Files
pytorch/test/cpp/jit/test_backend.cpp
Han Qi b34b192d6b Reland "Make debug_pkl smaller by only emitting unique traces." (#73368)
Summary:
## Original commit message:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73368

debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.

Test Plan:
## Original Test plan
unit test

Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K    archive/xl_model_weights
3.7M    archive/extra
8.0K    archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K    archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K    archive/code/__torch__/caffe2/torch/fb
8.0K    archive/code/__torch__/caffe2/torch
8.0K    archive/code/__torch__/caffe2
20M     archive/code/__torch__/torch/fx/graph_module
20M     archive/code/__torch__/torch/fx
8.0K    archive/code/__torch__/torch/classes
20M     archive/code/__torch__/torch
20M     archive/code/__torch__
20M     archive/code
2.7M    archive/constants
35M     archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K    resaved/extra
8.0K    resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K    resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K    resaved/code/__torch__/caffe2/torch/fb
8.0K    resaved/code/__torch__/caffe2/torch
8.0K    resaved/code/__torch__/caffe2
1.3M    resaved/code/__torch__/torch/fx/graph_module
1.3M    resaved/code/__torch__/torch/fx
8.0K    resaved/code/__torch__/torch/classes
1.4M    resaved/code/__torch__/torch
1.4M    resaved/code/__torch__
1.4M    resaved/code
2.7M    resaved/constants
13M     resaved
[qihan@devvm5585.vll0 ~]$
```
## Additional test:
`buck test mode/dev-tsan //caffe2/benchmarks/static_runtime:static_runtime_cpptest -- --exact 'caffe2/benchmarks/static_runtime:static_runtime_cpptest - StaticRuntime.to'` passes

 test jest.fbios.startup_cold_start.local.simulator f333356873 -

Differential Revision: D35196883

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74869
Approved by: https://github.com/gmagogsfm
2022-04-18 22:34:21 +00:00

862 lines
28 KiB
C++

#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/torch.h>
// Tests go in torch::jit
namespace torch {
namespace jit {
TEST(BackendTest, ToBackend) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return self.accum(x, h), self.sub_accum(x, h)
def accum(self, x, h):
return x + h
def sub_accum(self, x, h):
return x - h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs).toTupleRef().elements().vec();
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"test_backend", m, compile_spec, any_dict_ty);
// lowered module code:
/*
class test_backendLoweredModule(Module):
__parameters__ = []
__buffers__ = []
__processed_module : Any
__method_compile_spec : Dict[str, Any]
__backend : __torch__.torch.classes.__backends__.test_backend
__handles : Dict[str, Any]
def __create_backend(self: torch.jit.test_backendLoweredModule) -> None:
_0 =
__torch__.torch.classes.__backends__.test_backend.__new__(__torch__.torch.classes.__backends__.test_backend)
_1 = (_0).__init__()
self.__backend = _0
return None
def __getstate__(self: torch.jit.test_backendLoweredModule) ->
Tuple[Dict[str, Any], Any]: _2 = (self.__method_compile_spec,
self.__processed_module) return _2 def __setstate__(self:
torch.jit.test_backendLoweredModule, state: Tuple[Dict[str, Any], Any]) ->
None: self.__method_compile_spec = (state)[0] self.__processed_module =
(state)[1] _3 = (self).__create_backend() _4 =
(self.__backend).compile(self.__processed_module,
self.__method_compile_spec, ) self.__handles = _4 return None def
forward(self: torch.jit.test_backendLoweredModule, x: Tensor, h: Tensor) ->
Tuple[Tensor, Tensor]: _5 = uninitialized(Tensor) typed_inputs =
annotate(List[Any], [x, h]) _6 =
(self.__backend).execute((self.__handles)["forward"], typed_inputs, ) _7,
_8, = _6 _9 = isinstance(_7, Tensor) if _9: _10 = unchecked_cast(Tensor, _7)
else:
ops.prim.RaiseException("AssertionError: ")
_10 = _5
_11 = isinstance(_8, Tensor)
if _11:
_12 = unchecked_cast(Tensor, _8)
else:
ops.prim.RaiseException("AssertionError: ")
_12 = _5
return (_10, _12)
*/
auto res = lm.forward(inputs).toTupleRef().elements().vec();
AT_ASSERT(res[0].toTensor().equal(ref[0].toTensor()));
AT_ASSERT(res[1].toTensor().equal(ref[1].toTensor()));
}
TEST(BackendTest, ToBackendNotAvailable) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return self.accum(x, h), self.sub_accum(x, h)
def accum(self, x, h):
return x + h
def sub_accum(self, x, h):
return x - h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs).toTupleRef().elements().vec();
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// Produce lowered module (backend not available).
