Files
pytorch/docs/source/notes/get_start_xpu.rst
2025-04-03 18:17:08 +00:00

390 lines
13 KiB
ReStructuredText

Getting Started on Intel GPU
============================
Hardware Prerequisite
---------------------
For Intel Data Center GPU
.. list-table::
:widths: 50 50 50 50
:header-rows: 1
* - Device
- Red Hat* Enterprise Linux* 9.2
- SUSE Linux Enterprise Server* 15 SP5
- Ubuntu* Server 22.04 (>= 5.15 LTS kernel)
* - Intel® Data Center GPU Max Series (CodeName: Ponte Vecchio)
- yes
- yes
- yes
For Intel Client GPU
+-------------------------------------+----------------------------------------------------------------------------------------------+
| Supported OS | Validated Hardware |
+=====================================+==============================================================================================+
|| Windows 10/11 & Ubuntu 24.10 || Intel® Arc A-Series Graphics (CodeName: Alchemist) |
|| || Intel® Arc B-Series Graphics (CodeName: Battlemage) |
|| || Intel® Core™ Ultra Processors with Intel® Arc™ Graphics (CodeName: Meteor Lake) |
|| || Intel® Core™ Ultra 200V Series with Intel® Arc™ Graphics (CodeName: Lunar Lake) |
|| || Intel® Core™ Ultra Series 2 Processors with Intel® Arc™ Graphics (CodeName: Arrow Lake) |
+-------------------------------------+----------------------------------------------------------------------------------------------+
|| Ubuntu 24.04 & WSL2 (Ubuntu 24.04) || Intel® Arc A-Series Graphics (CodeName: Alchemist) |
|| || Intel® Core™ Ultra Processors with Intel® Arc™ Graphics (CodeName: Meteor Lake) |
|| || Intel® Core™ Ultra 200V Series with Intel® Arc™ Graphics (CodeName: Lunar Lake) |
|| || Intel® Core™ Ultra Series 2 Processors with Intel® Arc™ Graphics (CodeName: Arrow Lake) |
+-------------------------------------+----------------------------------------------------------------------------------------------+
Intel GPUs support (Prototype) is ready from PyTorch* 2.5 for Intel® Client GPUs and Intel® Data Center GPU Max Series on both Linux and Windows, which brings Intel GPUs and the SYCL* software stack into the official PyTorch stack with consistent user experience to embrace more AI application scenarios.
Software Prerequisite
---------------------
To use PyTorch on Intel GPUs, you need to install the Intel GPUs driver first. For installation guide, visit `Intel GPUs Driver Installation <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html#driver-installation>`_.
Please skip the Intel® Deep Learning Essentials installation section if you install from binaries. For building from source, please refer to `PyTorch Installation Prerequisites for Intel GPUs <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html>`_ for both Intel GPU Driver and Intel® Deep Learning Essentials Installation.
Installation
------------
Binaries
^^^^^^^^
Now that we have `Intel GPU Driver <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html#driver-installation>`_ installed, use the following commands to install ``pytorch``, ``torchvision``, ``torchaudio`` on Linux.
For release wheels
.. code-block::
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/xpu
For nightly wheels
.. code-block::
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu
From Source
^^^^^^^^^^^
Now that we have `Intel GPU Driver and Intel® Deep Learning Essentials <https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu.html>`_ installed. Follow guides to build ``pytorch``, ``torchvision``, ``torchaudio`` from source.
Build from source for ``torch`` refer to `PyTorch Installation Build from source <https://github.com/pytorch/pytorch?tab=readme-ov-file#from-source>`_.
Build from source for ``torchvision`` refer to `Torchvision Installation Build from source <https://github.com/pytorch/vision/blob/main/CONTRIBUTING.md#development-installation>`_.
Build from source for ``torchaudio`` refert to `Torchaudio Installation Build from source <https://github.com/pytorch/audio/blob/main/CONTRIBUTING.md#building-torchaudio-from-source>`_.
