynamic_dtypes))
self.assertTrue(set(dtypes) == set(dynamic_dispatch.dispatch_fn()))
instantiate_device_type_tests(TestTesting, globals())
class TestFrameworkUtils(TestCase):
@skipIfRocm
@unittest.skipIf(IS_WINDOWS, "Skipping because doesn't work for windows")
@unittest.skipIf(IS_SANDCASTLE, "Skipping because doesn't work on sandcastle")
def test_filtering_env_var(self):
# Test environment variable selected device type test generator.
test_filter_file_template = """\
#!/usr/bin/env python3
import torch
from torch.testing._internal.common_utils import (TestCase, run_tests)
from torch.testing._internal.common_device_type import instantiate_device_type_tests
class TestEnvironmentVariable(TestCase):
def test_trivial_passing_test(self, device):
x1 = torch.tensor([0., 1.], device=device)
x2 = torch.tensor([0., 1.], device='cpu')
self.assertEqual(x1, x2)
instantiate_device_type_tests(
TestEnvironmentVariable,
globals(),
)
if __name__ == '__main__':
run_tests()
"""
test_bases_count = len(get_device_type_test_bases())
# Test without setting env var should run everything.
env = dict(os.environ)
for k in ['IN_CI', PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY]:
if k in env.keys():
del env[k]
_, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env)
self.assertIn(f'Ran {test_bases_count} test', stderr.decode('ascii'))
# Test with setting only_for should only run 1 test.
env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY] = 'cpu'
_, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env)
self.assertIn('Ran 1 test', stderr.decode('ascii'))
# Test with setting except_for should run 1 less device type from default.
del env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY]
env[PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY] = 'cpu'
_, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env)
self.assertIn(f'Ran {test_bases_count-1} test', stderr.decode('ascii'))
# Test with setting both should throw exception
env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY] = 'cpu'
_, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env)
self.assertNotIn('OK', stderr.decode('ascii'))
def make_assert_close_inputs(actual: Any, expected: Any) -> List[Tuple[Any, Any]]:
"""Makes inputs for :func:`torch.testing.assert_close` functions based on two examples.
Args:
actual (Any): Actual input.
expected (Any): Expected input.
Returns:
List[Tuple[Any, Any]]: Pair of example inputs, as well as the example inputs wrapped in sequences
(:class:`tuple`, :class:`list`), and mappings (:class:`dict`, :class:`~collections.OrderedDict`).
"""
return [
(actual, expected),
# tuple vs. tuple
((actual,), (expected,)),
# list vs. list
([actual], [expected]),
# tuple vs. list
((actual,), [expected]),
# dict vs. dict
({"t": actual}, {"t": expected}),
# OrderedDict vs. OrderedDict
(collections.OrderedDict([("t", actual)]), collections.OrderedDict([("t", expected)])),
# dict vs. OrderedDict
({"t": actual}, collections.OrderedDict([("t", expected)])),
# list of tuples vs. tuple of lists
([(actual,)], ([expected],)),
# list of dicts vs. tuple of OrderedDicts
([{"t": actual}], (collections.OrderedDict([("t", expected)]),)),
# dict of lists vs. OrderedDict of tuples
({"t": [actual]}, collections.OrderedDict([("t", (expected,))])),
]
def assert_close_with_inputs(actual: Any, expected: Any) -> Iterator[Callable]:
"""Yields :func:`torch.testing.assert_close` with predefined positional inputs based on two examples.
.. note::
Every test that does not test for a specific input should iterate over this to maximize the coverage.
Args:
actual (Any): Actual input.
expected (Any): Expected input.
Yields:
Callable: :func:`torch.testing.assert_close` with predefined positional inputs.