// Exception is not thrown at this point.
auto lm = torch::jit::detail::codegen_backend_module(
"test_backend_unavailable", m, compile_spec, any_dict_ty);
// Validate exception is thrown when trying to execute and
// the backend is not available.
ASSERT_THROWS_WITH_MESSAGE(
lm.forward(inputs).toTupleRef().elements(), "Backend is not available.");
}
TEST(BackendTest, TestCompiler) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x + h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs);
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
auto res = lm.forward(inputs);
AT_ASSERT(res.toTensor().equal(ref.toTensor()));
std::stringstream ss;
lm._save_for_mobile(ss);
auto mlm = _load_for_mobile(ss);
auto mres = mlm.forward(inputs);
AT_ASSERT(mres.toTensor().equal(ref.toTensor()));
}
TEST(BackendTest, TestCompilerWithStringTable) {
setShouldUseFormatWithStringTable(true);
Module m("m");
m.define(R"(
def forward(self, x, h):
return x + h
)");
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto ref = m.forward(inputs);
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
auto res = lm.forward(inputs);
AT_ASSERT(res.toTensor().equal(ref.toTensor()));
std::stringstream ss;
lm._save_for_mobile(ss);
auto mlm = _load_for_mobile(ss);
auto mres = mlm.forward(inputs);
setShouldUseFormatWithStringTable(false);
AT_ASSERT(mres.toTensor().equal(ref.toTensor()));
}
TEST(BackendTest, TestComposite) {
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
Module m_add("m_add");
m_add.define(R"(
def forward(self, x, y):
return x + y
)");
auto lm_add = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m_add, compile_spec, any_dict_ty);
Module m_sub("m_sub");
m_sub.define(R"(
def forward(self, x, y):
return x - y
)");
auto lm_sub = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m_sub, compile_spec, any_dict_ty);
Module c("C");
c.register_module("Add", lm_add);
c.register_module("Sub", lm_sub);
c.define(R"(
def forward(self, x, y):
return self.Add.forward(x, y) * self.Sub.forward(x, y)
)");
std::vector<IValue> inputs;
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto res_jit = c.forward(inputs);
std::stringstream ss;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
AT_ASSERT(res_jit.toTensor().equal(res_mobile.toTensor()));
}
TEST(BackendTest, TestPrimDtype) {
Module c("name");
c.define(R"(
def forward(self, x, y):
c = y.dtype
return c
)");
std::vector<IValue> inputs;
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(1.0 * torch::ones({}));
auto res_jit = c.forward(inputs);
std::stringstream ss;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
ASSERT_EQ(res_jit.toInt(), res_mobile.toInt());
}
Module getCompositeModuleWithSameNameSubModules() {
// Two submodules with same module name but different forward and other
// functions should be serialized and loaded correctly.
