Files
pytorch/test/dynamo/test_aot_autograd_cache.py
Brian Hirsh 7d710403b0 Reapply "Make functionalization ViewMeta serializable with pickle. (#143712)" (#163769)
### Summary:
NOTE: This is a re-export of https://github.com/pytorch/pytorch/pull/161994 ; the changes between these two PRs is exclusively to the buck/build files

(Summary from #161994 )
Attempted rebase of https://github.com/pytorch/pytorch/pull/143712.

This reverts commit 6c713ccb5e0df227dd5b630057cbccd373cbe7d6.

cc voznesenskym penguinwu EikanWang jgong5 Guobing-Chen XiaobingSuper zhuhaozhe blzheng wenzhe-nrv jiayisunx chenyang78 kadeng chauhang amjames Lucaskabela

imported-using-ghimport

Test Plan: Imported from OSS

Differential Revision: D81524507

Pulled By: Lucaskabela

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163769
Approved by: https://github.com/dolpm

Co-authored-by: Brian Hirsh <hirsheybar@fb.com>
2025-09-25 10:27:37 +00:00

2184 lines
84 KiB
Python

# Owner(s): ["module: dynamo"]
import copy
import os
import shutil
import unittest
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._functorch._aot_autograd
from torch._dynamo import config as dynamo_config
from torch._dynamo.utils import counters
from torch._functorch import config as functorch_config
from torch._functorch._aot_autograd.autograd_cache import (
AOTAutogradCache,
autograd_cache_key,
BypassAOTAutogradCache,
sanitize_gm_for_cache,
)
from torch._functorch._aot_autograd.schemas import AOTConfig
from torch._guards import TracingContext
from torch._inductor import config as inductor_config
from torch._inductor.runtime.runtime_utils import cache_dir
from torch._inductor.runtime.triton_compat import tl, triton
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.utils import fresh_cache
from torch._subclasses import FakeTensorMode
from torch.compiler._cache import CacheArtifactManager
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.testing._internal.common_cuda import SM80OrLater, TEST_MULTIGPU
from torch.testing._internal.common_device_type import largeTensorTest
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
skipIfWindows,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU, requires_triton
from torch.testing._internal.triton_utils import requires_cuda_and_triton
from torch.testing._internal.two_tensor import TwoTensor
def saved_tensors_hooks_to_gm(
pack_fn,
unpack_fn,
pack_cache_hash=None,
unpack_cache_hash=None,
symbolic_tracing=True,
inp_fn=None,
):
if symbolic_tracing:
pack_gm = torch.fx.symbolic_trace(pack_fn)
unpack_gm = torch.fx.symbolic_trace(unpack_fn)
else:
from functorch import make_fx
if inp_fn:
inp = inp_fn()
else:
inp = torch.randn(2, 3)
torch._dynamo.mark_dynamic(inp, 0)
torch._dynamo.mark_dynamic(inp, 1)
pack_out = pack_fn(inp)
pack_gm = make_fx(pack_fn)(inp)
unpack_gm = make_fx(unpack_fn)(pack_out)
def set_manual_hash(g, manual_hash):
for node in g.nodes:
if node.meta and node.meta.get("is_wrapped", False):
node.meta["user_cache_hash"] = manual_hash
if pack_cache_hash:
set_manual_hash(pack_gm.graph, pack_cache_hash)
if unpack_cache_hash:
set_manual_hash(unpack_gm.graph, unpack_cache_hash)
return pack_gm, unpack_gm
def amax_to_scale(
amax: torch.Tensor,
float8_dtype: torch.dtype,
round_scales_to_power_of_2: bool = False,
):
amax = amax.to(torch.float64)
res = torch.finfo(float8_dtype).max / torch.clamp(amax, min=1e-12)
res = res.to(torch.float32)
return res
# Must be at module level to use fx.wrap
@torch.fx.wrap
def _pack_fp8_with_scale_wrap(x):
if not x.dtype.is_floating_point:
return x
amax = torch.max(torch.abs(x))
scale = amax_to_scale(amax, torch.float8_e5m2)
x_scaled = x.to(torch.float32) * scale
x_fp8 = x_scaled.to(torch.float8_e5m2)
return x.dtype, scale, x_fp8
@torch.fx.wrap
def _unpack_fp8_with_scale_wrap(x):
if isinstance(x, torch.Tensor):
return x
dtype, scale, x_fp8 = x
y = x_fp8.to(torch.float32) / scale
return y.to(dtype)
@instantiate_parametrized_tests
class AOTAutogradCacheTests(InductorTestCase):
def setUp(self):
"""
Reset all counters and caches before each unit test
"""
super().setUp()
counters.clear()
self._clear_all_caches()
def _clear_all_caches(self):
"""
Clear every cache, including AOTAutogradCache and FXCache
"""
torch._inductor.codecache.FxGraphCache.clear()
AOTAutogradCache.clear()
CacheArtifactManager.clear()
self._clear_dynamo_and_codecache()
def _clear_dynamo_and_codecache(self):
"""
Clear unrelated caches, like dynamo and PyCodeCache
"""
torch._dynamo.reset()
torch._inductor.codecache.PyCodeCache.cache_clear(purge=True)
@requires_triton()
@functorch_config.patch({"enable_autograd_cache": True})
@inductor_config.patch(
{
"fx_graph_cache": True,
"fx_graph_remote_cache": False,
"autotune_local_cache": True,
}
)
@parametrize("device", (GPU_TYPE, "cpu"))
@parametrize("dtype", (torch.float32, torch.bfloat16))
@parametrize("dynamic", (False, True))
def test_cache_hot_load(self, device, dtype, dynamic):
"""
Verify that we can populate and hot load functions from the cache.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires SM80 or later")
def fn(x, y):
return x.sin() @ y
a = torch.rand(100, 100, dtype=dtype, device=device, requires_grad=True)
b = torch.rand(100, 100, dtype=dtype, device=device, requires_grad=True)
# Record artifacts
with fresh_cache():
compiled_fn = torch.compile(fn, dynamic=dynamic)
