Files
pytorch/tools/autograd/gen_python_functions.py
andrewor14 7b4f70eda5 Batch Norm Consolidation (#116092)
**Summary:**

This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:

```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
  aten.native_batch_norm ->
  aten._native_batch_norm_legit (export only) ->
  _batch_norm_legit_cpu/cuda (kernels, export only) ->
  _batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```

Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.

Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:

```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```

The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:

```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```

Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.

Test Plan: `OpInfo` tests for `batch_norm_with_update`.

Reviewers: albanD, bdhirsh

Subscribers: albanD, bdhirsh, supriyar

Tasks: https://github.com/pytorch/pytorch/issues/111384

Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2024-03-08 15:07:15 +00:00

1379 lines
44 KiB
Python

# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn. torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._sparse
# or torch._C._special objects.
#
# Code tries to stick to the following rules:
#
# - templates should be colocated with the functions that use them.
# no templates are currently shared between functions, but if that
# happens, maybe put the template with the first one
#
# - don't use environment dictionaries when calling template.substitute().
# pass named arguments directly for everything, otherwise it's much too
# hard to track what's actually being used and by who
#
# - colocate any new hacks/adjustments with existing ones of the same kind.
# ideally in a data structure rather than code if possible. See e.g.
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
#
# - similarly, conversions from one format to another should ideally happen
# all at once in a single place.
#
# - no nontrivial nested functions. couple-liners are ok but please no more.
# especially avoid functions that read/write outer variables defined far away.
#
# - raise RuntimeError instead of asserting, and put as much
# information as is available into the message. I.e. no need to
# plumb in new params whose only purpose is to fill out an error
# message, but use what's there
#
import itertools
import re
from collections import defaultdict
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Set, Tuple
import yaml
from torchgen.api import cpp
from torchgen.api.python import (
arg_parser_output_exprs,
cpp_dispatch_exprs,
cpp_dispatch_target,
dispatch_lambda_args,
dispatch_lambda_exprs,
dispatch_lambda_return_str,
has_tensor_options,
PythonSignature,
PythonSignatureDeprecated,
PythonSignatureGroup,
PythonSignatureNativeFunctionPair,
signature,
signature_from_schema,
structseq_fieldnames,
)
from torchgen.code_template import CodeTemplate
from torchgen.context import with_native_function
from torchgen.gen import cpp_string, parse_native_yaml, parse_tags_yaml
from torchgen.model import (
Argument,
BaseOperatorName,
FunctionSchema,
NativeFunction,
Type,
Variant,
)
from torchgen.utils import FileManager, split_name_params
from torchgen.yaml_utils import YamlLoader
from .gen_trace_type import should_trace
#
# declarations blocklist
# We skip codegen for these functions, for various reasons.
# Future PRs will categorize this list and eliminate or hoist
# them out of eager-only codegen.
# See https://github.com/pytorch/pytorch/issues/30788
#
# These functions require manual Python bindings or are not exposed to Python
_SKIP_PYTHON_BINDINGS = [
"alias",
"contiguous",
"is_cuda",
"is_sparse",
"is_sparse_csr",
"size",
"stride",
"sym_size",
"sym_stride",
"sym_storage_offset",
"sym_numel",
".*_backward",
".*_backward_(out|input|weight|bias)",
".*_forward",
".*_forward_out",
".*_jvp",
"_unsafe_view",
"tensor",
"_?sparse_(coo|compressed|csr|csc|bsr|bsc)_tensor.*",
"_range.*",
"_sparse_add_out",
"_sparse_div.*",
"_sparse_mul.*",
"_sparse_sub.*",
"_sparse_dense_add_out",
"index",
"index_out",
"unique_dim_consecutive",
"_cumsum.*",
"_cumprod.*",
"_sum.*",
"_prod.*",
"_th_.*",
"_thnn_.*",
"range.*",
"_solve.*",
"_inverse.*",
"_cholesky.*",
"_triangular_solve.*",
"_qr.*",
"_svd.*",
"slice",
"item",
"_local_scalar_dense",
"to",
"_to_copy",
"_to_copy_out",
"_reshape_copy",
"_reshape_copy_out",
"copy_sparse_to_sparse_",
"copy_",
"numpy_T",
"matrix_H",
"mT",
"mH", # these need to be an attributes in Python, not functions
"nonzero(_(out|numpy))?",
"set_data",
".*_overrideable", # overrideable functions for backend extension
"data",
"is_leaf",
"output_nr",
"_version",
"requires_grad_",
"retains_grad",
"set_",
"_fw_primal",