"""
for inputs in make_assert_close_inputs(actual, expected):
yield functools.partial(torch.testing.assert_close, *inputs)
class TestAssertClose(TestCase):
def test_quantized_support(self):
val = 1
actual = torch.tensor([val], dtype=torch.int32)
expected = torch._empty_affine_quantized(actual.shape, scale=1, zero_point=0, dtype=torch.qint32)
expected.fill_(val)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(UsageError):
fn()
def test_type_inequality(self):
actual = torch.empty(2)
expected = actual.tolist()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, str(type(expected))):
fn()
def test_unknown_type(self):
actual = "0"
expected = "0"
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(UsageError, str(type(actual))):
fn()
def test_mismatching_shape(self):
actual = torch.empty(())
expected = actual.clone().reshape((1,))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "shape"):
fn()
@unittest.skipIf(not torch.backends.mkldnn.is_available(), reason="MKLDNN is not available.")
def test_unknown_layout(self):
actual = torch.empty((2, 2))
expected = actual.to_mkldnn()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(UsageError):
fn()
def test_mismatching_layout(self):
strided = torch.empty((2, 2))
sparse_coo = strided.to_sparse()
sparse_csr = strided.to_sparse_csr()
for actual, expected in itertools.combinations((strided, sparse_coo, sparse_csr), 2):
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "layout"):
fn()
def test_mismatching_dtype(self):
actual = torch.empty((), dtype=torch.float)
expected = actual.clone().to(torch.int)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "dtype"):
fn()
def test_mismatching_dtype_no_check(self):
actual = torch.ones((), dtype=torch.float)
expected = actual.clone().to(torch.int)
for fn in assert_close_with_inputs(actual, expected):
fn(check_dtype=False)
def test_mismatching_stride(self):
actual = torch.empty((2, 2))
expected = torch.as_strided(actual.clone().t().contiguous(), actual.shape, actual.stride()[::-1])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "stride"):
fn()
def test_mismatching_stride_no_check(self):
actual = torch.rand((2, 2))
expected = torch.as_strided(actual.clone().t().contiguous(), actual.shape, actual.stride()[::-1])
for fn in assert_close_with_inputs(actual, expected):
fn(check_stride=False)
def test_only_rtol(self):
actual = torch.empty(())
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(UsageError):
fn(rtol=0.0)
def test_only_atol(self):
actual = torch.empty(())
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(UsageError):
fn(atol=0.0)
def test_mismatching_values(self):
actual = torch.tensor(1)
expected = torch.tensor(2)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn()
def test_mismatching_values_rtol(self):
eps = 1e-3
actual = torch.tensor(1.0)
expected = torch.tensor(1.0 + eps)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn(rtol=eps / 2, atol=0.0)
def test_mismatching_values_atol(self):
eps = 1e-3
actual = torch.tensor(0.0)
expected = torch.tensor(eps)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn(rtol=0.0, atol=eps / 2)
def test_matching(self):
actual = torch.tensor(1.0)
expected = actual.clone()
torch.testing.assert_close(actual, expected)
def test_matching_rtol(self):
eps = 1e-3
actual = torch.tensor(1.0)
expected = torch.tensor(1.0 + eps)
for fn in assert_close_with_inputs(actual, expected):
fn(rtol=eps * 2, atol=0.0)
def test_matching_atol(self):
eps = 1e-3
actual = torch.tensor(0.0)
expected = torch.tensor(eps)
for fn in assert_close_with_inputs(actual, expected):
fn(rtol=0.0, atol=eps * 2)
def test_matching_nan(self):
actual = torch.tensor(float("NaN"))
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn()
def test_matching_nan_with_equal_nan(self):
actual = torch.tensor(float("NaN"))
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
fn(equal_nan=True)
def test_numpy(self):
tensor = torch.rand(2, 2, dtype=torch.float32)
actual = tensor.numpy()
expected = actual.copy()
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_scalar(self):
number = torch.randint(10, size=()).item()
for actual, expected in itertools.product((int(number), float(number), complex(number)), repeat=2):
check_dtype = type(actual) is type(expected)
for fn in assert_close_with_inputs(actual, expected):
fn(check_dtype=check_dtype)
class TestAssertCloseMultiDevice(TestCase):
@deviceCountAtLeast(1)
def test_mismatching_device(self, devices):
for actual_device, expected_device in itertools.permutations(("cpu", *devices), 2):
actual = torch.empty((), device=actual_device)
expected = actual.clone().to(expected_device)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "device"):
fn()
@deviceCountAtLeast(1)
def test_mismatching_device_no_check(self, devices):
for actual_device, expected_device in itertools.permutations(("cpu", *devices), 2):
actual = torch.rand((), device=actual_device)
expected = actual.clone().to(expected_device)
for fn in assert_close_with_inputs(actual, expected):
fn(check_device=False)
instantiate_device_type_tests(TestAssertCloseMultiDevice, globals(), only_for="cuda")
class TestAssertCloseErrorMessage(TestCase):
def test_mismatched_elements(self):
actual = torch.tensor([1, 2, 3, 4])
expected = torch.tensor([1, 2, 5, 6])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Mismatched elements: 2 / 4 (50.0%)")):
fn()
def test_abs_diff(self):
actual = torch.tensor([[1, 2], [3, 4]])
expected = torch.tensor([[1, 2], [5, 4]])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Greatest absolute difference: 2 at (1, 0)")):
fn()
def test_rel_diff(self):
actual = torch.tensor([[1, 2], [3, 4]])
expected = torch.tensor([[1, 4], [3, 4]])
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("Greatest relative difference: 0.5 at (0, 1)")):
fn()
def test_zero_div_zero(self):
actual = torch.tensor([1.0, 0.0])
expected = torch.tensor([2.0, 0.0])
for fn in assert_close_with_inputs(actual, expected):