# A first call should miss in the cache.
eager_result = fn(a, b)
compiled_result = compiled_fn(a, b)
compiled_result.sum().backward()
if hasattr(a, "_dynamo_weak_dynamic_indices"):
del a._dynamo_weak_dynamic_indices
self.assertEqual(eager_result, compiled_result)
if functorch_config.bundled_autograd_cache:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
else:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
artifacts = torch.compiler.save_cache_artifacts()
self.assertIsNotNone(artifacts)
artifact_bytes, cache_info = artifacts
autotune_expect = 2 if device == GPU_TYPE else 0
if functorch_config.bundled_autograd_cache:
self.assertEqual(len(cache_info.inductor_artifacts), 0)
else:
self.assertEqual(len(cache_info.inductor_artifacts), 2)
self.assertEqual(len(cache_info.autotune_artifacts), autotune_expect)
self.assertEqual(len(cache_info.aot_autograd_artifacts), 1)
self.assertEqual(len(cache_info.pgo_artifacts), 0)
self._clear_all_caches()
# Clean triton kernels
shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True)
# We did not load anything so dont hit yet
with fresh_cache():
eager_result = fn(a, b)
compiled_result = compiled_fn(a, b)
self.assertEqual(eager_result, compiled_result)
compiled_result.sum().backward()
if hasattr(a, "_dynamo_weak_dynamic_indices"):
del a._dynamo_weak_dynamic_indices
if functorch_config.bundled_autograd_cache:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
else:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 4)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
self._clear_all_caches()
# Clean triton kernels
shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True)
# Hot load and hit
with fresh_cache():
cache_info = torch.compiler.load_cache_artifacts(artifact_bytes)
if functorch_config.bundled_autograd_cache:
self.assertEqual(len(cache_info.inductor_artifacts), 0)
else:
self.assertEqual(len(cache_info.inductor_artifacts), 2)
self.assertEqual(len(cache_info.autotune_artifacts), autotune_expect)
self.assertEqual(len(cache_info.aot_autograd_artifacts), 1)
self.assertEqual(len(cache_info.pgo_artifacts), 0)
eager_result = fn(a, b)
compiled_result = compiled_fn(a, b)
compiled_result.sum().backward()
if hasattr(a, "_dynamo_weak_dynamic_indices"):
del a._dynamo_weak_dynamic_indices
self.assertEqual(eager_result, compiled_result)
if functorch_config.bundled_autograd_cache:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
else:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 4)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 2)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_basic(self):
"""
Verify the interactions between FXGraphCache and AOTAutogradCache.
"""
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_vmap(self):
"""
make
"""
def fn(x, y):
f = lambda x, y: (x * y + 1).sum(dim=0) # noqa: E731
vmapped = torch.vmap(f)(x, y)
return vmapped.sum(dim=0)
x = torch.randn(25, requires_grad=True)
y = torch.randn(25, requires_grad=True)
x2 = x.detach().clone().requires_grad_(True)
y2 = y.detach().clone().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(x, y), compiled_fn(x2, y2))
fn(x, y).sum().backward()
compiled_fn(x2, y2).sum().backward()
self.assertEqual(x.grad, x2.grad)
self.assertEqual(y.grad, y2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Reset all tensors
x = torch.randn(25, requires_grad=True)
y = torch.randn(25, requires_grad=True)
x2 = x.detach().clone().requires_grad_(True)
y2 = y.detach().clone().requires_grad_(True)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(x, y), compiled_fn(x2, y2))
fn(x, y).sum().backward()
compiled_fn(x2, y2).sum().backward()
self.assertEqual(x.grad, x2.grad)
self.assertEqual(y.grad, y2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_multi_graph_specialization(self):
"""
Verify multi graph specializations all cache hit
"""
def fn(x):
return x * 5
a = torch.randn(5)
a8 = torch.randn(8)
a16 = torch.randn(16)
torch._dynamo.mark_dynamic(
a,
0,
specialize_on=[
lambda x: x == 8,
lambda x: x == 16,
],
)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
compiled_fn(a)
compiled_fn(a8)
compiled_fn(a16)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 3)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 3)
self._clear_dynamo_and_codecache()
# A second call should hit on all 3 graphs
compiled_fn(a)
compiled_fn(a8)
compiled_fn(a16)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 3)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 3)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 3)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_symbol_specialization(self):
"""
Verify the symbol specializations don't cause cache miss.
"""
def fn(x, y, z):
return (torch.randn(5) + x + y, z * torch.randn(1))
a = torch.rand(5)
torch._dynamo.maybe_mark_dynamic(a, 0)
b = torch.rand(5)
c = torch.randn(6)
torch._dynamo.maybe_mark_dynamic(c, 0)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
compiled_fn(a, b, c)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# A second call should hit even if a new dimension is marked as dynamic
# that is later specialized as part of tracing.
a = torch.rand(5)
torch._dynamo.maybe_mark_dynamic(a, 0)
b = torch.rand(5)
torch._dynamo.maybe_mark_dynamic(b, 0)
c = torch.randn(6)
torch._dynamo.maybe_mark_dynamic(c, 0)
self._clear_dynamo_and_codecache()
compiled_fn(a, b, c)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@functorch_config.patch({"enable_autograd_cache": True})
def test_aot_runtime_trace_joint(self):
@torch.compile(backend="inductor")
def f(x):
tmp = x.sin()
s0 = tmp.shape[0]
return tmp.expand(s0, s0)
x_a = torch.randn(4, requires_grad=True)
x = TwoTensor(x_a, x_a.clone())
out = f(x)
out.sum().backward()
self._clear_dynamo_and_codecache()
out = f(x)
out.sum().backward()
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@skipIfWindows(
msg="Known issue: Window can't delete loaded modules, so we can't clear module cache."
)
def test_clear_fx_graph_cache(self):
"""
Verify the interactions between FXGraphCache and AOTAutogradCache.