"fake_quantize_per_tensor_affine_cachemask",
"fake_quantize_per_channel_affine_cachemask",
"_new_zeros_with_same_feature_meta",
"_has_same_storage_numel", # used for forward AD internals
"_reshape_alias",
"replace_", # only used by the functionalization pass, doesn't need to be exposed to python
"copy", # only used by the functionalization pass
"fill.Tensor", # only used by the functionalization pass
"fill.Scalar", # only used by the functionalization pass
"lift.*",
"normal_functional", # only used by the functionalization pass
"nbytes",
"itemsize",
"_batch_norm_with_update",
"_batch_norm_with_update_out",
"_batch_norm_no_update",
]
SKIP_PYTHON_BINDINGS = [
re.compile(rf"^{pattern}$") for pattern in _SKIP_PYTHON_BINDINGS
]
# These function signatures are not exposed to Python. Note that this signature
# list does not support regex.
SKIP_PYTHON_BINDINGS_SIGNATURES = [
"add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
"add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
"sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
"sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
"mul.Scalar(Tensor self, Scalar other) -> Tensor",
"mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
"div.Scalar(Tensor self, Scalar other) -> Tensor",
"div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
]
@with_native_function
def should_generate_py_binding(f: NativeFunction) -> bool:
# NativeFunctions that are entirely code-generated should not get python bindings
# because these codegen implementations are often inefficient. A handful of
# view_copy style ops were exposed accidentally when they were handwritten and now
# that we are moving them to codegen for bc reasons we need to keep them exposed in
# python.
if "generated" in f.tags and "view_copy" not in f.tags:
return False
name = cpp.name(f.func)
for skip_regex in SKIP_PYTHON_BINDINGS:
if skip_regex.match(name):
return False
signature = str(f.func)
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
if pattern == signature:
return False
return True
def get_pycname(name: BaseOperatorName) -> str:
return f"THPVariable_{name}"
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
def is_py_variable_method(f: NativeFunction) -> bool:
return f.python_module is None and Variant.method in f.variants
def is_py_torch_function(f: NativeFunction) -> bool:
return f.python_module is None and Variant.function in f.variants
def is_py_nn_function(f: NativeFunction) -> bool:
return f.python_module == "nn"
def is_py_fft_function(f: NativeFunction) -> bool:
return f.python_module == "fft"
def is_py_linalg_function(f: NativeFunction) -> bool:
return f.python_module == "linalg"
def is_py_nested_function(f: NativeFunction) -> bool:
return f.python_module == "nested"
def is_py_sparse_function(f: NativeFunction) -> bool:
return f.python_module == "sparse"
def is_py_special_function(f: NativeFunction) -> bool:
return f.python_module == "special"
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Main Function
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def gen(
out: str,
native_yaml_path: str,
tags_yaml_path: str,
deprecated_yaml_path: str,
template_path: str,
*,
symint: bool = True,
) -> None:
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
native_functions = parse_native_yaml(
native_yaml_path, tags_yaml_path
).native_functions
native_functions = list(filter(should_generate_py_binding, native_functions))
methods = load_signatures(native_functions, deprecated_yaml_path, method=True)
create_python_bindings(
fm,
methods,
is_py_variable_method,
None,
"python_variable_methods.cpp",
method=True,
symint=symint,
)
# NOTE: num_shards here must be synced with gatherTorchFunctions in
# torch/csrc/autograd/python_torch_functions_manual.cpp
functions = load_signatures(native_functions, deprecated_yaml_path, method=False)
create_python_bindings_sharded(
fm,
functions,
is_py_torch_function,
"torch",
"python_torch_functions.cpp",
method=False,
num_shards=3,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_nn_function,
"torch.nn",
"python_nn_functions.cpp",
method=False,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_fft_function,
"torch.fft",
"python_fft_functions.cpp",
method=False,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_linalg_function,
"torch.linalg",
"python_linalg_functions.cpp",
method=False,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_nested_function,
"torch.nested",
"python_nested_functions.cpp",
method=False,
)
create_python_bindings(
fm,
functions,
is_py_sparse_function,
"torch.sparse",
"python_sparse_functions.cpp",
method=False,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_special_function,
"torch.special",
"python_special_functions.cpp",
method=False,
symint=symint,
)
