Files
pytorch/caffe2/operators/conv_transpose_op_mobile_impl.h
Yangqing Jia 7d5f7ed270 Using c10 namespace across caffe2. (#12714)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12714

This is a short change to enable c10 namespace in caffe2. We did not enable
it before due to gflags global variable confusion, but it should have been
mostly cleaned now. Right now, the plan on record is that namespace caffe2 and
namespace aten will fully be supersets of namespace c10.

Most of the diff is codemod, and only two places of non-codemod is in caffe2/core/common.h, where

```
using namespace c10;
```

is added, and in Flags.h, where instead of creating aliasing variables in c10 namespace, we directly put it in the global namespace to match gflags (and same behavior if gflags is not being built with).

Reviewed By: dzhulgakov

Differential Revision: D10390486

fbshipit-source-id: 5e2df730e28e29a052f513bddc558d9f78a23b9b
2018-10-17 12:57:19 -07:00

701 lines
19 KiB
C++

// conv_transpose_op_impl.h is the templated implementation of the
// conv_transpose_op.h file.
#ifndef CAFFE2_OPERATORS_CONV_TRANSPOSE_MOBILE_OP_IMPL_H_
#define CAFFE2_OPERATORS_CONV_TRANSPOSE_MOBILE_OP_IMPL_H_
#include "caffe2/core/common.h"
#ifndef CAFFE2_MOBILE
#error "mobile build state not defined"
#endif
#if CAFFE2_MOBILE
#include "caffe2/core/logging.h"
#include "caffe2/operators/conv_op_shared.h"
#include "caffe2/operators/conv_transpose_op_mobile.h"
#include "caffe2/utils/cpu_neon.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/fixed_divisor.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/math_utils.h"
C10_DECLARE_bool(caffe2_force_shared_col_buffer);
namespace caffe2 {
template <typename T, typename Context>
void runTileContiguous(
int tileId,
int N,
int M,
int H,
int W,
int outputH,
int outputW,
int C,
int kernelH,
int kernelW,
int strideH,
int strideW,
int padT,
const T* filterData,
const T* Xdata,
T* colBufferData,
T* Ydata,
Context* context) {
// The tile size is exactly the length of a single row
int tileSize = W;
auto kernelDataSize = C * kernelH * kernelW;
auto currentTileStart = tileSize * tileId;
// gemm tile
math::GemmEx<T, Context>(
CblasTrans,
CblasNoTrans,
kernelDataSize,
tileSize,
M,
1,
filterData,
kernelDataSize,
Xdata + currentTileStart,
H * W,
0,
colBufferData,
tileSize,
context);
// col2im tile
// We assume that there is no padding in the columns (padL and padR
// == 0).
// FIXME: it is actually possible for us to handle padding, figure
// out how to adjust the bounds
// We write into Y in a de-interleaved fashion; in other words,
// every column (mod strideW) == 0 together in one block,
// every column (mod strideW) == 1 in another,
// ... and so on.
int colBlockSize = (W + kernelW / strideW);
int numColBlocks = strideW;
for (int c = 0; c < kernelDataSize; ++c) {
int w_offset = c % kernelW;
int h_offset = (c / kernelW) % kernelH;
int c_im = c / kernelH / kernelW;
// Each row is a separate tile that we handle. First determine the
// row into which we are writing the output.
// We can properly handle padding for the rows.