"""
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear FX graph cache: second call should also be a miss
self._clear_dynamo_and_codecache()
torch._inductor.codecache.FxGraphCache.clear()
self.assertEqual(fn(a, b), compiled_fn(a, b))
if functorch_config.bundled_autograd_cache:
# Bundled AutogradCache doesn't care if FxGraphCache is cleared
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
else:
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
# We save again into the cache
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"strict_autograd_cache": True})
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is unavailable")
@requires_triton()
def test_non_bundled_to_bundled_config_change(self):
if functorch_config.bundled_autograd_cache:
raise unittest.SkipTest("BundledAutogradCache is already enabled")
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25, device=GPU_TYPE)
b = torch.rand(5, 5, device=GPU_TYPE)
compiled_fn = torch.compile(fn, backend="inductor")
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Now turn on bundled autograd cache, see that we successfully save again
with functorch_config.patch({"bundled_autograd_cache": True}):
torch._dynamo.reset()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch(
{"enable_autograd_cache": True, "view_replay_for_aliased_outputs": True}
)
def test_view_replay(self):
def fn(a):
tmp = a.detach()
a.mul_(2)
return a, tmp
with torch.autograd._force_original_view_tracking(True):
compiled_fn = torch.compile(fn)
def run_and_check(miss, hit, bypass):
self._clear_dynamo_and_codecache()
inp = torch.rand(2, 3)
compiled_inp = inp.clone().detach()
with torch.autograd._force_original_view_tracking(True):
out = fn(inp)
compiled_out = compiled_fn(compiled_inp)
self.assertEqual(out, compiled_out)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], miss)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], hit)
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], bypass)
run_and_check(miss=1, hit=0, bypass=0)
run_and_check(miss=1, hit=1, bypass=0)
run_and_check(miss=1, hit=2, bypass=0)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch(
{"enable_autograd_cache": True, "strict_autograd_cache": True}
)
def test_invoke_subgraph(self):
from torch._higher_order_ops.invoke_subgraph import mark_compile_region
@mark_compile_region
def gn(x, y):
return x + y
@torch.compile
def fn(x, y):
return gn(x, y) + gn(x, y)
a = torch.randn(25)
b = torch.randn(25)
fn(a, b)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch(
{"enable_autograd_cache": True, "strict_autograd_cache": True}
)
@parametrize("fn_select", ("tag_activation_checkpoint", "allow_in_graph"))
def test_unsafe_mark_cacheable(self, fn_select):
if fn_select == "tag_activation_checkpoint":
from torch.utils.checkpoint import checkpoint
def gn(x, y, z=None):
a = torch.matmul(x, y)
if z is not None:
return torch.matmul(a, z)
return a
@torch.compile
def fn(x, y, z):
return torch.cos(checkpoint(gn, x, y, use_reentrant=False, z=z))
fn_name = "torch.ops.higher_order.tag_activation_checkpoint"
else:
assert fn_select == "allow_in_graph"
@torch._dynamo.allow_in_graph
class AllowInGraphFunc(torch.autograd.Function):
@staticmethod
def forward(_, x):
torch._dynamo.graph_break()
return x.sin()
@torch.compile
def fn(x, y, z):
return AllowInGraphFunc.apply(x)
fn_name = "torch._dynamo.variables.misc.trampoline_autograd_apply"
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = torch.randn(4, 4)
args = (x, y, z)
with self.assertRaisesRegex(
torch._dynamo.exc.BackendCompilerFailed,
r".*BypassAOTAutogradCache: Unsupported call_function target .*",
):
fn(*args)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
self._clear_dynamo_and_codecache()
if fn_select == "allow_in_graph":
# TODO: Fix allow in graph
raise unittest.SkipTest(
"Allow in graph produces an unserializable cache artifact"
)
with inductor_config.patch(
"unsafe_marked_cacheable_functions", {fn_name: "key1"}
):
fn(*args)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
self._clear_dynamo_and_codecache()
fn(*args)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
self._clear_dynamo_and_codecache()
with inductor_config.patch(
"unsafe_marked_cacheable_functions", {fn_name: "key2"}
):
fn(*args)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
self._clear_dynamo_and_codecache()
fn(*args)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
# On second try with same key, it should hit once more
with inductor_config.patch(
"unsafe_marked_cacheable_functions", {fn_name: "key1"}
):
self._clear_dynamo_and_codecache()
fn(*args)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 3)
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_fx_graph_cache_off(self):
"""
Should not use cache if FXGraphCache is not enabled
"""
def fn(x, y):
return (x * 2, y @ y)
a = torch.rand(25)
b = torch.rand(5, 5)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
# Clear FX graph cache: second call should also be a miss
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch(
{"enable_autograd_cache": True, "strict_autograd_cache": True}
)
@dynamo_config.patch("compiled_autograd", True)
def test_compiled_autograd_bypass(self):
# Need to make the compiled autograd graph serializable
def fn(a, b):
out = a.cos() + b
loss = out.sum()
ga, gb = torch.autograd.grad(loss, inputs=[a, b])
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
compiled_fn = torch.compile(fn, backend="inductor")
with self.assertRaisesRegex(
torch._dynamo.exc.BackendCompilerFailed,
"BypassAOTAutogradCache: Unsupported call_function target torch._dynamo.compiled_autograd.ops.validate_outputs",
):
compiled_fn(a, b)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@dynamo_config.patch("compiled_autograd", True)
def test_inference_graph_cache_hit_with_compiled_autograd_enabled(self):
def fn(a, b):
out = a.cos() + b
return out.sum()
a = torch.randn(25)
b = torch.randn(25)
compiled_fn = torch.compile(fn, backend="inductor")
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear dynamo and run again. Should be a cache hit.
counters.clear()
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a, b))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
@requires_cuda_and_triton
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"autograd_cache_allow_custom_autograd_functions": True})
def test_custom_autograd_function_miss(self):
class MyAutogradFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = x.sin()
ctx.save_for_backward(y)
ctx.foo = x.cos()
return y
@staticmethod
def backward(ctx, grad_output):
result = ctx.saved_tensors[0]
return grad_output * result + ctx.foo * grad_output
def fn(a):
return MyAutogradFunction.apply(a)
a = torch.randn(5, device="cuda", requires_grad=True)
a2 = a.clone().detach_().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a)
result.sum().backward()
self.assertEqual(fn(a), result)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
class MyAutogradFunction(torch.autograd.Function): # noqa: F811
# Change the function slightly
@staticmethod
def forward(ctx, x):
y = x.cos()
ctx.save_for_backward(y)
ctx.foo = x.sin()
return y
@staticmethod
def backward(ctx, grad_output):
result = ctx.saved_tensors[0]
return grad_output * result + ctx.foo * grad_output
# Clear dynamo and run again. Should be a cache miss.
counters.clear()
self._clear_dynamo_and_codecache()
result = compiled_fn(a2)
self.assertEqual(fn(a2), result)
result.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@requires_cuda_and_triton
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"autograd_cache_allow_custom_autograd_functions": True})
def test_custom_autograd_function(self):
class MyAutogradFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = x.sin()
ctx.save_for_backward(y)
ctx.foo = x.cos()
return y
@staticmethod
def backward(ctx, grad_output):
result = ctx.saved_tensors[0]
return grad_output * result + ctx.foo * grad_output
def fn(a):
return MyAutogradFunction.apply(a)
a = torch.randn(5, device="cuda", requires_grad=True)
a2 = a.clone().detach_().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a)
result.sum().backward()
self.assertEqual(fn(a), result)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear dynamo and run again. Should be a cache hit.