# Currently, we only use `functions` to generate `return_types` bindings.
# All methods which return structseq have function variant at this point.
# If any method only operator with structseq is added in the future,
# we will have to address that.
create_python_return_type_bindings(
fm, functions, lambda fn: True, "python_return_types.cpp"
)
create_python_return_type_bindings_header(
fm, functions, lambda fn: True, "python_return_types.h"
)
valid_tags = parse_tags_yaml(tags_yaml_path)
def gen_tags_enum() -> Dict[str, str]:
return {
"enum_of_valid_tags": (
"".join(
[f'\n.value("{tag}", at::Tag::{tag})' for tag in sorted(valid_tags)]
)
)
}
fm.write("python_enum_tag.cpp", gen_tags_enum)
def group_filter_overloads(
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
) -> Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]:
grouped: Dict[
BaseOperatorName, List[PythonSignatureNativeFunctionPair]
] = defaultdict(list)
for pair in pairs:
if pred(pair.function):
grouped[pair.function.func.name.name].append(pair)
return grouped
def create_python_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
symint: bool = True,
) -> None:
"""Generates Python bindings to ATen functions"""
py_methods: List[str] = []
ops_headers: List[str] = []
py_method_defs: List[str] = []
py_forwards: List[str] = []
grouped = group_filter_overloads(pairs, pred)
for name in sorted(grouped.keys(), key=str):
overloads = grouped[name]
py_methods.append(
method_impl(name, module, overloads, method=method, symint=symint)
)
py_method_defs.append(method_def(name, module, overloads, method=method))
py_forwards.extend(forward_decls(name, overloads, method=method))
ops_headers.append(f"#include <ATen/ops/{name.base}.h>")
fm.write_with_template(
filename,
filename,
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
"ops_headers": ops_headers,
"py_forwards": py_forwards,
"py_methods": py_methods,
"py_method_defs": py_method_defs,
},
)
def create_python_return_type_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
filename: str,
) -> None:
"""
Generate function to initialize and return named tuple for native functions
which returns named tuple and registration invocations in `python_return_types.cpp`.
"""
py_return_types_definition: List[str] = []
py_return_types_registrations: List[str] = []
grouped = group_filter_overloads(pairs, pred)
for name in sorted(grouped.keys(), key=str):
overloads = grouped[name]
definitions, registrations = generate_return_type_definition_and_registrations(
overloads
)
py_return_types_definition.append(
"" if not definitions else "\n".join(definitions)
)
py_return_types_registrations.append(
"" if not registrations else "\n".join(registrations)
)
fm.write_with_template(
filename,
filename,
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
"py_return_types": py_return_types_definition,
"py_return_types_registrations": py_return_types_registrations,
},
)
def create_python_return_type_bindings_header(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
filename: str,
) -> None:
"""
Generate function to initialize and return named tuple for native functions
which returns named tuple and relevant entry for the map in `python_return_types.cpp`.