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
Module sub1("m_add");
sub1.define(R"(
def forward(self, x, y):
return x + y
)");
auto lowered_sub1 = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", sub1, compile_spec, any_dict_ty);
Module sub2("m_add");
sub2.define(R"(
def forward(self, x, y):
return x - y
)");
auto lowered_sub2 = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", sub2, compile_spec, any_dict_ty);
Module c("C");
c.register_module("Add", lowered_sub1);
c.register_module("Sub", lowered_sub2);
c.define(R"(
def forward(self, a, b, s:int):
c = self.Add.forward(a, b)
d = self.Sub.forward(a, b)
y = s * (c * d)
return y
)");
return c;
}
TEST(BackendTest, TestCompositeWithSetStates) {
Module c = getCompositeModuleWithSameNameSubModules();
std::vector<IValue> inputs;
inputs.emplace_back(torch::ones({}));
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(3);
auto res_jit = c.forward(inputs);
std::stringstream ss;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
AT_ASSERT(res_jit.toTensor().equal(res_mobile.toTensor()));
}
TEST(BackendTest, TestConsistencyOfCompositeWithSetStates) {
Module c = getCompositeModuleWithSameNameSubModules();
std::vector<IValue> inputs;
inputs.emplace_back(torch::ones({}));
inputs.emplace_back(3.0 * torch::ones({}));
inputs.emplace_back(3);
std::stringstream ss, ss_resave;
c._save_for_mobile(ss);
auto mc = _load_for_mobile(ss);
auto res_mobile = mc.forward(inputs);
ss.seekg(0, ss.beg);
// check if the methods names are always the same
// by reloading the script module and saving it back as mobile
// The below checks ensure that the names of Methods
// and numerical outputs of mobile and reloaded mobile
// modules are same.
auto script_module_load = torch::jit::load(ss);
script_module_load._save_for_mobile(ss_resave);
auto mc_reload = _load_for_mobile(ss_resave);
auto res_mobile_reload = mc_reload.forward(inputs);
AT_ASSERT(res_mobile_reload.toTensor().equal(res_mobile.toTensor()));
auto mc_methods = mc.get_methods();
auto mc_reload_methods = mc_reload.get_methods();
std::vector<std::string> mc_method_qns, mc_reload_method_qns;
auto get_qual_name = [](mobile::Method method) -> std::string {
return method.function().qualname().qualifiedName();
};
std::transform(
mc_methods.begin(),
mc_methods.end(),
std::back_inserter(mc_method_qns),
get_qual_name);
std::transform(
mc_reload_methods.begin(),
mc_reload_methods.end(),
std::back_inserter(mc_reload_method_qns),
get_qual_name);
AT_ASSERT(std::equal(
mc_method_qns.begin(),
mc_method_qns.end(),
mc_reload_method_qns.begin()));
}
TEST(BackendTest, TestCompilerNotSupport) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x * h
)");
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
ASSERT_THROWS_WITH_MESSAGE(
torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty),
"The node of aten::mul is not supported in this compiler. Source code:");
}
TEST(BackendTestDebugInfo, TestCompiler) {
Module m("m");
m.define(R"(
def forward(self, x, h):
return x + h
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(m)::<unknown>.__loweredModule__(m)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x: Tensor, h: Tensor):
return self.__loweredModule__.forward(x, h)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, h, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, h):
return x + h
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(BackendTestDebugInfo, TestCompilerWithStringTable) {
setShouldUseFormatWithStringTable(true);
Module m("m");
m.define(R"(
def forward(self, x, h):
return x + h
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(m)::<unknown>.__loweredModule__(m)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x: Tensor, h: Tensor):
return self.__loweredModule__.forward(x, h)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, h, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, h):
return x + h
~~~~~ <--- HERE
)";
setShouldUseFormatWithStringTable(false);
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithModuleHierarchy) {
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.__loweredModule__(C)::forward.A0(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x: Tensor, y: Tensor):
return self.__loweredModule__.forward(x, y)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(
BackendTestDebugInfo,
TestExceptionStackForCompilerWithTwoLevelModuleHierarchy) {
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.register_module("A0", a);
b.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + 2
)");
Module c("C");
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.B0.forward(x, y) + 3
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lm = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
std::stringstream ss;