int rowY = tileId * strideH - padT + h_offset;
// If this row is out of bounds, then skip it
if (!math::utils::IsAGeZeroAndALtB(rowY, outputH)) {
continue;
}
// FIXME: we don't actually handle a dynamic padL > 0
constexpr int kPadL = 0;
int colOffsetStart = -kPadL + w_offset;
int colBlockY = colOffsetStart % strideW;
// However, within a block we may not start writing at offset
// 0. The offset at which we begin writing is determined by
// colOffsetStart
int colWithinBlockOffsetY = colOffsetStart / strideW;
// So, this is where we begin reading/writing in Y
int colY = colBlockY * colBlockSize + colWithinBlockOffsetY;
// This is the complete offset into Y from the start
// Each row has strideW blocks of size colBlockSize
int offsetY = rowY * colBlockSize * numColBlocks + colY;
T* colBufferPointer = colBufferData + c * tileSize;
T* yPointer =
Ydata + c_im * outputH * (colBlockSize * numColBlocks) + offsetY;
int b = 0;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
// We vectorize the loop within the row
{
constexpr int kUnroll = (sizeof(float32x4_t) / sizeof(float)) * 4;
int limit = (tileSize / kUnroll) * kUnroll;
for (; b < limit; b += kUnroll) {
float32x4_t cb0 = vld1q_f32(colBufferPointer + 0);
float32x4_t cb1 = vld1q_f32(colBufferPointer + 4);
float32x4_t cb2 = vld1q_f32(colBufferPointer + 8);
float32x4_t cb3 = vld1q_f32(colBufferPointer + 12);
float32x4_t y0 = vld1q_f32(yPointer + 0);
float32x4_t y1 = vld1q_f32(yPointer + 4);
float32x4_t y2 = vld1q_f32(yPointer + 8);
float32x4_t y3 = vld1q_f32(yPointer + 12);
y0 = vaddq_f32(y0, cb0);
y1 = vaddq_f32(y1, cb1);
y2 = vaddq_f32(y2, cb2);
y3 = vaddq_f32(y3, cb3);
vst1q_f32(yPointer + 0, y0);
vst1q_f32(yPointer + 4, y1);
vst1q_f32(yPointer + 8, y2);
vst1q_f32(yPointer + 12, y3);
colBufferPointer += kUnroll;
yPointer += kUnroll;
}
}
{
constexpr int kUnroll = (sizeof(float32x4_t) / sizeof(float));
int limit = (tileSize / kUnroll) * kUnroll;
for (; b < limit; b += kUnroll) {
float32x4_t cb0 = vld1q_f32(colBufferPointer);
float32x4_t y0 = vld1q_f32(yPointer);
y0 = vaddq_f32(y0, cb0);
vst1q_f32(yPointer, y0);
colBufferPointer += kUnroll;
yPointer += kUnroll;
}
}
#endif
// Handle un-vectorizable epilogue
for (; b < tileSize; ++b) {
*yPointer += *colBufferPointer;
++yPointer;
++colBufferPointer;
}
}
}
template <typename T, int N>
struct StoreInterleaved {};
template <>
struct StoreInterleaved<float, 1> {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
inline static void store(float* p, float32x4_t v[1]) {
vst1q_f32(p, v[0]);
}
#endif
inline static void store(float* p, float v[1]) {
p[0] = v[0];
}
};
template <>
struct StoreInterleaved<float, 2> {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
inline static void store(float* p, float32x4_t v[2]) {
float32x4x2_t x = {{v[0], v[1]}};
vst2q_f32(p, x);
}
#endif
inline static void store(float* p, float v[2]) {
p[0] = v[0];
p[1] = v[1];
}
};
template <>
struct StoreInterleaved<float, 3> {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
inline static void store(float* p, float32x4_t v[3]) {
float32x4x3_t x = {{v[0], v[1], v[2]}};
vst3q_f32(p, x);
}
#endif
inline static void store(float* p, float v[3]) {
p[0] = v[0];
p[1] = v[1];
p[2] = v[2];
}
};
template <>
struct StoreInterleaved<float, 4> {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
inline static void store(float* p, float32x4_t v[4]) {
float32x4x4_t x = {{v[0], v[1], v[2], v[3]}};
vst4q_f32(p, x);
}
#endif
inline static void store(float* p, float v[4]) {
p[0] = v[0];
p[1] = v[1];
p[2] = v[2];
p[3] = v[3];
}
};
template <int kStrideW>
void reinterleaveRows(
const float* src,
const float* bias,
int c,
int h,
float* dst,
int outputC,