"""
py_return_types_declarations: List[str] = []
grouped = group_filter_overloads(pairs, pred)
for name in sorted(grouped.keys(), key=str):
overloads = grouped[name]
declarations = generate_return_type_declarations(overloads)
py_return_types_declarations.append(
"" if not declarations else "\n".join(declarations)
)
fm.write_with_template(
filename,
filename,
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
"py_return_types_declarations": py_return_types_declarations,
},
)
def create_python_bindings_sharded(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
num_shards: int,
symint: bool = True,
) -> None:
"""Generates Python bindings to ATen functions"""
grouped = group_filter_overloads(pairs, pred)
def key_func(
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
) -> str:
return kv[0].base
def env_func(
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
) -> Dict[str, List[str]]:
name, fn_pairs = kv
return {
"ops_headers": [f"#include <ATen/ops/{name.base}.h>"],
"py_forwards": list(forward_decls(name, fn_pairs, method=method)),
"py_methods": [
method_impl(name, module, fn_pairs, method=method, symint=symint)
],
"py_method_defs": [method_def(name, module, fn_pairs, method=method)],
}
fm.write_sharded(
filename,
grouped.items(),
base_env={
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
},
key_fn=key_func,
env_callable=env_func,
num_shards=num_shards,
sharded_keys={"ops_headers", "py_forwards", "py_methods", "py_method_defs"},
)
def load_signatures(
native_functions: List[NativeFunction],
deprecated_yaml_path: str,
*,
method: bool,
skip_deprecated: bool = False,
pyi: bool = False,
) -> Sequence[PythonSignatureNativeFunctionPair]:
@with_native_function
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
return PythonSignatureNativeFunctionPair(
signature=signature(f, method=method, pyi=pyi),
function=f,
)
pairs = list(map(gen_signature_pairs, native_functions))
deprecated = load_deprecated_signatures(
pairs, deprecated_yaml_path, method=method, pyi=pyi
)
return pairs if skip_deprecated else pairs + deprecated
def load_deprecated_signatures(
pairs: Sequence[PythonSignatureNativeFunctionPair],
deprecated_yaml_path: str,
*,
method: bool,
pyi: bool,
) -> List[PythonSignatureNativeFunctionPair]:
# The deprecated.yaml doesn't have complete type information, we need
# find and leverage the original ATen signature (to which it delegates
# the call) to generate the full python signature.
# We join the deprecated and the original signatures using type-only form.
# group the original ATen signatures by name
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
grouped[pair.signature.name].append(pair)
# find matching original signatures for each deprecated signature
results: List[PythonSignatureNativeFunctionPair] = []
with open(deprecated_yaml_path) as f:
deprecated_defs = yaml.load(f, Loader=YamlLoader)
for deprecated in deprecated_defs:
schema = FunctionSchema.parse(deprecated["name"])
aten_name, call_args = split_name_params(deprecated["aten"])
is_out = aten_name.endswith("_out")
if is_out:
aten_name = aten_name.replace("_out", "")
# HACK: these are fixed constants used to pass the aten function.
# The type must be known ahead of time
known_constants = {
"1": Type.parse("Scalar"),
}
schema_args_by_name = {a.name: a for a in schema.arguments.flat_all}
for name in call_args:
assert (
name in schema_args_by_name or name in known_constants
), f"deprecation definiton: Unrecognized value {name}"
# Map deprecated signature arguments to their aten signature and test
# if the types and alias annotation match.
def is_schema_compatible(
aten_schema: FunctionSchema,
) -> bool:
arguments: Iterable[Argument]
if is_out:
arguments = itertools.chain(
aten_schema.arguments.out, aten_schema.arguments.flat_non_out
)
else:
arguments = aten_schema.arguments.flat_all
for i, arg in enumerate(arguments):
if i < len(call_args):
arg_name = call_args[i]
if arg_name in known_constants:
schema_type = known_constants[arg_name]
schema_annotation = None
else:
schema_arg = schema_args_by_name[arg_name]
schema_type = schema_arg.type
schema_annotation = schema_arg.annotation
if schema_type != arg.type or schema_annotation != arg.annotation:
return False
else:
if arg.default is None:
return False
return len(schema.returns) == len(aten_schema.returns) and all(
a == b for a, b in zip(schema.returns, aten_schema.returns)
)
any_schema_found = False
for pair in grouped[aten_name]:
if not is_schema_compatible(pair.function.func):
continue
any_schema_found = True
python_sig = signature_from_schema(
schema,
category_override=pair.function.category_override,
method=method,
pyi=pyi,
)
results.append(
PythonSignatureNativeFunctionPair(
signature=PythonSignatureDeprecated(
name=python_sig.name,
input_args=python_sig.input_args,
input_kwargs=python_sig.input_kwargs,
output_args=python_sig.output_args,
