Files
pytorch/torch/_inductor/kernel_inputs.py
Ruben Rodriguez Buchillon d91eecc9a5 [inductor][template heuristics] don't take layout to generate choices (#162238)
# why

- unnecessary as we only ever need to know the dtype and maybe the
  device
- we already take in the kernel inputs which have the device
- enable us to specify the layout after finding all the configs
  but before generating the ChoiceCallers

# what

- replace all calls in template_heuristics that used to take Layout
  with now just taking out_dtype

# testing

ci

Differential Revision: [D81820115](https://our.internmc.facebook.com/intern/diff/D81820115)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162238
Approved by: https://github.com/eellison
ghstack dependencies: #161347, #161348, #161349
2025-09-09 17:17:04 +00:00

339 lines
11 KiB
Python

from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Any, Optional, TYPE_CHECKING, Union
import torch
import torch._inductor.config
from torch._inductor import ir
from torch._inductor.virtualized import V
from .ir import FixedLayout, FlexibleLayout, Layout
if TYPE_CHECKING:
from collections.abc import Sequence
import sympy
class KernelInputs(ABC):
"""
Class to store and provide access to input nodes for kernels.
This class takes in a tuple of input nodes and provides methods to access
information about these nodes, such as their device type and device.
"""
def __init__(
self,
input_nodes: list[Any],
scalars: Optional[dict[str, Union[float, int]]] = None,
out_dtype: Optional[torch.dtype] = None,
):
"""
Initialize with a tuple of input nodes.
Args:
input_nodes: A tuple of input nodes to store
out_dtype: Optional output dtype to store
"""
self._input_nodes = input_nodes
self._device_name: Optional[str] = None
self._scalars = scalars if scalars is not None else {}
self._out_dtype = out_dtype
assert len(input_nodes) > 0, "Expected at least one input node"
def nodes(self, reorder: Optional[Sequence[int]] = None) -> list[Any]:
"""
Return the stored input nodes, optionally reordered.
Args:
reorder: Optional sequence of indices to reorder the nodes.
For example, (2, 0, 1) would return nodes in that order.
Returns:
The tuple of input nodes, optionally reordered
"""
if reorder is None:
return self._input_nodes
assert len(self._input_nodes) == len(reorder), (
f"Reorder length mismatch: {len(self._input_nodes)} vs {len(reorder)}"
)
return [self._input_nodes[i] for i in reorder]
@property
def count(self) -> int:
"""
Get the number of input nodes.
Returns:
The number of input nodes
"""
return len(self._input_nodes)
@property
def device_type(self) -> Optional[str]:
"""
Get the device type of the first node.
Returns:
The device type (e.g., 'cuda', 'cpu')
"""
return ir.get_device_type(self._input_nodes[0])
def device(self) -> torch.device:
"""
Get the device of the first node.
Returns:
The device of the first node
"""
return self._input_nodes[0].get_device()
def device_name(self) -> Optional[str]:
"""
Get the device name information.
Returns:
A tuple of (gpu_name, vendor, model)
"""
if self._device_name is None:
device = self.device()
if self.device_type == "cuda":
device_properties = torch.cuda.get_device_properties(device)
self._device_name = device_properties.gcnArchName
return self._device_name
def shapes_symbolic(self) -> tuple[tuple[Any, ...], ...]:
"""
Get the symbolic shapes of all input nodes.
Returns:
A tuple of shape tuples for each input node
"""
return tuple(node.get_size() for node in self._input_nodes)
def shapes_hinted(self) -> tuple[tuple[int, ...], ...]:
"""
Get the size hints for shapes of all input nodes.
Returns:
A tuple of shape tuples with integer hints for each input node
"""
return tuple(
V.graph.sizevars.size_hints(
node.get_size(),
fallback=torch._inductor.config.unbacked_symint_fallback,
)
for node in self._input_nodes
)
def strides_symbolic(self) -> tuple[tuple[sympy.Integer, ...], ...]:
"""
Get the symbolic strides of all input nodes.
Returns:
A tuple of stride tuples for each input node
"""
return tuple(node.get_stride() for node in self._input_nodes)
def strides_hinted(self) -> tuple[tuple[int, ...], ...]:
"""
Get the size hints for strides of all input nodes.
Returns:
A tuple of stride tuples with integer hints for each input node
"""
return tuple(
V.graph.sizevars.size_hints(
node.get_stride(),
fallback=torch._inductor.config.unbacked_symint_fallback,
)
for node in self._input_nodes
)
def dtypes(self) -> tuple[torch.dtype, ...]:
"""
Get the dtypes of all input nodes.
Returns:
A tuple of dtypes for each input node
"""
return tuple(node.get_dtype() for node in self._input_nodes)
def dtype(self, idx: int = 0) -> torch.dtype:
"""
Get the dtype of a specific input node.
Args:
