mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: We also fix any existing issues. Note that we only do this for the CPU build because nvcc is considered a C++ toolchain but it does not have the same flag support. Adding flags to the GPU build will cause nvcc errors. Test Plan: Built locally, rely on CI to confirm. Reviewers: malfet Subscribers: Tasks: Tags: Pull Request resolved: https://github.com/pytorch/pytorch/pull/79154 Approved by: https://github.com/seemethere, https://github.com/osalpekar, https://github.com/albanD
88 lines
2.3 KiB
C++
88 lines
2.3 KiB
C++
#include <ATen/core/ivalue.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <torch/csrc/Export.h>
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/script.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
#ifdef _MSC_VER
|
|
#define JIT_TEST_API
|
|
#else
|
|
#define JIT_TEST_API TORCH_API
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
bool isSandcastle() {
|
|
return (
|
|
(std::getenv("SANDCASTLE")) ||
|
|
(std::getenv("TW_JOB_USER") &&
|
|
std::string(std::getenv("TW_JOB_USER")) == "sandcastle"));
|
|
}
|
|
|
|
void testEvalModeForLoadedModule() {
|
|
if (isSandcastle())
|
|
return; // The module file to load is not generated in Sandcastle
|
|
std::string module_path = "dropout_model.pt";
|
|
torch::jit::Module module = torch::jit::load(module_path);
|
|
AT_ASSERT(module.attr("dropout").toModule().is_training());
|
|
module.eval();
|
|
AT_ASSERT(!module.attr("dropout").toModule().is_training());
|
|
module.train();
|
|
AT_ASSERT(module.attr("dropout").toModule().is_training());
|
|
}
|
|
|
|
// TODO: this test never ran before and is broken.
|
|
// void testSerializationInterop() {
|
|
// if (isSandcastle()) {
|
|
// // The module file to load is not generated in Sandcastle
|
|
// return;
|
|
// }
|
|
|
|
// // This should be generated by `test/cpp/jit/tests_setup.py`
|
|
// std::ifstream input_stream("ivalue.pt");
|
|
// std::vector<char> input;
|
|
// input.insert(
|
|
// input.begin(),
|
|
// std::istream_iterator<char>(input_stream),
|
|
// std::istream_iterator<char>());
|
|
// IValue ivalue = pickle_load(input);
|
|
|
|
// auto elements = ivalue.toTupleRef().elements();
|
|
// auto ones = torch::ones({2, 2});
|
|
// AT_ASSERT(ones.equal(elements.at(0).toTensor()));
|
|
|
|
// // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
|
|
// auto twos = torch::ones({3, 5}) * 2;
|
|
// AT_ASSERT(twos.equal(elements.at(1).toTensor()));
|
|
// }
|
|
|
|
void testTorchSaveError() {
|
|
if (isSandcastle()) {
|
|
// The file to load is not generated in Sandcastle
|
|
return;
|
|
}
|
|
|
|
// This should be generated by `test/cpp/jit/tests_setup.py`
|
|
bool passed = true;
|
|
try {
|
|
torch::jit::load("eager_value.pt");
|
|
passed = false;
|
|
} catch (const std::exception& c) {
|
|
}
|
|
// Ensure torch::jit::load did not run
|
|
AT_ASSERT(passed);
|
|
}
|
|
} // namespace
|
|
|
|
JIT_TEST_API void runJITCPPTests() {
|
|
// TODO: this test never ran before and is broken.
|
|
// testSerializationInterop();
|
|
testEvalModeForLoadedModule();
|
|
testTorchSaveError();
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|