lm._save_for_mobile(ss, ExtraFilesMap(), true);
auto mlm = _load_for_mobile(ss);
/*
* Error stack throw will look like this:
* Module hierarchy:top(backend_with_compiler_demoLoweredModule).B0(B).A0(A)
* Traceback of TorchScript (most recent call last):
* File "<string>", line 5, in FunctionName_UNKNOWN
* typed_inputs: List[Any] = [x, y, ]
* if self.__backend.is_available() :
* _0, = self.__backend.execute(self.__handles["forward"],
* typed_inputs)
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
* assert isinstance(_0, Tensor)
* return _0
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.B0.forward(x, y) + 3
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.A0.forward(x, y) + 2
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return x + y
* ~~~~~ <--- HERE
*
*/
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.__loweredModule__(C)::forward.B0(B)::forward.A0(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x: Tensor, y: Tensor):
return self.__loweredModule__.forward(x, y)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.B0.forward(x, y) + 3
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return self.A0.forward(x, y) + 2
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithLoweredSubModule) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
Module a("A");
a.define(R"(
def forward(self, x, y):
return x + y
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
IValue submodule = c.attr("A0");
Module current_sm = submodule.toModule();
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
c.setattr("A0", lowered_submodule._ivalue());
std::unordered_map<TypePtr, TypePtr> type_remap;
type_remap[a.type()] = lowered_submodule.type();
auto type_remap_fn = [&type_remap](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
for (auto& fn : c.type()->methods()) {
auto method = c.get_method(fn->name());
auto graph = method.graph();
graph->remapTypes(type_remap_fn);
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
fn->setSchema(new_schema);
}
std::stringstream ss;
c._save_for_mobile(ss, ExtraFilesMap(), true);
auto c_loaded = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.A0(A)::forward.__loweredModule__(A)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x: Tensor, y: Tensor):
return self.__loweredModule__.forward(x, y)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
}
TEST(
BackendTestDebugInfo,
TestExceptionStackForCompilerWithSelectiveLoweredSubModule) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
Module aa("AA");
aa.define(R"(
def forward(self, x, y):
return x + y
)");
Module a("A");
a.register_module("AA0", aa);
a.define(R"(
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
)");
Module b("B");
b.define(R"(
def forward(self, x):
return x + 2
)");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
fake_dict.insert("", "");
compile_spec.insert("forward", fake_dict);
IValue submodule = c.attr("A0");
Module current_sm = submodule.toModule();
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// lowered module
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
c.setattr("A0", lowered_submodule._ivalue());
std::unordered_map<TypePtr, TypePtr> type_remap;
type_remap[a.type()] = lowered_submodule.type();
auto type_remap_fn = [&type_remap](TypePtr in) {
auto it = type_remap.find(in);
if (it == type_remap.end())
return in;
return it->second;
};
for (auto& fn : c.type()->methods()) {
auto method = c.get_method(fn->name());
auto graph = method.graph();
graph->remapTypes(type_remap_fn);
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
fn->setSchema(new_schema);
}
std::stringstream ss;
c._save_for_mobile(ss, ExtraFilesMap(), true);
auto c_loaded = _load_for_mobile(ss);
/*
* Erro stack trace will look like this:
* Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
* Traceback of TorchScript (most recent call last):
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.A0.forward(x, y) + self.B0.forward(x)
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 5, in FunctionName_UNKNOWN
* typed_inputs: List[Any] = [x, y, ]
* if self.__backend.is_available() :
* _0, = self.__backend.execute(self.__handles["forward"],
* typed_inputs)
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
* assert isinstance(_0, Tensor)
* return _0
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.AA0.forward(x, y) + 3
* ~~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return x + y
* ~~~~~ <--- HERE
*
*
* */
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.A0(A)::forward.__loweredModule__(A)::forward.AA0(AA)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x: Tensor, y: Tensor):
return self.__loweredModule__.forward(x, y)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
}
} // namespace jit
} // namespace torch