tensor_options_args=python_sig.tensor_options_args,
method=python_sig.method,
deprecated_schema=schema,
deprecated_args_exprs=tuple(call_args),
returns=python_sig.returns,
),
function=pair.function,
)
)
assert (
any_schema_found
), f"No native function with name {aten_name} matched signature:\n {str(schema)}"
return results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Named Tuple Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
@with_native_function
def gen_structseq_typename_key(f: NativeFunction) -> str:
name = cpp.name(f.func)
fieldnames = structseq_fieldnames(f.func.returns)
return "_".join([name] + fieldnames)
def emit_structseq_call(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Tuple[List[str], Dict[str, str]]:
"""
Generate block of named tuple type def inits, and add typeref snippets
to declarations that use them
"""
typenames: Dict[
str, str
] = {} # map from unique name + field name lists to typedef name
typedefs: List[str] = [] # typedef declarations and init code
for overload in overloads:
fieldnames = structseq_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_structseq_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
typenames[tn_key] = typename
typedefs.append(
f"""\
static PyTypeObject* {typename} = generated::get_{name}_structseq();"""
)
return typedefs, typenames
def generate_return_type_definition_and_registrations(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Tuple[List[str], List[str]]:
"""
Generate block of function in `python_return_types.cpp` to initialize
and return named tuple for a native function which returns named tuple
and registration invocations in same file.
"""
typenames: Dict[
str, str
] = {} # map from unique name + field name lists to typedef name
definitions: List[str] = [] # function definition to register the typedef
registrations: List[str] = [] # register call for the typedef
for overload in overloads:
fieldnames = structseq_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
fields = ", ".join(f'{{"{fn}", ""}}' for fn in fieldnames)
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_structseq_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'{name}NamedTuple{"" if not definitions else len(definitions)}'
typenames[tn_key] = typename
definitions.append(
f"""\
PyTypeObject* get_{name}_structseq() {{
static PyStructSequence_Field NamedTuple_fields[] = {{ {fields}, {{nullptr}} }};
static PyTypeObject {typename};
static bool is_initialized = false;
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, NamedTuple_fields, {len(fieldnames)} }};
if (!is_initialized) {{
PyStructSequence_InitType(&{typename}, &desc);
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
is_initialized = true;
}}
return &{typename};
}}
"""
)
registrations.append(
f'addReturnType(return_types_module, "{name}", generated::get_{name}_structseq());'
)
return definitions, registrations
def generate_return_type_declarations(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> List[str]:
"""
Generate block of function declarations in `python_return_types.h` to initialize
and return named tuple for a native function.
"""
typenames: Dict[
str, str
] = {} # map from unique name + field name lists to typedef name
declarations: List[str] = [] # function declaration to register the typedef
for overload in overloads:
fieldnames = structseq_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_structseq_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = (
f'{name}NamedTuple{"" if not declarations else len(declarations)}'
)
typenames[tn_key] = typename
declarations.append(f"PyTypeObject* get_{name}_structseq();")
return declarations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Impl Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# python binding for all overloads of a particular function/method
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(
r"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
switch (_r.idx) {
${dispatch}
}
${method_footer}
}
"""
)
# handler for a single parsed signature - may be a single overload or
# a pair of overloads that whose signatures only differ in output params
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
PY_VARIABLE_CASE = CodeTemplate(
"""\
case ${overload_index}: {
${body}
}
"""
)
# python binding for single-overload function/method
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate(
"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
${dispatch}
${method_footer}
}
"""
)
# python binding for a method with no args, shortcuts parsing
PY_VARIABLE_METHOD_NOARGS = CodeTemplate(
"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
{
${method_header}
${check_has_torch_function}
${dispatch}
${method_footer}
}
"""
)
def method_impl(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool,
symint: bool = True,
) -> str:
"""
Generate a python binding for all overloads of an op.