int outputH,
int outputW,
int inputW,
int kernelW,
int strideW,
int adjH) {
// Each row in src is of the form:
// [w mod strideW == 0 elements]...[w mod strideW == strideW - 1
// elements]
// We need to re-interleave the values and write them in the output
int colBlockSize = inputW + kernelW / kStrideW;
int noAdjOutputW = (inputW - 1) * kStrideW + kernelW;
int point = c * outputH + h;
src += point * colBlockSize * kStrideW;
dst += point * outputW;
float b = bias ? bias[c] : 0;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
float32x4_t biasV = vdupq_n_f32(b);
#endif
int w = 0;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
constexpr int kUnroll = (sizeof(float32x4_t) / sizeof(float)) * 2;
int limit = ((inputW - 1) / kUnroll) * kUnroll;
for (; w < limit; w += kUnroll) {
// We need to interleave in terms of kStrideW units
float32x4_t v0[kStrideW];
float32x4_t v1[kStrideW];
for (int i = 0; i < kStrideW; ++i) {
v0[i] = vld1q_f32(src + i * colBlockSize);
v1[i] = vld1q_f32(src + i * colBlockSize + 4);
}
// add per-channel bias
for (int i = 0; i < kStrideW; ++i) {
v0[i] = vaddq_f32(v0[i], biasV);
v1[i] = vaddq_f32(v1[i], biasV);
}
// Write interleaved into the output
StoreInterleaved<float, kStrideW>::store(dst + 0 * kStrideW, v0);
StoreInterleaved<float, kStrideW>::store(dst + 4 * kStrideW, v1);
src += kUnroll;
dst += kUnroll * kStrideW;
}
#endif
// Handle non-vectorizable remainder
for (; w < inputW - 1; ++w) {
float v[kStrideW];
for (int i = 0; i < kStrideW; ++i) {
v[i] = src[i * colBlockSize];
}
// add per-channel bias
for (int i = 0; i < kStrideW; ++i) {
v[i] += b;
}
// Write interleaved into the output
StoreInterleaved<float, kStrideW>::store(dst, v);
src += 1;
dst += kStrideW;
}
// We have handled 0 .. (inputW - 1) * stride inclusive so far.
// Handle the remainder
int outputPoint = (inputW - 1) * kStrideW;
int block = 0;
// Output width may include adjustment into which we don't
// write; ignore it
while (outputPoint < noAdjOutputW) {
float v = src[block * colBlockSize];
dst[0] = v + b;
++outputPoint;
dst += 1;
++block;
if (block >= kStrideW) {
block = 0;
src += 1;
}
}
// Remainder of the buffer comprised of just the `adj` must have
// bias added
for (; outputPoint < outputW; ++outputPoint) {
dst[0] = b;
dst += 1;
}
}
template <int N, typename T, typename Context>
void reinterleaveMultithreaded(
const T* y0,
const T* bias_data,
T* y,
int outputC,
int outputH,
int outputW,
int inputW,
int kernelW,
int strideW,
int adjH,
ThreadPool* pool) {
// # channels times height
size_t totalTiles = (size_t)outputC * outputH;
FixedDivisor<int> divOutputH(outputH);
#define REINTERLEAVE(N) \
do { \
reinterleaveRows<N>( \
y0, \
bias_data, \
c, \
h, \
y, \
outputC, \
outputH, \
outputW, \
inputW, \
kernelW, \
strideW, \
adjH); \
} while (false)
std::function<void(int, size_t)> fnReinterleave = [&](int threadId,
size_t tileId) {
int h;
int c;
divOutputH.DivMod((int)tileId, &c, &h);
REINTERLEAVE(N);
};
#undef REINTERLEAVE
pool->run(fnReinterleave, totalTiles);
}
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template <int N>
struct SumMultiple {
static void sumInto(float* acc, float** toSum, size_t size);
};
template <>
struct SumMultiple<1> {
static void sumInto(float* acc, float** toSum, size_t size) {
constexpr int kUnroll = (sizeof(float32x4_t) / sizeof(float));
int limit = (size / kUnroll) * kUnroll;
auto toSum0 = toSum[0];
size_t i = 0;
for (; i < limit; i += kUnroll) {
float32x4_t v0 = vld1q_f32_aligned(acc + i);
float32x4_t v1 = vld1q_f32_aligned(toSum0 + i);
v0 = vaddq_f32(v0, v1);
vst1q_f32_aligned(acc + i, v0);
}
for (; i < size; ++i) {
float v0 = acc[i];
float v1 = toSum0[i];
v0 += v1;