# Although it looks complicated, this regex just makes sure that the word 'nan' is not part of the error
# message. That would happen if the 0 / 0 is used for the mismatch computation although it matches.
with self.assertRaisesRegex(AssertionError, "((?!nan).)*"):
fn()
def test_rtol(self):
rtol = 1e-3
actual = torch.tensor(1)
expected = torch.tensor(2)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(
AssertionError, re.escape(f"Greatest relative difference: 0.5 at 0 (up to {rtol} allowed)")
):
fn(rtol=rtol, atol=0.0)
def test_atol(self):
atol = 1e-3
actual = torch.tensor(1)
expected = torch.tensor(2)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(
AssertionError, re.escape(f"Greatest absolute difference: 1 at 0 (up to {atol} allowed)")
):
fn(rtol=0.0, atol=atol)
def test_msg_str(self):
msg = "Custom error message!"
actual = torch.tensor(1)
expected = torch.tensor(2)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, msg):
fn(msg=msg)
def test_msg_callable(self):
msg = "Custom error message!"
def make_msg(actual, expected, trace):
return msg
actual = torch.tensor(1)
expected = torch.tensor(2)
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, msg):
fn(msg=make_msg)
class TestAssertCloseContainer(TestCase):
def test_sequence_mismatching_len(self):
actual = (torch.empty(()),)
expected = ()
with self.assertRaises(AssertionError):
torch.testing.assert_close(actual, expected)
def test_sequence_mismatching_values_msg(self):
t1 = torch.tensor(1)
t2 = torch.tensor(2)
actual = (t1, t1)
expected = (t1, t2)
with self.assertRaisesRegex(AssertionError, r"index\s+1"):
torch.testing.assert_close(actual, expected)
def test_mapping_mismatching_keys(self):
actual = {"a": torch.empty(())}
expected = {}
with self.assertRaises(AssertionError):
torch.testing.assert_close(actual, expected)
def test_mapping_mismatching_values_msg(self):
t1 = torch.tensor(1)
t2 = torch.tensor(2)
actual = {"a": t1, "b": t1}
expected = {"a": t1, "b": t2}
with self.assertRaisesRegex(AssertionError, r"key\s+'b'"):
torch.testing.assert_close(actual, expected)
class TestAssertCloseComplex(TestCase):
def test_mismatching_nan_with_equal_nan(self):
actual = torch.tensor(complex(1, float("NaN")))
expected = torch.tensor(complex(float("NaN"), 1))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaises(AssertionError):
fn(equal_nan=True)
def test_mismatching_nan_with_equal_nan_relaxed(self):
actual = torch.tensor(complex(1, float("NaN")))
expected = torch.tensor(complex(float("NaN"), 1))
for fn in assert_close_with_inputs(actual, expected):
fn(equal_nan="relaxed")
def test_mismatching_values_msg_real(self):
actual = torch.tensor(complex(0, 1))
expected = torch.tensor(complex(1, 1))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the real part")):
fn()
def test_mismatching_values_msg_imag(self):
actual = torch.tensor(complex(1, 0))
expected = torch.tensor(complex(1, 1))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the imaginary part")):
fn()
class TestAssertCloseSparseCOO(TestCase):
def test_matching_coalesced(self):
indices = (
(0, 1),
(1, 0),
)
values = (1, 2)
actual = torch.sparse_coo_tensor(indices, values, size=(2, 2)).coalesce()
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_matching_uncoalesced(self):
indices = (
(0, 1),
(1, 0),
)
values = (1, 2)
actual = torch.sparse_coo_tensor(indices, values, size=(2, 2))
expected = actual.clone()
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_mismatching_is_coalesced(self):
indices = (
(0, 1),
(1, 0),
)
values = (1, 2)
actual = torch.sparse_coo_tensor(indices, values, size=(2, 2))
expected = actual.clone().coalesce()