"""
pycname = get_pycname(name)
noarg = is_noarg(overloads)
structseq_inits, structseq_typenames = emit_structseq_call(overloads)
method_header = ["HANDLE_TH_ERRORS"]
method_header += structseq_inits
method_header += (
["const Tensor& self = THPVariable_Unpack(self_);"] if method else []
)
method_footer = ([] if noarg else ["Py_RETURN_NONE;"]) + ["END_HANDLE_TH_ERRORS"]
traceable = "true" if all(should_trace(o.function) for o in overloads) else "false"
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(
overloads, symint=symint
)
is_singleton = len(grouped_overloads) == 1
signatures: List[str] = []
dispatch: List[str] = []
for overload_index, overload in enumerate(grouped_overloads):
signature = overload.signature.signature_str(symint=symint)
signatures.append(f"{cpp_string(str(signature))},")
dispatch_body = emit_dispatch_case(overload, structseq_typenames, symint=symint)
dispatch.append(
PY_VARIABLE_CASE.substitute(
overload_index=overload_index, body=dispatch_body
)
if not is_singleton
else dispatch_body
)
if noarg:
template = PY_VARIABLE_METHOD_NOARGS
elif is_singleton:
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
else:
template = PY_VARIABLE_METHOD_VARARGS
return template.substitute(
name=name,
pycname=pycname,
method_header=method_header,
max_args=max(o.signature.arguments_count() for o in overloads),
signatures=signatures,
traceable=traceable,
check_has_torch_function=gen_has_torch_function_check(
name=name,
module=module,
noarg=noarg,
method=method,
),
dispatch=dispatch,
method_footer=method_footer,
self_="self_" if method else "nullptr",
)
def gen_has_torch_function_check(
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
) -> str:
if noarg:
if method:
return f"""\
if(check_has_torch_function(self_)) {{
return handle_torch_function(self_, "{name}");
}}
"""
else:
return ""
self_ = "self_" if method else "nullptr"
namespace = (
{
"torch": "THPVariableFunctionsModule",
"torch.nn": "THPNNVariableFunctionsModule",
"torch.fft": "THPFFTVariableFunctionsModule",
"torch.linalg": "THPLinalgVariableFunctionsModule",
"torch.nested": "THPNestedVariableFunctionsModule",
"torch.sparse": "THPSparseVariableFunctionsModule",
"torch.special": "THPSpecialVariableFunctionsModule",
}[module]
if module
else "THPVariableClass"
)
return f"""\
if(_r.has_torch_function()) {{
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
}}
"""
# handler for output/no-output overload pair
PY_VARIABLE_OUT = CodeTemplate(
"""\
if (_r.isNone(${out_idx})) {
${call_dispatch}
} else {
${call_dispatch_out}
}
"""
)
def emit_dispatch_case(
overload: PythonSignatureGroup,
structseq_typenames: Dict[str, str],
*,
symint: bool = True,
) -> str:
"""
Emit dispatch code for a single parsed signature. This corresponds to either
a single native function, or a pair that differ only in output params. In the
latter case, a single python signature is used for both and dispatching
switches on the presence/absence of passed output args.
"""
if overload.outplace is not None:
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
return PY_VARIABLE_OUT.substitute(
out_idx=overload.signature.output_idx(),
call_dispatch=emit_single_dispatch(
overload.signature, overload.base, structseq_typenames, symint=symint
),
call_dispatch_out=emit_single_dispatch(
overload.signature,
overload.outplace,
structseq_typenames,
symint=symint,
),
)
else:
# no-output version only
return emit_single_dispatch(
overload.signature, overload.base, structseq_typenames, symint=symint
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Forward Declarations Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def forward_decls(
name: BaseOperatorName,
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool,
) -> Tuple[str, ...]:
if method:
return ()
pycname = get_pycname(name)
if is_noarg(overloads):
return (
f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args);
""",
)
else:
return (
f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
""",
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Def (Binding Table Entry) Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def method_def(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool,
) -> str:
"""
Generate method def entry.