counters.clear()
self._clear_dynamo_and_codecache()
result = compiled_fn(a2)
self.assertEqual(fn(a2), result)
result.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
@requires_cuda_and_triton
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"autograd_cache_allow_custom_autograd_functions": True})
def test_custom_autograd_function_with_custom_triton_kernel(self):
@triton.jit
def my_jit(x):
arg_0 = tl.load(x)
tl.store(x, arg_0 + 1)
@torch._library.triton_op("test::my_triton_op", mutates_args=())
def my_triton_op(x: torch.Tensor) -> torch.Tensor:
y = x.clone().detach_().requires_grad_(True)
torch._library.capture_triton(my_jit)[1,](y)
return y
class MyAutogradFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = torch.ops.test.my_triton_op(x)
ctx.save_for_backward(y)
ctx.foo = x.cos()
return y
@staticmethod
def backward(ctx, grad_output):
result = ctx.saved_tensors[0]
return grad_output * result + ctx.foo * grad_output
def fn(a):
return MyAutogradFunction.apply(a)
a = torch.randn(5, device=GPU_TYPE, requires_grad=True)
a2 = a.clone().detach_().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a)
self.assertEqual(fn(a), result)
result.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear dynamo and run again. Should be a cache hit.
counters.clear()
self._clear_dynamo_and_codecache()
result = compiled_fn(a2)
self.assertEqual(fn(a2), result)
result.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
@requires_cuda_and_triton
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"autograd_cache_allow_custom_autograd_functions": True})
def test_custom_autograd_function_with_custom_triton_kernel_cache_invalidation(
self,
):
@triton.jit
def my_jit(x):
arg_0 = tl.load(x)
tl.store(x, arg_0 + 1)
@torch._library.triton_op("test::my_triton_op", mutates_args=())
def my_triton_op(x: torch.Tensor) -> torch.Tensor:
y = x.clone().detach_().requires_grad_(True)
torch._library.capture_triton(my_jit)[1,](y)
return y
class MyAutogradFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = torch.ops.test.my_triton_op(x)
ctx.save_for_backward(y)
ctx.foo = x.cos()
return y
@staticmethod
def backward(ctx, grad_output):
result = ctx.saved_tensors[0]
return grad_output * result + ctx.foo * grad_output
def fn(a):
return MyAutogradFunction.apply(a)
a = torch.randn(5, device=GPU_TYPE, requires_grad=True)
a2 = a.clone().detach_().requires_grad_(True)
a3 = a.clone().detach_().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a)
self.assertEqual(fn(a), result)
result.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear dynamo and run again. Should be a cache hit.
counters.clear()
self._clear_dynamo_and_codecache()
result = compiled_fn(a2)
self.assertEqual(fn(a2), result)
result.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
# Now modify the source code of my_jit by redefining it
@triton.jit
def my_jit(x): # noqa: F811
arg_0 = tl.load(x)
tl.store(x, arg_0 + 2) # Changed from +1 to +2
@torch._library.triton_op("test::my_triton_op", mutates_args=())
def my_triton_op(x: torch.Tensor) -> torch.Tensor: # noqa: F811
y = x.clone().detach_().requires_grad_(True)
torch._library.capture_triton(my_jit)[1,](y)
return y
# Clear dynamo and run again. Should be a cache miss due to modified source code.
counters.clear()
self._clear_dynamo_and_codecache()
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a3)
# Assert that after changing the source code, the cache no longer hits
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(fn(a3), result)
@requires_cuda_and_triton
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_triton_op_cache_invalidation(self):
from torch._library import capture_triton
@triton.jit
def my_jit(x): # noqa: F811
arg_0 = tl.load(x)
tl.store(x, arg_0 + 1)
@torch._library.triton_op("test::my_triton_op", mutates_args=())
def my_triton_op(x: torch.Tensor) -> torch.Tensor: # noqa: F811
y = x.clone().detach_().requires_grad_(True)
capture_triton(my_jit)[1,](y)
return y
def fn(a):
return torch.ops.test.my_triton_op(a)
a = torch.randn(5, device=GPU_TYPE)
a2 = a.clone().detach_()
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a)
self.assertEqual(fn(a), result)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self._clear_dynamo_and_codecache()
# Redefine the triton op
@triton.jit
def my_jit(x): # noqa: F811
arg_0 = tl.load(x)
tl.store(x, arg_0 + 2)
@torch._library.triton_op("test::my_triton_op", mutates_args=())
def my_triton_op(x: torch.Tensor) -> torch.Tensor: # noqa: F811
y = x.clone().detach_().requires_grad_(True)
torch._library.capture_triton(my_jit)[1,](y)
return y
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a2)
# Second run should still miss
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
self.assertEqual(fn(a2), result)
@requires_cuda_and_triton
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@unittest.expectedFailure # Currently ops that call other ops does not properly invalidate cache
def test_triton_op_cache_multiple_ops_invalidation(self):
@triton.jit
def my_jit(x):
arg_0 = tl.load(x)
tl.store(x, arg_0 + 1)
@triton.jit
def my_jit2(x):
arg_0 = tl.load(x)
tl.store(x, arg_0 + 1)
@torch._library.triton_op("test::my_triton_op", mutates_args=())
def my_triton_op(x: torch.Tensor) -> torch.Tensor:
y = x.clone().detach_().requires_grad_(True)
torch._library.capture_triton(my_jit)[1,](y)
torch._library.capture_triton(my_jit2)[1,](y)
return y
@torch._library.triton_op("test::my_triton_op2", mutates_args=())
def my_triton_op2(x: torch.Tensor) -> torch.Tensor:
y = x.clone().detach_().requires_grad_(True)
torch.ops.test.my_triton_op(y)
return y
def fn(a):
return torch.ops.test.my_triton_op2(a)
a = torch.randn(5, device=GPU_TYPE)
a2 = a.clone().detach_()
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a)
self.assertEqual(fn(a), result)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self._clear_dynamo_and_codecache()
# Redefine the triton op
@triton.jit
def my_jit(x): # noqa: F811
arg_0 = tl.load(x)
tl.store(x, arg_0 + 2)
@torch._library.triton_op("test::my_triton_op", mutates_args=())
def my_triton_op(x: torch.Tensor) -> torch.Tensor: # noqa: F811
y = x.clone().detach_().requires_grad_(True)
torch._library.capture_triton(my_jit)[1,](y)
torch._library.capture_triton(my_jit2)[1,](y)
return y
@torch._library.triton_op("test::my_triton_op2", mutates_args=())
def my_triton_op2(x: torch.Tensor) -> torch.Tensor: # noqa: F811
y = x.clone().detach_().requires_grad_(True)
torch.ops.test.my_triton_op(y)
return y
compiled_fn = torch.compile(fn, backend="inductor")
result = compiled_fn(a2)
# Second run should still miss
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
self.assertEqual(fn(a2), result)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch({"fx_graph_cache": True})
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"strict_autograd_cache": True})
def test_autograd_lazy_backward(self):
"""
Lazily compile the backward, and lazily save to cache
"""
def fn(a, b):
return a.cos() + b
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
# Clear dynamo and run again. Should be a cache miss still, because backward hasn't run
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0)
# Now let's run the backward
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Clear dynamo and rerun everything, now there should be a cache hit
self._clear_dynamo_and_codecache()
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch({"fx_graph_cache": True})
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"strict_autograd_cache": True})
def test_autograd_no_dynamo_trace_backward(self):
"""
Test that dynamo does not trace into the backward compiled function,
even on cache hit.