acc[i] = v0;
}
}
};
template <>
struct SumMultiple<2> {
static void sumInto(float* acc, float** toSum, size_t size) {
constexpr int kUnroll = (sizeof(float32x4_t) / sizeof(float));
int limit = (size / kUnroll) * kUnroll;
auto toSum0 = toSum[0];
auto toSum1 = toSum[1];
size_t i = 0;
for (; i < limit; i += kUnroll) {
float32x4_t v0 = vld1q_f32_aligned(acc + i);
float32x4_t v1 = vld1q_f32_aligned(toSum0 + i);
float32x4_t v2 = vld1q_f32_aligned(toSum1 + i);
v0 = vaddq_f32(v0, v1);
v0 = vaddq_f32(v0, v2);
vst1q_f32_aligned(acc + i, v0);
}
for (; i < size; ++i) {
float v0 = acc[i];
float v1 = toSum0[i];
float v2 = toSum1[i];
v0 += v1;
v0 += v2;
acc[i] = v0;
}
}
};
template <>
struct SumMultiple<3> {
static void sumInto(float* acc, float** toSum, size_t size) {
constexpr int kUnroll = (sizeof(float32x4_t) / sizeof(float));
int limit = (size / kUnroll) * kUnroll;
auto toSum0 = toSum[0];
auto toSum1 = toSum[1];
auto toSum2 = toSum[2];
size_t i = 0;
for (; i < limit; i += kUnroll) {
float32x4_t v0 = vld1q_f32_aligned(acc + i);
float32x4_t v1 = vld1q_f32_aligned(toSum0 + i);
float32x4_t v2 = vld1q_f32_aligned(toSum1 + i);
float32x4_t v3 = vld1q_f32_aligned(toSum2 + i);
v0 = vaddq_f32(v0, v1);
v2 = vaddq_f32(v2, v3);
v0 = vaddq_f32(v0, v2);
vst1q_f32_aligned(acc + i, v0);
}
for (; i < size; ++i) {
float v0 = acc[i];
float v1 = toSum0[i];
float v2 = toSum1[i];
float v3 = toSum2[i];
v0 += v1;
v2 += v3;
v0 += v2;
acc[i] = v0;
}
}
};
#endif
// Performs acc[i] += sum_j toSum_j[i] pointwise
void sumInto(float* acc, std::vector<float*>& toSum, size_t size) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
if (toSum.size() == 1) {
SumMultiple<1>::sumInto(acc, toSum.data(), size);
return;
} else if (toSum.size() == 2) {
SumMultiple<2>::sumInto(acc, toSum.data(), size);
return;
} else if (toSum.size() == 3) {
SumMultiple<3>::sumInto(acc, toSum.data(), size);
return;
}
#endif
// Otherwise, use fallback implementation
EigenVectorArrayMap<float> accT(acc, size);
for (auto p : toSum) {
accT += ConstEigenVectorArrayMap<float>(p, size);
}
}
template <typename T, class Context>
bool ConvTransposeMobileOp<T, Context>::RunOnDeviceWithOrderNCHW() {
const Tensor& X = Input(INPUT);
auto& filter = Input(FILTER);
Tensor* Y = Output(0);
const int N = X.dim32(0), M = X.dim32(1), H = X.dim32(2), W = X.dim32(3);
CAFFE_ENFORCE(filter.ndim() == 4, "filter must be 4D tensor");
CAFFE_ENFORCE(
filter.dim32(0) == M,
"filter number must be equal to input channel number");
const int C = filter.dim32(1);
CAFFE_ENFORCE(
filter.dim32(2) == this->kernel_h(),
"filter height must be equal to kernel height");
CAFFE_ENFORCE(
filter.dim32(3) == this->kernel_w(),
"filter width must be equal to kernel width");
if (InputSize() == 3) {
auto& bias = Input(BIAS);
CAFFE_ENFORCE(bias.ndim() == 1, "bias must be 1D tensor");
CAFFE_ENFORCE(
bias.dim32(0) == C,
"bias dimension must be equal to output channel number");
}
ConvTransposeUnpoolBase<Context>::SetOutputSize(X, Y, C);
const int outputH = Y->dim32(2);
const int outputW = Y->dim32(3);
const int outputPlaneSize = outputH * outputW;
const int outputBatchElementSize = Y->dim32(1) * outputPlaneSize;
auto Xdata = X.template data<T>();
auto Ydata = Y->template mutable_data<T>();
auto pool = ws_->GetThreadPool();
auto numThreads = pool->getNumThreads();
// Initialize per-thread buffers for output
// The main thread will write directly into the output Y, we just
// need buffers for the worker threads
size_t colBlockSize = W + this->kernel_w() / this->stride_w();
size_t threadYBufferSize = C * outputH * colBlockSize * this->stride_w();
// Require 16 byte alignment, so 4-element alignment as these are floats.