"""
pycname = get_pycname(name)
if name.dunder_method:
# PyMethodDef entry for binary op, throws not implemented error
pycname = f"TypeError_to_NotImplemented_<{pycname}>"
if is_noarg(overloads):
flags = "METH_NOARGS" if method else "METH_VARARGS | METH_KEYWORDS"
else:
pycname = f"castPyCFunctionWithKeywords({pycname})"
flags = "METH_VARARGS | METH_KEYWORDS"
if module == "torch":
flags += " | METH_STATIC"
return f'{{"{name}", {pycname}, {flags}, NULL}},'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Overload Sorting and Grouping
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def group_overloads(
overloads: Sequence[PythonSignatureNativeFunctionPair], *, symint: bool = True
) -> Sequence[PythonSignatureGroup]:
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
# first group by signature ignoring out arguments
for overload in overloads:
sig = overload.signature.signature_str(skip_outputs=True, symint=symint)
if overload.function.func.is_out_fn():
if sig in outplaces:
raise RuntimeError(
f"Found duplicated function definition:\n- {overload.function.func}.\n"
f"Existing definition:\n- {outplaces[sig].function.func}."
)
outplaces[sig] = overload
else:
if sig in bases:
raise RuntimeError(
f"Found duplicated function definition:\n- {overload.function.func}.\n"
f"Existing definition:\n- {bases[sig].function.func}."
)
bases[sig] = overload
for sig, out in outplaces.items():
if sig not in bases:
candidates: List[str] = []
for overload in overloads:
if (
str(overload.function.func.name.name)
== str(out.function.func.name.name)
and not overload.function.func.is_out_fn()
and not overload.signature.deprecated
):
candidates.append(
overload.signature.signature_str(
skip_outputs=True, symint=symint
)
)
out_sig = out.signature.signature_str(symint=symint)
raise RuntimeError(
f"While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. "
f"We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema "
"correctly in native_functions.yaml. We discovered the following candidate(s): \n"
+ "\n".join(f"- {candidate}" for candidate in candidates)
)
grouped = [
PythonSignatureGroup.from_pairs(
functional=base,
out=outplaces.get(sig),
)
for sig, base in bases.items()
]
return sort_overloads(grouped, symint=symint)
# This function declares a partial order on declarations, and sorts them according
# to its linear extension. This is necessary, because there's some ambiguity in the
# choice of overload, and we want a different order.
#
# See Note[Order of overloads matters]
#
# A few examples of ambiguous python signature pairs.
#
# All parameters have the same type, except one taking Tensor the other taking
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
# Therefore, same input arguments might be accepted by either python signature.
# We want to always parse the one taking Tensor first.
#
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
#
# If they have different number of parameters then they are not ambiguous - but
# the difference on output param can be ignored as it's optional.
#
# multiply(Tensor input, Tensor other, *, Tensor out=None)
# multiply(Tensor input, Scalar other)
#
# Both positional args and keyword-only args are considered together.
#
# subtract(Tensor other, *, Scalar alpha=1)
# subtract(Scalar other, Scalar alpha=1)
#
# A few ambiguous cases which it does NOT handle yet.
#
# If there is any difference in other parameters besides the Tensor/Scalar
# difference, then they are not considered ambiguous by this method anymore.
# However, the difference could be too trivial to disambiguate.
#
# foo(Tensor input, Scalar other, Scalar bar)
# foo(Tensor input, Tensor other, double bar)
#
# If they are taking different number of parameters then they are not considered
# ambiguous anymore, even if the difference is only on optional kwargs.
#
# foo(Scalar other, Scalar alpha=1)
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
#
def sort_overloads(
grouped_overloads: Sequence[PythonSignatureGroup], *, symint: bool = True
) -> Sequence[PythonSignatureGroup]:
# NB: Smaller here means lower priority
def is_arg_smaller(t1: Type, t2: Type) -> bool:
return (
str(t1) == "Scalar"
and str(t2) == "Tensor"
or str(t1) == "Scalar?"
and str(t2) == "Tensor?"
or "Dimname" in str(t1)
and "Dimname" not in str(t2)
or
# In the discussion https://github.com/pytorch/pytorch/issues/54555 it has been
# discussed why it is important to prioritize int/int? over int[]
str(t1) == "int[]"
and (str(t2) == "int" or str(t2) == "int?")