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, "is_coalesced"):
fn()
def test_mismatching_is_coalesced_no_check(self):
actual_indices = (
(0, 1),
(1, 0),
)
actual_values = (1, 2)
actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2)).coalesce()
expected_indices = (
(0, 1, 1,),
(1, 0, 0,),
)
expected_values = (1, 1, 1)
expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
fn(check_is_coalesced=False)
def test_mismatching_nnz(self):
actual_indices = (
(0, 1),
(1, 0),
)
actual_values = (1, 2)
actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2))
expected_indices = (
(0, 1, 1,),
(1, 0, 0,),
)
expected_values = (1, 1, 1)
expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("number of specified values")):
fn()
def test_mismatching_indices_msg(self):
actual_indices = (
(0, 1),
(1, 0),
)
actual_values = (1, 2)
actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2))
expected_indices = (
(0, 1),
(1, 1),
)
expected_values = (1, 2)
expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the indices")):
fn()
def test_mismatching_values_msg(self):
actual_indices = (
(0, 1),
(1, 0),
)
actual_values = (1, 2)
actual = torch.sparse_coo_tensor(actual_indices, actual_values, size=(2, 2))
expected_indices = (
(0, 1),
(1, 0),
)
expected_values = (1, 3)
expected = torch.sparse_coo_tensor(expected_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the values")):
fn()
@unittest.skipIf(IS_FBCODE or IS_SANDCASTLE, "Not all sandcastle jobs support CSR testing")
class TestAssertCloseSparseCSR(TestCase):
def test_matching(self):
crow_indices = (0, 1, 2)
col_indices = (1, 0)
values = (1, 2)
actual = torch.sparse_csr_tensor(crow_indices, col_indices, values, size=(2, 2))
# TODO: replace this by actual.clone() after https://github.com/pytorch/pytorch/issues/59285 is fixed
expected = torch.sparse_csr_tensor(
actual.crow_indices(), actual.col_indices(), actual.values(), size=actual.size(), device=actual.device
)
for fn in assert_close_with_inputs(actual, expected):
fn()
def test_mismatching_crow_indices_msg(self):
actual_crow_indices = (0, 1, 2)
actual_col_indices = (1, 0)
actual_values = (1, 2)
actual = torch.sparse_csr_tensor(actual_crow_indices, actual_col_indices, actual_values, size=(2, 2))
expected_crow_indices = (0, 2, 2)
expected_col_indices = actual_col_indices
expected_values = actual_values
expected = torch.sparse_csr_tensor(expected_crow_indices, expected_col_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the crow_indices")):
fn()
def test_mismatching_col_indices_msg(self):
actual_crow_indices = (0, 1, 2)
actual_col_indices = (1, 0)
actual_values = (1, 2)
actual = torch.sparse_csr_tensor(actual_crow_indices, actual_col_indices, actual_values, size=(2, 2))
expected_crow_indices = actual_crow_indices
expected_col_indices = (1, 1)
expected_values = actual_values
expected = torch.sparse_csr_tensor(expected_crow_indices, expected_col_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the col_indices")):
fn()
def test_mismatching_values_msg(self):
actual_crow_indices = (0, 1, 2)
actual_col_indices = (1, 0)
actual_values = (1, 2)
actual = torch.sparse_csr_tensor(actual_crow_indices, actual_col_indices, actual_values, size=(2, 2))
expected_crow_indices = actual_crow_indices
expected_col_indices = actual_col_indices
expected_values = (1, 3)
expected = torch.sparse_csr_tensor(expected_crow_indices, expected_col_indices, expected_values, size=(2, 2))
for fn in assert_close_with_inputs(actual, expected):
with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the values")):
fn()
if __name__ == '__main__':
run_tests()