size_t threadYBufferSizeAligned =
((C * outputH * colBlockSize * this->stride_w() + 3) / 4) * 4;
size_t threadColBufferSize = C * this->kernel_h() * this->kernel_w() * W;
// Work around GCC 4.9 bug when this is declared inside the inner lambda.
auto runLocalTile = [&](TensorCPU* threadBuffer,
int threadId,
size_t tileId) {
auto localYData = threadBuffer->template mutable_data<T>() +
threadId * threadYBufferSizeAligned;
auto localColBufferData = threadBuffer->template mutable_data<T>() +
numThreads * threadYBufferSizeAligned + threadId * threadColBufferSize;
runTileContiguous<T, Context>(
tileId,
N,
M,
H,
W,
outputH,
outputW,
C,
this->kernel_h(),
this->kernel_w(),
this->stride_h(),
this->stride_w(),
this->pad_t(),
filter.template data<T>(),
Xdata,
localColBufferData,
localYData,
&context_);
};
auto f = [&](Tensor* threadBuffer) {
threadBuffer->Resize(
numThreads * threadYBufferSizeAligned +
numThreads * threadColBufferSize);
// Group together thread buffers for accumulation
std::vector<T*> toSum(numThreads - 1);
for (int i = 1; i < numThreads; ++i) {
toSum[i - 1] = threadBuffer->template mutable_data<T>() +
i * threadYBufferSizeAligned;
}
for (auto image_id = 0; image_id < N; ++image_id) {
// Each time through, we have to reset all per-thread output
// buffers, since the output buffer is only per-batch element
// The column buffers are overwritten by the matrix multiplication
// each time, so we need not clear them out each round
math::Set<T, Context>(
numThreads * threadYBufferSizeAligned,
0,
threadBuffer->template mutable_data<T>(),
&context_);
// Run tiled gemm and col2im in our threadpool; all of these tiles
// are guaranteed to be full tiles
// Each tile handles a single row of the input
pool->run(
[&](int threadId, int tileId) {
runLocalTile(threadBuffer, threadId, tileId);
},
H);
// We need to accumulate the per-thread results into the output
// Y; the first worker thread (main thread) already produced its
// results in Y
sumInto(
threadBuffer->template mutable_data<T>(), toSum, threadYBufferSize);
// y0 now contains the final output, but it is in deinterleaved
// form. We have to re-interleave it to produce the final form in Y
// This operation also handles adding the per-channel bias.
#define REINTERLEAVE(N) \
do { \
reinterleaveMultithreaded<N, T, Context>( \
threadBuffer->template mutable_data<T>(), \
InputSize() == 3 ? Input(BIAS).template data<T>() : nullptr, \
Ydata, \
Y->dim32(1), \
Y->dim32(2), \
Y->dim32(3), \
W, \
this->kernel_w(), \
this->stride_w(), \
this->adj_h(), \
pool); \
} while (false)
if (this->stride_w() == 1) {
REINTERLEAVE(1);
} else if (this->stride_w() == 2) {
REINTERLEAVE(2);
} else if (this->stride_w() == 3) {
REINTERLEAVE(3);
} else if (this->stride_w() == 4) {
REINTERLEAVE(4);
}
#undef REINTERLEAVE
Xdata += M * H * W;
Ydata += Y->size() / Y->dim32(0);
}
};
if (FLAGS_caffe2_force_shared_col_buffer || shared_buffer_) {
runWithSharedBuffer<Context>(ws_, f);
} else {
f(&threadBuffer_);
}
return true;
}
template <typename T, class Context>
bool ConvTransposeMobileOp<T, Context>::RunOnDeviceWithOrderNHWC() {
CAFFE_THROW("Not implemented.");
}
} // namespace caffe2
#endif // CAFFE2_MOBILE
#endif // CAFFE2_OPERATORS_CONV_TRANSPOSE_MOBILE_OP_IMPL_H_