or
# TensorList currently throws an error during argument parsing, that's why it needs to be
# last in signature ordering. See discussion: https://github.com/pytorch/pytorch/issues/58087
str(t1) == "Tensor[]"
and str(t2).find("[]") != -1
or
# Prioritize IntArrayRef overload over SymIntArrayRef
str(t1) == "SymInt[]"
and str(t2) == "int[]"
or
# Make sure both in, SymInt are sorted consistently w.r.t. Tensor since Tensor can be implicitly
# converted to either int or SymInt. Prioritize the Tensor overload since it otherwise gets shadowed.
(str(t1) == "SymInt" or str(t1) == "int")
and str(t2) == "Tensor"
)
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
"""Returns True if s1 < s2 in the partial order."""
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
if len(args1) != len(args2):
return False
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
smaller_or_equal = all(
str(arg1.type) == str(arg2.type) or is_arg_smaller(arg1.type, arg2.type)
for arg1, arg2 in zip(args1, args2)
)
return smaller_or_equal and not equal
# First sort by signature
grouped_overloads = sorted(
grouped_overloads, key=lambda x: x.signature.signature_str(symint=symint)
)
# Construct the relation graph
larger_than: Dict[int, Set[int]] = defaultdict(set)
for i1, overload1 in enumerate(grouped_overloads):
for i2, overload2 in enumerate(grouped_overloads):
if is_smaller(overload1.signature, overload2.signature):
larger_than[i1].add(i2)
if not larger_than:
return list(grouped_overloads)
# Use a topological sort to sort overloads according to the partial order.
N = len(grouped_overloads)
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
for idx in range(N):
# The size of sorted_ids will grow to N eventually.
i = sorted_ids[idx]
for j in sorted(larger_than.keys()):
larger = larger_than[j]
larger.discard(i)
if not larger:
del larger_than[j]
sorted_ids.append(j)
return [grouped_overloads[x] for x in sorted_ids]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Codegen API Integration
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def emit_single_dispatch(
ps: PythonSignature,
f: NativeFunction,
structseq_typenames: Dict[str, str],
*,
symint: bool = True,
) -> str:
"""
Emit dispatch code for a single native function.
"""
@with_native_function
def go(f: NativeFunction) -> str:
# header comments
if isinstance(ps, PythonSignatureDeprecated):
schema_comment = f"// [deprecated] aten::{ps.deprecated_schema}"
else:
schema_comment = f"// aten::{f.func}"
deprecated = "[deprecated] " if ps.deprecated else ""
# dispatch lambda signature
name = cpp.name(f.func)
lambda_formals = ", ".join(
f"{a.type_str} {a.name}" for a in dispatch_lambda_args(ps, f, symint=symint)
)
lambda_return = dispatch_lambda_return_str(f)
# dispatch lambda body
dispatch_callee = cpp_dispatch_target(f)
dispatch_args = ", ".join(cpp_dispatch_exprs(f, python_signature=ps))
# from arg parser outputs to dispatch lambda arguments
parser_outputs = arg_parser_output_exprs(ps, f, symint=symint)
lambda_arg_exprs = dispatch_lambda_exprs(ps, f, symint=symint)
inits = "\n".join(lambda_arg_exprs.inits)
lambda_args = ", ".join(lambda_arg_exprs.exprs)
# scatter fields
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
# solution for enabling the 'requires_grad' argument for tensor methods
# new_full, new_empty, and new_zeros. A much better but more difficult to
# implement solution involves refactoring according to Ed's description here:
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
need_set_requires_grad = ps.tensor_options_args and (
not has_tensor_options(f)
or (ps.method and ("requires_grad" in parser_outputs))
)
set_requires_grad = (
f'.set_requires_grad({parser_outputs["requires_grad"].expr})'
if need_set_requires_grad
else ""
)
if lambda_return == "void":
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
{dispatch_callee}({dispatch_args});
}};
dispatch_{name}({lambda_args}){set_requires_grad};
Py_RETURN_NONE;
"""
else:
typename = structseq_typenames.get(gen_structseq_typename_key(f))
structseq_typeref = f"{typename}, " if typename is not None else ""
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
return {dispatch_callee}({dispatch_args});
}};
return wrap({structseq_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
"""
return go(f)