"""
torch._dynamo.eval_frame.clear_dynamo_tls()
@torch.compile
def fn(x):
# Calls x.sum().backward() during forward execution of fn
(x_grad,) = torch.autograd.grad(x.sum(), x)
return x_grad
a = torch.randn(10, 10, requires_grad=True, device="cpu")
result = fn(a)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
# Backward of `sum` will run during execution of graph break
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
traced_frame_infos = copy.deepcopy(
torch._dynamo.eval_frame.dynamo_tls.traced_frame_infos
)
torch._dynamo.reset()
torch._dynamo.eval_frame.clear_dynamo_tls()
result2 = fn(a)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
new_traced_frame_infos = torch._dynamo.eval_frame.dynamo_tls.traced_frame_infos
self.assertEqual(result, result2)
# Dynamo should trace exactly the same frames on cache hit
self.assertEqual(traced_frame_infos, new_traced_frame_infos)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_autograd_function(self):
"""
Tests autograd cache hits
"""
def fn(a, b):
return a.sin() + b
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Reset all tensors
a = torch.randn(25, requires_grad=True)
b = torch.randn(25, requires_grad=True)
a2 = a.detach().clone().requires_grad_(True)
b2 = b.detach().clone().requires_grad_(True)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(a, b), compiled_fn(a2, b2))
fn(a, b).sum().backward()
compiled_fn(a2, b2).sum().backward()
self.assertEqual(a.grad, a2.grad)
self.assertEqual(b.grad, b2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@largeTensorTest("64GB", device=GPU_TYPE)
@parametrize("device", (GPU_TYPE,))
@parametrize("dtype", (torch.float16, torch.bfloat16))
@inductor_config.patch("fx_graph_cache", True)
@inductor_config.patch("fx_graph_remote_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_autograd_guard_single_entry(self, device, dtype):
"""
Test caching the same graph, but under conditions that introduce guards
for tensor sizes < int32. See test_codecache::TestFxGraphCache::test_cache_load_with_guards_int32_bounds.
This test in particular tests the behavior of a single entry cache. If we ever make AOTAutogradCache
support multiple entries under the same key, this test should be updated.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires CUDA SM80 or later")
def fn(x, y):
return (x + x, y + y)
def expect_miss(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
0,
)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
return res
def expect_hit(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
0,
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"],
1,
)
return res
def expect_guard_miss(compiled_fn, a, b):
self._clear_dynamo_and_codecache()
counters.clear()
res = compiled_fn(a, b)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
1,
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"],
0,
)
return res
compiled_fn = torch.compile(fn, dynamic=True)
a_shape = (5, 6)
b_shape = (7, 8)
a = torch.rand(a_shape, device=device, dtype=dtype)
b = torch.rand(b_shape, device=device, dtype=dtype)
res1 = expect_miss(compiled_fn, a, b)
# Same shape, should cache hit
a2 = a.detach().clone()
b2 = b.detach().clone()
res2 = expect_hit(compiled_fn, a2, b2)
self.assertEqual(res1, res2)
# By changing the shape greatly, despite the same exact input
# graph, inductor should report a guard miss, leading
# to a cache miss on our end.
a_shape = (5, 6)
b_shape = (47000, 47001)
a3 = torch.rand(a_shape, device=device, dtype=dtype)
b3 = torch.rand(b_shape, device=device, dtype=dtype)
expect_guard_miss(compiled_fn, a3, b3)
# Wobble the shape a bit, but not enough
# to trigger a guard miss (since 6, 7 is still less than int32)
# Should result in a cache hit
a_shape = (6, 7)
b_shape = (47000, 47001)
a4 = torch.rand(a_shape, device=device, dtype=dtype)
b4 = torch.rand(b_shape, device=device, dtype=dtype)
expect_hit(compiled_fn, a4, b4)
# Change the shape back to the original,
# FXGraphCache should hit because it stores
# multiple entries
a_shape = (5, 6)
b_shape = (7, 8)
a5 = torch.rand(a_shape, device=device, dtype=dtype)
b5 = torch.rand(b_shape, device=device, dtype=dtype)
expect_hit(compiled_fn, a5, b5)
@largeTensorTest("64GB", device=GPU_TYPE)
@parametrize("device", (GPU_TYPE,))
@parametrize("dtype", (torch.float16, torch.bfloat16))
@parametrize("requires_grad", (True, False))
@inductor_config.patch("fx_graph_cache", True)
@inductor_config.patch("fx_graph_remote_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_autograd_inductor_guards(self, device, dtype, requires_grad):
"""
Test caching the same graph, but under conditions that introduce guards
for tensor sizes < int32.
See test_codecache::TestFxGraphCache::test_cache_load_with_guards_int32_bounds.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires CUDA SM80 or later")
def fn(x, y):
return (x + x, y + y)
compiled_fn = torch.compile(fn, dynamic=True)
# Iterate over different shapes, varying whether the total
# size is below or above int32. For each combination, we expect
# different guards around whether the symbolic sizes do or do
# not exceed int32.
shapes = (
((5, 6), (7, 8)),
((5, 6), (47000, 47001)),
((47000, 47001), (5, 6)),
)
expected_hits = expected_misses = expected_saves = 0
expected_guard_misses = 0
for a_shape, b_shape in shapes:
a = torch.rand(
a_shape, device=device, dtype=dtype, requires_grad=requires_grad
)
b = torch.rand(
b_shape, device=device, dtype=dtype, requires_grad=requires_grad
)
# AVOID a dynamo reset here. We expect guards to have been
# added that will be violated with the new shape. We should
# see a recompilation (along with a cache miss).
res1 = compiled_fn(a, b)
# A first call should miss in the cache.
expected_misses += 1 # noqa: SIM113
self.assertEqual(
counters["aot_autograd"]["autograd_cache_miss"], expected_misses
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
expected_guard_misses,
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"], expected_hits
)
# Because dynamic shapes are enabled, we expect backwards to be compiled ahead of time
# So we should see a cache save here
expected_saves += 1 # noqa: SIM113
self.assertEqual(
counters["aot_autograd"]["autograd_cache_saved"], expected_saves
)
if requires_grad:
res1[0].sum().backward()
# No extra saves
self.assertEqual(
counters["aot_autograd"]["autograd_cache_saved"], expected_saves
)
a2 = a.detach().clone().requires_grad_(requires_grad)
b2 = b.detach().clone().requires_grad_(requires_grad)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