Check availability for Intel GPU
--------------------------------
To check if your Intel GPU is available, you would typically use the following code:
.. code-block::
import torch
torch.xpu.is_available() # torch.xpu is the API for Intel GPU support
If the output is ``False``, double check driver installation for Intel GPUs.
Minimum Code Change
-------------------
If you are migrating code from ``cuda``, you would change references from ``cuda`` to ``xpu``. For example:
.. code-block::
# CUDA CODE
tensor = torch.tensor([1.0, 2.0]).to("cuda")
# CODE for Intel GPU
tensor = torch.tensor([1.0, 2.0]).to("xpu")
The following points outline the support and limitations for PyTorch with Intel GPU:
#. Both training and inference workflows are supported.
#. Both eager mode and ``torch.compile`` is supported. The feature ``torch.compile`` is also supported on Windows from PyTorch* 2.7 with Intel GPU, refer to `How to Use Inductor on Windows with CPU/XPU <https://pytorch.org/tutorials/prototype/inductor_windows_cpu.html>`_.
#. Data types such as FP32, BF16, FP16, and Automatic Mixed Precision (AMP) are all supported.
Examples
--------
This section contains usage examples for both inference and training workflows.
Inference Examples
^^^^^^^^^^^^^^^^^^
Here is a few inference workflow examples.
Inference with FP32
"""""""""""""""""""
.. code-block::
import torch
import torchvision.models as models
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to("xpu")
data = data.to("xpu")
with torch.no_grad():
model(data)
print("Execution finished")
Inference with AMP
""""""""""""""""""
.. code-block::
import torch
import torchvision.models as models
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to("xpu")
data = data.to("xpu")
with torch.no_grad():
d = torch.rand(1, 3, 224, 224)
d = d.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=True):
model(data)
print("Execution finished")
Inference with ``torch.compile``
""""""""""""""""""""""""""""""""
.. code-block::
import torch
import torchvision.models as models
import time
model = models.resnet50(weights="ResNet50_Weights.DEFAULT")
model.eval()
data = torch.rand(1, 3, 224, 224)
ITERS = 10
model = model.to("xpu")
data = data.to("xpu")
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time before torch.compile for iteration {i}: {(end-start)*1000} ms")
model = torch.compile(model)
for i in range(ITERS):
start = time.time()
with torch.no_grad():
model(data)
torch.xpu.synchronize()
end = time.time()
print(f"Inference time after torch.compile for iteration {i}: {(end-start)*1000} ms")
print("Execution finished")
Training Examples
^^^^^^^^^^^^^^^^^
Here is a few training workflow examples.
Train with FP32
"""""""""""""""
.. code-block::
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
Train with AMP
""""""""""""""
Note: Training with ``GradScaler`` requires hardware support for ``FP64``. ``FP64`` is not natively supported by the Intel® Arc™ A-Series Graphics. If you run your workloads on Intel® Arc™ A-Series Graphics, please disable ``GradScaler``.
.. code-block::
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
use_amp=True
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
scaler = torch.amp.GradScaler(device="xpu", enabled=use_amp)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
print(f"Initiating training")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
# set dtype=torch.bfloat16 for BF16
with torch.autocast(device_type="xpu", dtype=torch.float16, enabled=use_amp):
output = model(data)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")
Train with ``torch.compile``
""""""""""""""""""""""""""""
.. code-block::
import torch
import torchvision
LR = 0.001
DOWNLOAD = True
DATA = "datasets/cifar10/"
transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=128)
train_len = len(train_loader)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9)
model.train()
model = model.to("xpu")
criterion = criterion.to("xpu")
model = torch.compile(model)
print(f"Initiating training with torch compile")
for batch_idx, (data, target) in enumerate(train_loader):
data = data.to("xpu")
target = target.to("xpu")
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (batch_idx + 1) % 10 == 0:
iteration_loss = loss.item()
print(f"Iteration [{batch_idx+1}/{train_len}], Loss: {iteration_loss:.4f}")
torch.save(
{
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
"checkpoint.pth",
)
print("Execution finished")