idx: Index of the node to get the dtype from (default: 0)
Returns:
The dtype of the specified input node
"""
return self._input_nodes[idx].get_dtype()
@abstractmethod
def out_dtype(self) -> torch.dtype:
"""
Get the output dtype, whether passed in or inferred from the nodes
Returns:
The output dtype
"""
def get_scalar(self, name: str) -> Union[float, int]:
"""
Get the scalar value for a given name.
Args:
name: Name of the scalar to get
Returns:
The scalar value
"""
assert name in self._scalars, f"Scalar {name} not found, but required"
return self._scalars[name]
@abstractmethod
def output_layout(self, flexible: bool = True) -> Layout:
"""
Abstract method to handle output layout generation.
Args:
out_dtype: Optional output dtype. If not provided, infer from inputs
flexible: If True, return FlexibleLayout, otherwise FixedLayout
"""
class MMKernelInputs(KernelInputs):
"""
Specialized KernelInputs for matrix multiplication operations.
Provides additional methods to access M, N, K dimensions.
"""
def __init__(
self,
input_nodes: list[Any],
scalars: Optional[dict[str, Union[float, int]]] = None,
out_dtype: Optional[torch.dtype] = None,
mat1_idx: int = -2,
mat2_idx: int = -1,
):
"""
Initialize with a tuple of input nodes.
By default, we assume the last 2 input nodes are mat1 and mat2, but
the caller can adjust when necessary
"""
super().__init__(input_nodes, scalars, out_dtype)
# for mm, we need at least 2 nodes, and we need to know which nodes
# are the main matrixes e.g. addmm is (bias, mat1, mat2) whereas others
# might be (mat1, mat2, scale), etc.
assert len(self._input_nodes) >= 2, "Expected at least 2 input nodes"
# Adjust assertions to handle negative indices
m1_idx, m2_idx = mat1_idx, mat2_idx
if mat1_idx < 0:
m1_idx += len(input_nodes)
if mat2_idx < 0:
m2_idx += len(input_nodes)
assert 0 <= m1_idx < len(input_nodes), f"Invalid mat1_idx: {mat1_idx}"
assert 0 <= m1_idx < len(input_nodes), f"Invalid mat2_idx: {mat2_idx}"
self._mat1_idx = mat1_idx
self._mat2_idx = mat2_idx
def mnk_symbolic(
self,
) -> tuple[sympy.Integer, sympy.Integer, sympy.Integer]:
"""
Get the symbolic M, N, K dimensions for matrix multiplication.
Handles both 2D (MM) and 3D (BMM) tensors.
M is extracted from the second-to-last dimension of the first operand (mat1).
N is extracted from the last dimension of the second operand (mat2).
K is extracted from the last dimension of the first operand (mat1).
Returns:
A tuple of (M, N, K) dimensions
"""
mat1 = self.nodes()[self._mat1_idx]
mat2 = self.nodes()[self._mat2_idx]
m = mat1.get_size()[-2] # M from second-to-last dimension of mat1
k = mat1.get_size()[-1] # K from last dimension of mat1
n = mat2.get_size()[-1] # N from last dimension of mat2
# Ensure K dimensions match between operands
k0 = mat2.get_size()[-2] # K from second-to-last dimension of mat2
V.graph.sizevars.check_equals(k, k0)
return (m, n, k)
def out_dtype(self) -> torch.dtype:
"""
Get the output dtype, whether passed in or inferred from the nodes
Returns:
The output dtype
"""
if self._out_dtype is not None:
return self._out_dtype
return self.mat1mat2()[0].get_dtype()
def output_layout(self, flexible: bool = True) -> Layout:
"""
Handle output layout generation for matrix multiplication.
Args:
out_dtype: Optional output dtype. If not provided, infer from inputs
flexible: If True, return FlexibleLayout, otherwise FixedLayout
"""
mat1, mat2 = self.mat1mat2()
out_dtype = self.out_dtype()
# NOTE: taken from mm_common.mm_args
*b1, m, k1 = mat1.get_size()
*b2, k2, n = mat2.get_size()
b = [V.graph.sizevars.check_equals_and_simplify(a, b) for a, b in zip(b1, b2)]
size = [*b, m, n]
if flexible:
return FlexibleLayout(self.device(), out_dtype, size)
else:
return FixedLayout(self.device(), out_dtype, size)
def mat1mat2(self) -> tuple[Any, Any]:
"""
Get the mat1 and mat2 nodes.
Returns:
A tuple of (mat1, mat2) nodes
"""
nodes = self.nodes()
return nodes[self._mat1_idx], nodes[self._mat2_idx]
def mnk_hinted(self) -> tuple[int, int, int]:
"""
Get the hinted M, N, K dimensions for matrix multiplication.
Handles both 2D (MM) and 3D (BMM) tensors.
Uses shapes_hinted from the base class to get integer hints for dimensions.
Returns:
A tuple of (M, N, K) dimensions as integers
"""
hinted_shapes = self.shapes_hinted()
mat1_shape = hinted_shapes[self._mat1_idx]
mat2_shape = hinted_shapes[self._mat2_idx]
m = mat1_shape[-2] # M from second-to-last dimension of mat1
k = mat1_shape[-1] # K from last dimension of mat1
n = mat2_shape[-1] # N from last dimension of mat2
# Ensure K dimensions match between operands
k_check = mat2_shape[-2] # K from second-to-last dimension of mat2
assert k == k_check, f"K dimensions don't match: {k} vs {k_check}"
return (m, n, k)