# Now clear dynamo and we should see a cache hit
# This should populate guards to dynamo's cache, so that a subsequent run with a different
# shape will still trigger a second call to autograd_cache.
self._clear_dynamo_and_codecache()
res2 = compiled_fn(a2, b2)
expected_hits += 1 # noqa: SIM113
self.assertEqual(
counters["aot_autograd"]["autograd_cache_miss"], expected_misses
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_guard_miss"],
expected_guard_misses,
)
# First compile is a regular cache miss, subsequent are guard misses
expected_guard_misses += 1 # noqa: SIM113
self.assertEqual(
counters["aot_autograd"]["autograd_cache_hit"], expected_hits
)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_saved"], expected_saves
)
self.assertEqual(res1, res2)
if requires_grad:
res2[0].sum().backward()
self.assertEqual(a.grad, a2.grad)
@inductor_config.patch("fx_graph_cache", True)
@inductor_config.patch("fx_graph_remote_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_nn_module_with_params_global_constant(self):
class MyMod(torch.nn.Module):
CONSTANT = torch.tensor([[2, 2], [2, 2]])
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.randn([2, 2]))
def forward(self, x):
return x.sin() + self.param + MyMod.CONSTANT
with torch.no_grad():
compiled_fn = torch.compile(MyMod(), backend="inductor", fullgraph=True)
res1 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self._clear_dynamo_and_codecache()
res2 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self.assertEqual(res1, res2)
# Edit the "constant". We'll get a cache hit,
# but it should result in a different result when run
# because MyMod.CONSTANT is an input to the graph
MyMod.CONSTANT = torch.tensor([[3, 3], [3, 3]])
self._clear_dynamo_and_codecache()
res3 = compiled_fn(torch.ones([2, 2]))
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self.assertNotEqual(res1, res3)
self.assertEqual(res1, res3.sub(torch.ones(2, 2)))
@inductor_config.patch("fx_graph_cache", True)
@inductor_config.patch("fx_graph_remote_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_constant_tensor_device_guards(self):
"""
Usually, when there are example inputs, the device index of the inputs
is sufficient to make sure we don't cache hit with the results from different
cuda devices.
When the input has no arguments, we still need to have the cuda
device index in the cache key.
"""
@torch.compile
def f():
y = torch.tensor([5], device="cuda")
return (y,)
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
result = f()
self.assertEqual(result[0].device, torch.device("cuda:0"))
self._clear_dynamo_and_codecache()
with torch.cuda._DeviceGuard(1):
torch.cuda.set_device(1)
result = f()
self.assertEqual(result[0].device, torch.device("cuda:1"))
@requires_cuda_and_triton
@inductor_config.patch("fx_graph_cache", True)
@inductor_config.patch("fx_graph_remote_cache", False)
@functorch_config.patch({"enable_autograd_cache": True})
def test_multiple_compile_triton_kernels(self):
"""
When we cache hit on AOTAutogradCache, we need to still clear
CompiledTritonKernels after compiling the kernel.
"""
from torch._inductor.async_compile import CompiledTritonKernels
@torch.compile
def f(x, y):
return x.sin() + y
x = torch.randn(10, device="cuda")
y = torch.randn(10, device="cuda")
with torch.no_grad():
result = f(x, y)
self.assertEqual(result, x.sin() + y)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(len(CompiledTritonKernels._cache), 0)
self._clear_dynamo_and_codecache()
with torch.no_grad():
result = f(x, y)
self.assertEqual(result, x.sin() + y)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(len(CompiledTritonKernels._cache), 0)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"strict_autograd_cache": True})
def test_dynamic_shapes_different_sizes(self):
# The forward and backward function have different symint inputs,
# but the same underlying symbols
def fn(x, y):
z = x * y
return (torch.cat((x, x), dim=0), z)
(x1, y1) = torch.randn(5, requires_grad=True), torch.randn(5)
compiled_fn = torch.compile(fn, backend="inductor", dynamic=True)
x_compiled, _ = compiled_fn(x1, y1)
x_compiled.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self._clear_dynamo_and_codecache()
# Run a second time and see it cache hit instead of erroring
(x2, y2) = torch.randn(5, requires_grad=True), torch.randn(5)
x_compiled, _ = compiled_fn(x2, y2)
x_compiled.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is unavailable")
@unittest.skipIf(not SM80OrLater, "bfloat16, float8")
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
@functorch_config.patch({"activation_memory_budget": 1.0})
@functorch_config.patch({"activation_memory_budget_runtime_estimator": "testing"})
@functorch_config.patch({"saved_tensors_hooks_filtering_mode": "all"})
def test_saved_tensors_hooks_autograd_cache(self):
ctx = torch.autograd.graph.saved_tensors_hooks
device = torch.device("cuda:0")
def pack_cpu(x):
return x.to(device="cpu")
def unpack_cpu(x):
return x.to(device=device)
def pack_cpu2(x):
return x.to(device="cpu")
def unpack_cpu2(x):
return x.to(device=device)
def pack_mul2(x):
return x * 2
def unpack_mul2(x):
