mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This PR depends on the tests added in #9670. It moves the first, tiny function from the c10d DDP to C++: `dist_broadcast_coalesced`. Let me know if ` torch/csrc/distributed/c10d/ddp.h` will be a good place to put these rewritten functions. pietern The controller you requested could not be found. apaszke Pull Request resolved: https://github.com/pytorch/pytorch/pull/9729 Differential Revision: D8985308 Pulled By: goldsborough fbshipit-source-id: dc459fe9040273714044152063585e746974752f
222 lines
7.7 KiB
C++
222 lines
7.7 KiB
C++
#include "torch/csrc/python_headers.h"
|
|
|
|
#include <c10d/Def.hpp>
|
|
#include <c10d/FileStore.hpp>
|
|
#include <c10d/ProcessGroup.hpp>
|
|
#include <c10d/ProcessGroupGloo.hpp>
|
|
|
|
#ifdef USE_C10D_NCCL
|
|
#include <c10d/ProcessGroupNCCL.hpp>
|
|
#endif
|
|
|
|
#include <c10d/TCPStore.hpp>
|
|
#include <gloo/transport/tcp/device.h>
|
|
#include <pybind11/chrono.h>
|
|
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/distributed/c10d/ddp.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
|
|
namespace torch {
|
|
namespace distributed {
|
|
namespace c10d {
|
|
|
|
namespace {
|
|
|
|
template <typename T>
|
|
using shared_ptr_class_ = py::class_<T, std::shared_ptr<T>>;
|
|
|
|
PyObject* c10d_init(PyObject* _unused) {
|
|
auto c10d_module =
|
|
THPObjectPtr(PyImport_ImportModule("torch.distributed.c10d"));
|
|
if (!c10d_module) {
|
|
throw python_error();
|
|
}
|
|
|
|
auto module = py::handle(c10d_module).cast<py::module>();
|
|
|
|
py::class_<::c10d::BroadcastOptions>(module, "BroadcastOptions")
|
|
.def(py::init<>())
|
|
.def_readwrite("rootRank", &::c10d::BroadcastOptions::rootRank)
|
|
.def_readwrite("rootTensor", &::c10d::BroadcastOptions::rootTensor);
|
|
|
|
py::class_<::c10d::AllreduceOptions>(module, "AllreduceOptions")
|
|
.def(py::init<>())
|
|
.def_readwrite("reduceOp", &::c10d::AllreduceOptions::reduceOp);
|
|
|
|
py::enum_<::c10d::ReduceOp>(module, "ReduceOp")
|
|
.value("SUM", ::c10d::ReduceOp::SUM)
|
|
.value("PRODUCT", ::c10d::ReduceOp::PRODUCT)
|
|
.value("MIN", ::c10d::ReduceOp::MIN)
|
|
.value("MAX", ::c10d::ReduceOp::MAX);
|
|
|
|
auto store =
|
|
shared_ptr_class_<::c10d::Store>(module, "Store")
|
|
// Convert from std::string to std::vector<uint8>.
|
|
.def(
|
|
"set",
|
|
[](::c10d::Store& store,
|
|
const std::string& key,
|
|
const std::string& value) {
|
|
std::vector<uint8_t> value_(value.begin(), value.end());
|
|
store.set(key, value_);
|
|
},
|
|
py::call_guard<py::gil_scoped_release>())
|
|
// Convert from std::vector<uint8_t> to py::bytes.
|
|
// The returned value is not guaranteed to be valid UTF-8.
|
|
.def(
|
|
"get",
|
|
[](::c10d::Store& store, const std::string& key) -> py::bytes {
|
|
auto value = store.get(key);
|
|
return py::bytes(
|
|
reinterpret_cast<char*>(value.data()), value.size());
|
|
},
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"add",
|
|
&::c10d::Store::add,
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"wait",
|
|
&::c10d::Store::wait,
|
|
py::call_guard<py::gil_scoped_release>());
|
|
|
|
shared_ptr_class_<::c10d::FileStore>(module, "FileStore", store)
|
|
.def(py::init<const std::string&>());
|
|
|
|
shared_ptr_class_<::c10d::TCPStore>(module, "TCPStore", store)
|
|
.def(py::init<const std::string&, int, bool>());
|
|
|
|
auto processGroup =
|
|
shared_ptr_class_<::c10d::ProcessGroup>(module, "ProcessGroup")
|
|
.def("rank", &::c10d::ProcessGroup::getRank)
|
|
.def("size", &::c10d::ProcessGroup::getSize)
|
|
.def(
|
|
"broadcast",
|
|
&::c10d::ProcessGroup::broadcast,
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"broadcast",
|
|
[](::c10d::ProcessGroup& pg, at::Tensor& x, int rootRank) {
|
|
::c10d::BroadcastOptions opts;
|
|
opts.rootRank = rootRank;
|
|
std::vector<at::Tensor> xs = {x};
|
|
return pg.broadcast(xs, opts);
|
|
},
|
|
