Files
pytorch/torch/utils/_backport_slots.py
2025-01-21 21:04:10 +00:00

117 lines
4.5 KiB
Python

# This code is backported from python 3.10 dataclasses. Once 3.10 becomes the
# minimum supported we should use dataclass(slots=True) instead.
from __future__ import annotations
import dataclasses
import itertools
from typing import TYPE_CHECKING, TypeVar
if TYPE_CHECKING:
from collections.abc import Generator
from _typeshed import DataclassInstance
__all__ = ["dataclass_slots"]
_T = TypeVar("_T", bound="DataclassInstance")
def dataclass_slots(cls: type[_T]) -> type[DataclassInstance]:
assert dataclasses.is_dataclass(cls), "Can only be used on dataclasses."
def _get_slots(cls: type[DataclassInstance]) -> Generator[str, None, None]:
slots = cls.__dict__.get("__slots__")
# `__dictoffset__` and `__weakrefoffset__` can tell us whether
# the base type has dict/weakref slots, in a way that works correctly
# for both Python classes and C extension types. Extension types
# don't use `__slots__` for slot creation
if slots is None:
slots = []
if getattr(cls, "__weakrefoffset__", -1) != 0:
slots.append("__weakref__")
if getattr(cls, "__dictrefoffset__", -1) != 0:
slots.append("__dict__")
yield from slots
elif isinstance(slots, str):
yield slots
# Slots may be any iterable, but we cannot handle an iterator
# because it will already be (partially) consumed.
elif not hasattr(cls, "__next__"):
yield from slots
else:
raise TypeError(f"Slots of '{cls.__name__}' cannot be determined")
def _add_slots(
cls: type[DataclassInstance], is_frozen: bool, weakref_slot: bool
) -> type[DataclassInstance]:
# Need to create a new class, since we can't set __slots__
# after a class has been created.
# Make sure __slots__ isn't already set.
if "__slots__" in cls.__dict__:
raise TypeError(f"{cls.__name__} already specifies __slots__")
# Create a new dict for our new class.
cls_dict = dict(cls.__dict__)
field_names = tuple(f.name for f in dataclasses.fields(cls))
# Make sure slots don't overlap with those in base classes.
inherited_slots = set(
itertools.chain.from_iterable(map(_get_slots, cls.__mro__[1:-1]))
)
# The slots for our class. Remove slots from our base classes. Add
# '__weakref__' if weakref_slot was given, unless it is already present.
cls_dict["__slots__"] = tuple(
itertools.filterfalse(
inherited_slots.__contains__,
itertools.chain(
# gh-93521: '__weakref__' also needs to be filtered out if
# already present in inherited_slots
field_names,
("__weakref__",) if weakref_slot else (),
),
),
)
for field_name in field_names:
# Remove our attributes, if present. They'll still be
# available in _MARKER.
cls_dict.pop(field_name, None)
# Remove __dict__ itself.
cls_dict.pop("__dict__", None)
# Clear existing `__weakref__` descriptor, it belongs to a previous type:
cls_dict.pop("__weakref__", None) # gh-102069
# And finally create the class.
qualname = getattr(cls, "__qualname__", None)
cls = type(cls.__name__, cls.__bases__, cls_dict)
if qualname is not None:
cls.__qualname__ = qualname
def _dataclass_getstate(self: _T) -> object:
fields = dataclasses.fields(self)
return [getattr(self, f.name) for f in fields]
def _dataclass_setstate(self: _T, state: list[object]) -> None:
fields = dataclasses.fields(self)
for field, value in zip(fields, state):
# use setattr because dataclass may be frozen
object.__setattr__(self, field.name, value)
if is_frozen:
# Need this for pickling frozen classes with slots.
if "__getstate__" not in cls_dict:
cls.__getstate__ = _dataclass_getstate # type: ignore[method-assign, assignment]
if "__setstate__" not in cls_dict:
cls.__setstate__ = _dataclass_setstate # type: ignore[attr-defined]
return cls
params = getattr(cls, dataclasses._PARAMS) # type: ignore[attr-defined]
weakref_slot = getattr(params, "weakref_slot", False)
return _add_slots(cls, params.frozen, weakref_slot)