return x / 2
# Can not use custom AutogradFunction here,
# Cache bypasses AutogradFunction Ctx usage.
# Can not save in ctx non floating point dtypes.
# For non-symbolic tracing all dtypes and devices and burned in the graph.
def fn(x):
x = x + 1
x = x.sin().cos()
x = x.relu()
x = x.exp()
x = 2 * x
return x
backend = "inductor"
def inp_fn():
x = torch.ones(2, 3, device=device, requires_grad=True)
torch._dynamo.mark_dynamic(x, 0)
torch._dynamo.mark_dynamic(x, 1)
return x
x = inp_fn()
fn_compiled = torch.compile(fn, backend=backend, fullgraph=True)
y = fn_compiled(x)
y.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
with ctx(
*saved_tensors_hooks_to_gm(
pack_cpu,
unpack_cpu,
symbolic_tracing=False,
inp_fn=inp_fn,
pack_cache_hash="cpu_offload",
unpack_cache_hash="cpu_offload",
)
):
x = inp_fn()
y = fn_compiled(x)
y.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
with ctx(
*saved_tensors_hooks_to_gm(
pack_cpu2,
unpack_cpu2,
symbolic_tracing=False,
inp_fn=inp_fn,
pack_cache_hash="cpu_offload",
unpack_cache_hash="cpu_offload",
)
):
x = inp_fn()
y = fn_compiled(x)
y.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
with ctx(
*saved_tensors_hooks_to_gm(pack_mul2, unpack_mul2, symbolic_tracing=False)
):
x = inp_fn()
y = fn_compiled(x)
y.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 3)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 3)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is unavailable")
@unittest.skipIf(not SM80OrLater, "bfloat16, float8")
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_saved_tensors_hooks_autograd_cache_symbolic(self):
def pack_fp8_with_scale(x):
return _pack_fp8_with_scale_wrap(x)
def unpack_fp8_with_scale(packed):
return _unpack_fp8_with_scale_wrap(packed)
ctx = torch.autograd.graph.saved_tensors_hooks
def fn(x):
x = x + 1
# Relu saves bitmask in AutogradContext
x = x.relu()
x = x.relu()
return x
device = torch.device("cuda:0")
backend = "inductor"
def inp_fn():
x = torch.ones(2, 3, device=device, requires_grad=True)
torch._dynamo.mark_dynamic(x, 0)
torch._dynamo.mark_dynamic(x, 1)
return x
x = inp_fn()
fn_compiled = torch.compile(fn, backend=backend, fullgraph=True)
y = fn_compiled(x)
y.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
with ctx(
*saved_tensors_hooks_to_gm(
pack_fp8_with_scale,
unpack_fp8_with_scale,
"fp8_with_scale_dtype_floating_point",
"fp8_with_scale_dtype_floating_point",
)
):
x = inp_fn()
y = fn_compiled(x)
y.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
with ctx(
*saved_tensors_hooks_to_gm(
pack_fp8_with_scale,
unpack_fp8_with_scale,
"fp8_with_scale_dtype_floating_point",
"fp8_with_scale_dtype_floating_point",
)
):
x = inp_fn()
y = fn_compiled(x)
y.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2)
with ctx(
*saved_tensors_hooks_to_gm(
pack_fp8_with_scale,
unpack_fp8_with_scale,
"fp8_with_scale_dtype_floating_point_MISS",
"fp8_with_scale_dtype_floating_point_MISS",
)
):
x = inp_fn()
y = fn_compiled(x)
y.sum().backward()
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 3)
@functorch_config.patch({"enable_autograd_cache": True})
@inductor_config.patch(
{
"fx_graph_cache": True,
"fx_graph_remote_cache": False,
"autotune_local_cache": True,
}
)
def test_cache_lazy_backward_for_compiled_autograd(self):
device = "cpu"
dtype = torch.float32
dynamic = True
"""
Verify that we can populate and hot load functions from the cache.
"""
if device == GPU_TYPE and not HAS_GPU:
raise unittest.SkipTest(f"requires {GPU_TYPE}")
if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater:
raise unittest.SkipTest("requires SM80 or later")
def fn(x, y):
return x.sin() @ y
a = torch.rand(100, 100, dtype=dtype, device=device, requires_grad=True)
b = torch.rand(100, 100, dtype=dtype, device=device, requires_grad=True)
# Record artifacts
with fresh_cache():
compiled_fn = torch.compile(fn, dynamic=dynamic)
# A first call should miss in the cache.
eager_result = fn(a, b)
expected_grads = torch.autograd.grad(eager_result.sum(), inputs=(a, b))
compiled_result = compiled_fn(a, b)
with torch._dynamo.compiled_autograd._enable(
torch.compile(dynamic=dynamic)
):
actual_grads = torch.autograd.grad(compiled_result.sum(), inputs=(a, b))
if hasattr(a, "_dynamo_weak_dynamic_indices"):
del a._dynamo_weak_dynamic_indices
self.assertEqual(eager_result, compiled_result)
self.assertEqual(expected_grads[0], actual_grads[0])
self.assertEqual(expected_grads[1], actual_grads[1])
if functorch_config.bundled_autograd_cache:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
else:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 3)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
self.assertEqual(counters["compiled_autograd"]["captures"], 1)
artifacts = torch.compiler.save_cache_artifacts()
self.assertIsNotNone(artifacts)
artifact_bytes, cache_info = artifacts
autotune_expect = 2 if device == GPU_TYPE else 0
if functorch_config.bundled_autograd_cache:
self.assertEqual(len(cache_info.inductor_artifacts), 0)
else:
self.assertEqual(len(cache_info.inductor_artifacts), 3)
self.assertEqual(len(cache_info.autotune_artifacts), autotune_expect)
self.assertEqual(len(cache_info.aot_autograd_artifacts), 1)
self.assertEqual(len(cache_info.pgo_artifacts), 0)
self._clear_all_caches()
# Clean triton kernels
shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True)
# Hot load and hit, should not recompile
with fresh_cache():
cache_info = torch.compiler.load_cache_artifacts(artifact_bytes)
if functorch_config.bundled_autograd_cache:
self.assertEqual(len(cache_info.inductor_artifacts), 0)
else:
self.assertEqual(len(cache_info.inductor_artifacts), 3)
self.assertEqual(len(cache_info.autotune_artifacts), autotune_expect)
self.assertEqual(len(cache_info.aot_autograd_artifacts), 1)
self.assertEqual(len(cache_info.pgo_artifacts), 0)
for i in range(3):
counters.clear()
eager_result = fn(a, b)
expected_grads = torch.autograd.grad(eager_result.sum(), inputs=(a, b))
compiled_result = compiled_fn(a, b)
with torch._dynamo.compiled_autograd._enable(
torch.compile(dynamic=dynamic)
):
actual_grads = torch.autograd.grad(
compiled_result.sum(), inputs=(a, b)
)
if hasattr(a, "_dynamo_weak_dynamic_indices"):
del a._dynamo_weak_dynamic_indices
self.assertEqual(eager_result, compiled_result)
self.assertEqual(expected_grads[0], actual_grads[0])
self.assertEqual(expected_grads[1], actual_grads[1])
if i == 0:
# initial compile
if functorch_config.bundled_autograd_cache:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0)
else:
self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0)
self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 3)
self.assertEqual(
counters["inductor"]["fxgraph_lookup_write_file"], 3
)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(
counters["aot_autograd"]["autograd_cache_saved"], 0
)
self.assertEqual(counters["compiled_autograd"]["captures"], 1)
else:
# no recompiles
self.assertFalse(counters)
@functorch_config.patch({"bundled_autograd_cache": True})
class AOTAutogradCacheBundledTests(AOTAutogradCacheTests):
pass
@inductor_config.patch("fx_graph_cache", True)
class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase):
@property
def device_type(self) -> str:
return "cuda" if torch.cuda.is_available() else "cpu"
def default_config(self):
return AOTConfig(
fw_compiler=None,
bw_compiler=None,
inference_compiler=None,
partition_fn=None,
decompositions={},
num_params_buffers=0,
aot_id=0,
keep_inference_input_mutations=False,
dynamic_shapes=True,
aot_autograd_arg_pos_to_source=None,
is_export=False,
no_tangents=False,
enable_log=False,
precompile_backend_id=None,
)
def _get_dynamo_output(self, fn, *args, **kwargs):
# Reset dynamo between runs
torch._dynamo.reset()
fx_graph = None
example_inputs = None
def compiler(gm, inputs, **kwargs):
nonlocal fx_graph
nonlocal example_inputs
fx_graph = gm
example_inputs = inputs
return gm
g = torch.compile(fn, backend=compiler, fullgraph=True)
result = g(*args, **kwargs)
return (result, fx_graph, example_inputs)
def gen_cache_key(self, f, config, inputs=None):
if inputs is None:
inputs = [torch.ones(3)]
_, fx_g, example_inputs = self._get_dynamo_output(f, *inputs)
shape_env = ShapeEnv()
ctx = TracingContext(FakeTensorMode(shape_env=shape_env))