py::arg("tensor"),
|
|
py::arg("root"),
|
|
py::call_guard<py::gil_scoped_release>())
|
|
.def(
|
|
"allreduce",
|
|
&::c10d::ProcessGroup::allreduce,
|
|
py::call_guard<py::gil_scoped_release>())
|
|
|
|
.def(
|
|
"allreduce",
|
|
[](::c10d::ProcessGroup& pg, at::Tensor& x, ::c10d::ReduceOp op) {
|
|
::c10d::AllreduceOptions opts;
|
|
opts.reduceOp = op;
|
|
std::vector<at::Tensor> xs = {x};
|
|
return pg.allreduce(xs, opts);
|
|
},
|
|
py::arg("tensor"),
|
|
py::arg("op") = ::c10d::ReduceOp::SUM,
|
|
py::call_guard<py::gil_scoped_release>());
|
|
|
|
auto processGroupGloo = shared_ptr_class_<::c10d::ProcessGroupGloo>(
|
|
module, "ProcessGroupGloo", processGroup);
|
|
|
|
shared_ptr_class_<::gloo::transport::Device>(processGroupGloo, "Device");
|
|
|
|
shared_ptr_class_<::c10d::ProcessGroupGloo::Options>(
|
|
processGroupGloo, "Options")
|
|
.def(py::init<>())
|
|
.def_readwrite("devices", &::c10d::ProcessGroupGloo::Options::devices)
|
|
.def_readwrite("timeout", &::c10d::ProcessGroupGloo::Options::timeout)
|
|
.def_readwrite("threads", &::c10d::ProcessGroupGloo::Options::threads)
|
|
.def_readwrite(
|
|
"cacheNumAlgorithmEntries",
|
|
&::c10d::ProcessGroupGloo::Options::cacheNumAlgorithmEntries);
|
|
|
|
processGroupGloo.def_static(
|
|
"create_tcp_device",
|
|
[](const std::string& hostname, const std::string& interface)
|
|
-> std::shared_ptr<::gloo::transport::Device> {
|
|
::gloo::transport::tcp::attr attr;
|
|
if (!hostname.empty()) {
|
|
attr.hostname = hostname;
|
|
} else if (!interface.empty()) {
|
|
attr.iface = interface;
|
|
} else {
|
|
// Neither argument is specified; Gloo itself will use the hostname
|
|
// Nothing specified, default to something useful
|
|
}
|
|
return ::gloo::transport::tcp::CreateDevice(attr);
|
|
},
|
|
py::arg("hostname") = "",
|
|
py::arg("interface") = "");
|
|
|
|
processGroupGloo
|
|
.def(py::init<
|
|
const std::shared_ptr<::c10d::Store>&,
|
|
int,
|
|
int,
|
|
::c10d::ProcessGroupGloo::Options>())
|
|
.def(py::init(
|
|
[](const std::shared_ptr<::c10d::Store>& store, int rank, int size) {
|
|
::c10d::ProcessGroupGloo::Options options;
|
|
|
|
// By default, use the hostname to resolve the network address to
|
|
// use. Note: if the hostname does not resolve to an address (e.g.
|
|
// because of misconfigured /etc/hosts file), this will not work.
|
|
std::array<char, HOST_NAME_MAX> hostname;
|
|
auto rv = gethostname(hostname.data(), hostname.size());
|
|
if (rv != 0) {
|
|
throw std::system_error(errno, std::system_category());
|
|
}
|
|
|
|
::gloo::transport::tcp::attr attr;
|
|
attr.hostname = hostname.data();
|
|
options.devices.push_back(
|
|
::gloo::transport::tcp::CreateDevice(attr));
|
|
return std::make_shared<::c10d::ProcessGroupGloo>(
|
|
store, rank, size, options);
|
|
}));
|
|
|
|
#ifdef USE_C10D_NCCL
|
|
shared_ptr_class_<::c10d::ProcessGroupNCCL>(
|
|
module, "ProcessGroupNCCL", processGroup)
|
|
.def(py::init<const std::shared_ptr<::c10d::Store>&, int, int>());
|
|
#endif
|
|
|
|
shared_ptr_class_<::c10d::ProcessGroup::Work>(module, "Work")
|
|
.def("isCompleted", &::c10d::ProcessGroup::Work::isCompleted)
|
|
.def("isSuccess", &::c10d::ProcessGroup::Work::isSuccess)
|
|
.def("exception", &::c10d::ProcessGroup::Work::exception)
|
|
.def("synchronize", &::c10d::ProcessGroup::Work::synchronize)
|
|
.def(
|
|
"wait",
|
|
&::c10d::ProcessGroup::Work::wait,
|
|
py::call_guard<py::gil_scoped_release>());
|
|
|
|
module.def("_dist_broadcast_coalesced", &::c10d::distBroadcastCoalesced);
|
|
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// c10d methods on torch._C
|
|
static PyMethodDef methods[] = {
|
|
{"_c10d_init", (PyCFunction)c10d_init, METH_NOARGS, nullptr},
|
|
{nullptr, nullptr, 0, nullptr}};
|
|
|
|
PyMethodDef* python_functions() {
|
|
return methods;
|
|
}
|
|
|
|
} // namespace c10d
|
|
} // namespace distributed
|
|
} // namespace torch
|