# Needs a shape env for FxGraphCache.check_can_cache to pass.
# Not needed for actual key calculation.
with torch._guards.tracing(ctx):
with sanitize_gm_for_cache(fx_g):
return autograd_cache_key(fx_g, example_inputs, config, {})
def test_basic_hash_key(self):
def fn(x):
return x.sin().cos()
config = self.default_config()
# Check hash is stable on multiple runs
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config)
self.assertEqual(c1, c2)
def test_identical_graphs_and_configs(self):
def fn(x):
return x.sin().cos()
def fn2(x): # noqa: F841
y = x.sin()
z = y.cos()
return z
# Make the id different, but otherwise identical
config = self.default_config()
config2 = self.default_config()
config2.aot_id = 1
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config2)
self.assertEqual(c1, c2)
def test_different_graphs(self):
def fn(x):
return x.cos().sin()
def fn2(x):
return x.sin().cos()
config = self.default_config()
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn2, config)
self.assertNotEqual(c1, c2)
def test_different_configs(self):
def fn(x):
return x.cos().sin()
config = self.default_config()
config2 = self.default_config()
config2.dynamic_shapes = False
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config2)
self.assertNotEqual(c1, c2)
def test_different_inputs(self):
def fn(x):
return x.cos().sin()
config = self.default_config()
c1 = self.gen_cache_key(fn, config, inputs=[torch.ones(3)])
c2 = self.gen_cache_key(fn, config, inputs=[torch.ones(2)])
self.assertNotEqual(c1, c2)
def test_different_global_configs(self):
def fn(x):
return x.cos().sin()
config = self.default_config()
c1 = self.gen_cache_key(fn, config)
c2 = self.gen_cache_key(fn, config)
self.assertEqual(c1, c2)
c1 = self.gen_cache_key(fn, config)
# Change functorch config
with functorch_config.patch(
{"debug_assert": not functorch_config.debug_assert}
):
c2 = self.gen_cache_key(fn, config)
self.assertNotEqual(c1, c2)
c1 = self.gen_cache_key(fn, config)
# Change inductor config
with inductor_config.patch({"debug": not inductor_config.debug}):
c2 = self.gen_cache_key(fn, config)
self.assertNotEqual(c1, c2)
c1 = self.gen_cache_key(fn, config)
# Change torch grad enabled
with torch.no_grad():
c2 = self.gen_cache_key(fn, config)
self.assertNotEqual(c1, c2)
def test_incompatible_function(self):
@torch._dynamo.allow_in_graph
class AllowInGraphFunc(torch.autograd.Function):
@staticmethod
def forward(_, x):
torch._dynamo.graph_break()
return x.sin()
def fn(x):
return AllowInGraphFunc.apply(x)
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
def test_private_namespace(self):
# TODO: anyone who monkeypatches a **public** function into torch namespace with @allow_in_graph
# could still break our sanity check and cache something bad. But that's an edge case we'll take the risk on.
# Monkeypatch some random private function into torch, see that it fails
@torch._dynamo.allow_in_graph
def my_private_fun(x):
return x.sin()
with patch("torch._my_priv", new=my_private_fun, create=True):
def fn(x):
return torch._my_priv(x)
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
@torch._inductor.config.patch({"freezing": True})
def test_freezing(self):
def fn(x):
return x.cos().sin()
config = self.default_config()
self.assertRaises(
BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config)
)
def test_private_builtin(self):
# _foreach_add is a private torch function, but
# it's also a builtin_function_or_method, so it should be allowed to be cached
# since dynamo allows it in the graph
def fn(x, b):
y = (x, x)
return torch._foreach_add(y, b)
config = self.default_config()
r1 = self.gen_cache_key(fn, config, inputs=[torch.ones(3), 1])
r2 = self.gen_cache_key(fn, config, inputs=[torch.ones(3), 2])
self.assertNotEqual(r1, r2)
def test_nn_module_with_params(self):
class MyMod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.seq = torch.nn.Parameter(torch.ones((3, 3)))
def forward(self, x):
return self.seq + x
config = self.default_config()
# Different inputs and parameters, but all the same size
c1 = self.gen_cache_key(MyMod(), config, inputs=[torch.ones((3, 3))])
c2 = self.gen_cache_key(MyMod(), config, inputs=[torch.ones((3, 3))])
self.assertEqual(c1, c2)
def test_normal_torch_function(self):
@torch._dynamo.allow_in_graph
def fn(x):
y = torch.sin(x)
z = torch.cos(x)
w = y + z
w.abs()
return w
config = self.default_config()
self.gen_cache_key(fn, config)
def test_safe_torchfunction(self):
def fn(x):
a = x.size()
b = torch.Size([3, 3])
c = a == b
x = torch.sym_int(9)
y = torch.sym_float(x)
z = torch.sym_int(torch.sym_sqrt(y))
result = torch.sym_sum([x, y, z])
return (c, result)
config = self.default_config()
self.gen_cache_key(fn, config, inputs=[torch.ones((3, 3))])
def test_sanitize_gm_for_cache(self):
def fn(x):
y = torch.sin(x)
z = torch.cos(x)
w = y + z
w.abs()
return w
_, fx_g, example_inputs = self._get_dynamo_output(fn, torch.ones(3))
ctx = TracingContext(FakeTensorMode(shape_env=ShapeEnv()))
with torch._guards.tracing(ctx):
fx_g.meta = {"foo": "bar"}
fx_g.compile_subgraph_reason = "Blah"
config = self.default_config()
with sanitize_gm_for_cache(fx_g):
c1 = autograd_cache_key(fx_g, example_inputs, config, {})
c3 = autograd_cache_key(fx_g, example_inputs, config, {})
fx_g.meta = {"foo": "baz"}
fx_g.compile_subgraph_reason = None
with sanitize_gm_for_cache(fx_g):
c2 = autograd_cache_key(fx_g, example_inputs, config, {})
c4 = autograd_cache_key(fx_g, example_inputs, config, {})
self.assertEqual(c1, c2)
self.assertNotEqual(c3, c4)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()